# Identification of new theobromine-based derivatives as potent VEGFR-2 inhibitors: Design, semi-synthesis, biological evaluation, and *in silico* studies

Ibrahim H. Eissa<sup>a</sup>\*, Reda G.Yousef <sup>a</sup>, Hazem Elkady<sup>a</sup>, Eslam B. Elkaeed<sup>b</sup>, Aisha A. Alsfouk<sup>c</sup>, Dalal Z. Husein<sup>d</sup>, Ibrahim M. Ibrahim<sup>e</sup>, Mostafa. A. Elhendawy<sup>f,g</sup>, Murrell Godfrey<sup>f</sup>, Ahmed M. Metwaly<sup>h,i</sup>\*

<sup>a</sup> Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt.

<sup>b</sup> Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.

<sup>c</sup> Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

<sup>d</sup> Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt.

<sup>e</sup> Biophysics Department, Faculty of Science, Cairo University. Cairo 12613, Egypt.

<sup>f</sup> Department of Chemistry and Biochemistry, University of Mississippi, MS 38677, USA

<sup>g</sup> Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt.

<sup>h</sup> Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.

<sup>i</sup> Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.

# \*Corresponding authors:

**Ibrahim H. Eissa**, Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. Email: <u>Ibrahimeissa@azhar.edu.eg</u>

Ahmed M. Metwaly, Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-AzharUniversity, Cairo 11884, Egypt. Email: ametwaly@azhar.edu.eg

|                       | Content |  |
|-----------------------|---------|--|
| 1. Chemistry          |         |  |
| 2. Biological testing |         |  |
| 3. In silico studies  |         |  |
| 4. Spectral data      |         |  |

#### S1. Chemistry

All commercially available materials were purchased from commercial sources and used without further purification. All reactions were performed in a temperature-controlled oil/wax bath. Reactions were monitored by analytical thin layer chromatography (TLC), using aluminum-backed plates, cut to size. TLC visualization was achieved by UV. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on Bruker AVANCE 400 MHz spectrometers at ambient temperature. Spectral data is reported in ppm, coupling constants (*J*) in Hz. Elemental analyses were accomplished using a CHN analyzer. IR spectra were recorded as KBr pellets on a PerkinElmer Spectrum one FT-IR spectrometer. The mass spectra were recorded on an Agilent 6410 triple-quadrupole mass spectrometer equipped with an ESI source. All melting points were taken on a Gallenkamp melting point apparatus and are uncorrected. Nomenclature was determined using ChemBioDraw Ultra 14.0.

#### S2. Biological testing

#### S.2.1. In vitro anti-proliferative activity

The *in vitro* antiproliferative activities of all the synthesized compounds against a panel of four human tumor cell lines namely, liver (HepG2) and breast (MCF-7) cancer cells were evaluated quantitatively as described in the literature, using MTT assay protocol. The commercially available drug (sorafenib) was used in this test as positive controls. The antiproliferative activity was assessed quantitatively as follows.

Human cancer cell lines were dropped in 96-well plates at a density of  $3-8 \times 10^3$  cells/well. Next, the wells were incubated for 24 h in a 5% CO<sub>2</sub> incubator at 37 °C. Then, for each well, the growth medium was exchanged with 0.1 ml of fresh medium containing graded concentrations of the test compounds to be or equal DMSO and incubated for two days. Then 10 µl MTT solution (5 µg/ml) was added to each well, and the cells were incubated for

additional 4 h. The crystals of MTT-formazan were dissolved in 100  $\mu$ l of DMSO; the absorbance of each well was measured at 490 nm using an automatic ELISA reader system (TECAN, CHE). The IC<sub>50</sub> values were calculated using the nonlinear regression fitting models (Graph Pad, Prism Version 5). The data represented the mean of three independent experiments in triplicate and were expressed as means  $\pm$  SD. The IC<sub>50</sub> value was defined as the concentration at which 50% of the cells could survive.

# S.2.2. Safety assay

The safety profile of compound **15a** was checked on one non-cancerous cell line (Vero cells) to determine the treatments concentrations that do not depict toxic effects against the tested cells. A portion of 100.0  $\mu$ l of 6×10<sup>4</sup> cell/ml cells was seeded into each well of a 96-well plate and then the plates were incubated at 37°C in a humidified 5.0% CO<sub>2</sub> incubator for 24 h. At the end of incubation period, the exhausted medium was replaced with 100.0  $\mu$ l of different concentrations of the designated treatment (prepared in RPMI medium starting from 1.0 mM). The inoculated plates were incubated at the same growth conditions for another 24 h. At the end of incubation, cellular viability was assessed using MTS assay kit (Promega) according to the manual instruction.

# S.2.3. In vitro VEGFR-2 inhibition

Inhibitory activity of compound **15a** (The most promising member) against VEGFR-2 was evaluated using Human VEGFR-2 ELISA kit (Enzyme-Linked Immunosorbent Assay). A specific antibody for VEGFR-2 was seeded on a 96-well plate and 100  $\mu$ L of the standard solution or the tested compound was added, all were incubated at room temperature for 2.5 hours. Then washed, 100  $\mu$ L of the prepared biotin antibody was added, then incubated at room temperature for additional 1 hour. Washed, 100  $\mu$ L of streptavidin solution was added then incubated for 45 min. at room temperature. Washed again, 100  $\mu$ L of TMB Substrate reagent was added and incubated for 30 min. at room temperature. 50  $\mu$ L of the stop solution was added, then read at 450 nm immediately. The standard curve was drawn, concentrations on the X-axis and the absorbance on the Y-axis.

# S.2.4. Apoptosis analysis

To detect the apoptosis induced by compound **15a**, HepG2 cells were seeded and incubated overnight and then treated with compound **15a** at concentrations of  $0.76 \,\mu$ M for 72 h. DMSO was chosen as the negative control. After that, the cells were collected and washed with PBS two

successive times. The cells were exposed to centrifugation. Apoptosis detection kit (BD Biosciences, San Jose, CA) was used in this test. According to the manufacturer's protocol the cells were stained by Annexin V-FITC and propidium iodide (PI) in the binding buffer for 20min at room temperature in the dark. Using a flow cytometer, Annexin V-FITC and PI binding were analyzed. flowjo software was used to analyze the frequencies in all quadrants.

# S.2.5. Quantitative Real Time Reverse-Transcriptase PCR technique (determination of caspase-3 and caspase-9)

The quantity of caspase-3, caspase-9 mRNA in control and HepG2 treated with compound **15a** was assessed by qRT-PCR . HepG2 cells were treated with compound **15a** at a concentration of 0.76  $\mu$ M (IC<sub>50</sub> value). Total RNA from vehicle-treated control (0.01% DMSO) and **15a**-treated HepG2 cells were extracted as-per the manufacturer instructions (RNeasy mini kit, Qiagen, Germany). After RNA extraction, cDNA was prepared using the Revert Aid First Strand cDNA Synthesis kit (Thermo Scientific, USA). Amplification of target cDNA for apoptosis markers and GAPDH [as a normalization (housekeeping) gene] was done using one-step RT-PCR SYBR® Green kit Master Mix (Bio-Rad Laboratories, USA) on Rotor-Gene Q real-time PCR thermal cycler instrument. cDNA (2  $\mu$ l aliquots) was mixed with 1  $\mu$ l of forward primer, 1  $\mu$ l reverse primer, 10  $\mu$ l master mixture, and the reaction volume was completed to 20  $\mu$ l with nuclease-free water. All experiments were performed in triplicates.

|       | Primers                             |  |  |  |  |  |
|-------|-------------------------------------|--|--|--|--|--|
| Casp3 | : F 5'-GGAAGCGAATCAATGGACTCTGG -3', |  |  |  |  |  |
| Casp3 | : R 5'-GCATCGACATCTGTACCAGACC -3'.  |  |  |  |  |  |
| Casp9 | : F 5'-GTTTGAGGACCTTCGACCAGCT-3',   |  |  |  |  |  |
| Casp9 | : R 5'-CAACGTACCAGGAGCCACTCTT-3'.   |  |  |  |  |  |
| GAPDH | : F 5'- GTCTCCTCTGACTTCAACAGCG-3'   |  |  |  |  |  |
| GAPDH | : R 5'- ACCACCCTGTTGCTGTAGCCAA-3'   |  |  |  |  |  |

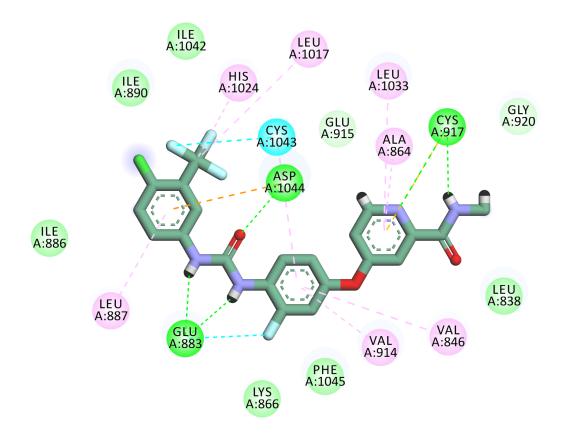
The sequences for primers used in quantitative Real Time Reverse-Transcriptase PCR (qRT-PCR)

# S.2.6. Wound healing assay (Migration assay)

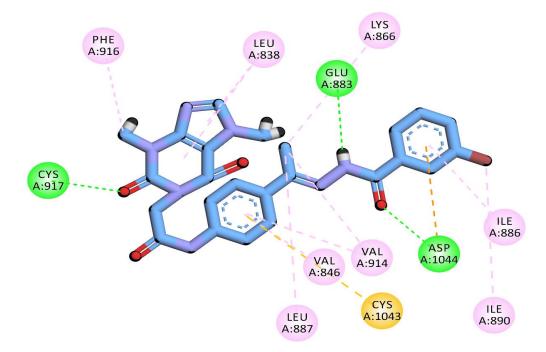
HepG2 cells were grown to 95.0% confluency in a complete DMEM medium and then the wounds were formed using a plastic tip. After washing with pre-warmed PBS, the cells were incubated in the specific medium or **15a** treatment. After incubation at  $37^{\circ}$ C and 5.0% CO<sub>2</sub> for 24h, the cells were washed with PBS and the wounds distance was determined as the scratch width of the treated and untreated groups using ImageJ software.

# S3. In silico studies

# S.3.1. Docking studies


**Protein Preparation:** The crystal structure of VEGFR-2 [PDB ID: 2OH4, resolution: 2.05 Å] was obtained from Protein Data Bank (https://www.rcsb.org). At first, the crystal structure of the VEGFR-2 complexed with the co-crystallized ligand was prepared by removing crystallographic water molecules. Only one chain was retained besides the co-crystallized ligand. The selected protein chain was protonated using the following setting. The used electrostatic functional form was GB/VI with a distance cut-off of 15 Å. The used value of the dielectric constant was 2 with an 80 dielectric constant of the used solvent. The used Van der Waals functional form was 800R3 with a distance cut-off of 10 Å. Then, the energy of the protein chain was minimized using Hamiltonian AM1 implanted in Molecular Operating Environment (MOE 2019 and MMFF94x (Merck molecular force field) for structural optimization. Next, the active site of the target protein was defined for ligand docking and redocking (in case of validation of docking protocol). The active site of the protein was identified as the residues that fall within the 5 Å distance from the perimeter of the co-crystallized ligand.

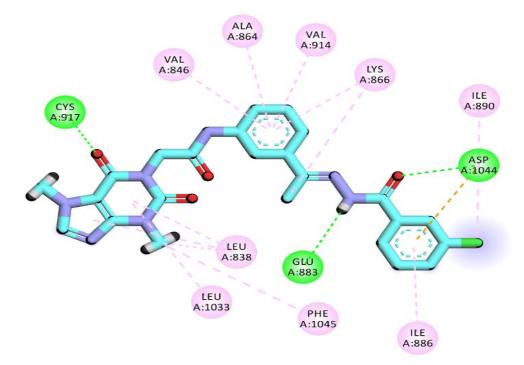
**Ligand Preparation:** 2D structures of the synthesized compounds and the standard compound, sorafenib were drawn using ChemBioDraw Ultra 14.0 and saved in MDL-SD file format. The 3D structures of the ligands were protonated, and the structures were optimized by energy minimization using MM2 force-field and 10000 iteration steps of 2 fs. The conformationally optimized ligands were used for docking studies.


**Docking Setup and Validation of Docking Protocol:** The protein-ligand docking studies were carried out using MOE version 2019. Validation of the docking protocol was carried out by redocking the co-crystallized reference ligand against the isolated pocket of VEGFR-2. The

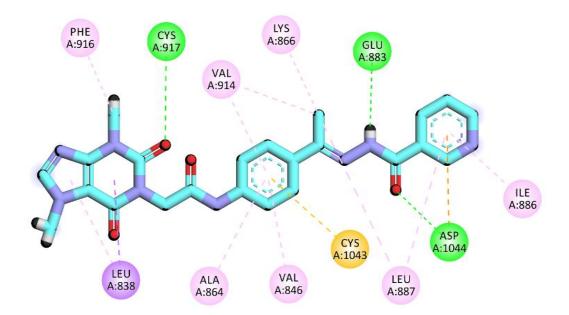
docking protocol was validated by comparing the heavy atoms RMSD value of the re-docked ligand pose with the corresponding co-crystallized reference ligand structure.

The docking setup for the tested compounds was established according to the protocol followed in the validation step. For each docking run, 30 docked solutions were generated using ASE for scoring function and rigid receptor for refinement. The pose with ideal binding mode was selected for further investigations. The docking results were visualized using Discovery Studio (DS) 4.0. Analysis of the docking results was carried out by comparing the interactions and docking score obtained for the docked ligands with that of the re-docked reference molecule.




**S3.1.1.** 2D interaction of sorafenib with the active site of VEGFR-2.




**S3.1.2.** 2D interaction of compound **15a** in the VEGFR-2 binding site.



S3.1.3. 2D diagram of compound 15b in the VEGFR-2 binding site.



**S3.1.4.** 2D interactions of compound **16** in the VEGFR-2 binding site.



S3.1.5. 2D interactions of compound 17 in the VEGFR-2 binding site.

# S.3.2. MD simulations

To assess the robustness of the VEGFR-2\_15a complex and to compare it with the structure of the VEGFR-2\_Sorafenib (reference molecule) and apo protein (the protein before docking), a 100 ns classical unbiased MD simulation was run in GROMACS 2021 for each system. We utilized the solution builder module of the CHARMM-GUI server to generate the input files. Using the transferable intermolecular potential 3 points (TIP3P) water model, we solvated and centered the each system in a cube of 8.3 nm in length with 1 nm of padding, and then neutralized the system with NaCl ions at a concentration of 0.154 M. The VEGFR-2 protein's amino acid parameters, the TIP3P water model, and the neutralizing ions were all obtained from the CHARMM36m force field. Parameters for the compound **15a** and Sorafenib were obtained with the help of the CHARMM general force field (CGenFF).

We utilized GROMACS 2021 to perform the dynamics and used periodic boundary conditions (PBCs) in all three spatial dimensions. The potential energy of the system was minimized so that atomic collisions may be avoided. During the equilibration process, the temperature was brought to 310 K and the pressure was brought to 1 atm. In detail, the minimizing step was set to be converged at 100,000 minimization steps or when the maximum force on any atom was 100 KJ.mol<sup>-1</sup>.nm<sup>-1</sup>. By using the Velocity Rescale technique, we were able to achieve thermal equilibrium in a canonical (NVT) ensemble. For pressure equilibration, we employed a Berendsen barostat with the isothermal-isobaric (NPT) ensemble. The production run in an NPT ensemble was started for 100 ns with the Nose-Hoover thermostat at 310 degrees Kelvin and the Parrinello-Rahman barostat set at 1 atm. The LINear Constraint Solver (LINCS) was used to impose length constraints on the hydrogen-bonded atoms. We utilized Particle Mesh Ewald (PME) to calculate the electrostatics with a threshold of 1.2 nm. By using a time step of 1 femtosecond during equilibration and 2 femtoseconds during production, the Newtonian equations of motion were integrated using the leap-frog algorithm. One thousand frames were captured at 0.1 ns intervals throughout the simulation. We centered the protein in the middle of the simulation box and made it whole again (removed the effects of the PBC) using the triconv command and then analyzed it using VMD TK scripts. VEGFR-2, 15a, and Sorafenib root mean square deviation (RMSD) values were determined. Root mean square fluctuation (RMSF), the radius of gyration (RoG), the ligand-protein center of mass separation, and the number of hydrogen bonds between each ligand and the protein were all computed to see their dynamic behavior with time.

#### **MM-GBSA**

When calculating the ligand's binding energy, we utilized the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method implemented in the gmx\_MMPBSA program. In addition, decomposition analysis was carried out to calculate the binding energy contributed by each amino acid within 1 nm of the ligand. An ionic strength of 0.154 M and a solvation method (igb) value of 5 were selected. The dielectric constant was set to 1.0 inside and 78.5 outside the structure. The MM-GBSA approach is shown in Equation 1.

 $\Delta G = \langle \text{Gcomplex} - (\text{Greceptor} + \text{Gligand}) \rangle$  Equation 1

Where <> represents the average of the enclosed free energies of complex, receptor, and ligand over the frames used in the calculation. In our approach, we used the whole trajectory (a total of 1000 frames). Different energy terms can be calculated according to Equations 2 to 6 as follows:

| $\Delta Gbinding = \Delta H - T\Delta S$  | Equation 2 |
|-------------------------------------------|------------|
| $\Delta H = \Delta E gas + \Delta E sol$  | Equation 3 |
| $\Delta Egas = \Delta Eele + \Delta EvdW$ | Equation 4 |
| $\Delta Esolv = EGB + ESA$                | Equation 5 |
| $ESA = \gamma.SASA$                       | Equation 6 |

Where:

 $\Delta$ H is the enthalpy which can be calculated from gas-phase energy (E<sub>gas</sub>) and solvation-free energy (E<sub>sol</sub>). -T $\Delta$ S is the entropy contribution to the free binding energy. E<sub>gas</sub> is composed of electrostatic and van der Waals terms; E<sub>ele</sub>, E<sub>vdW</sub>, respectively. E<sub>sol</sub> can be calculated from the polar solvation energy (E<sub>GB</sub>) and nonpolar solvation energy (E<sub>SA</sub>) which is estimated from the solvent-accessible surface area.

#### **ProLIF Analysis**

We monitored which amino acids interacted with the ligand and how often using the python package Protein-Ligand Interaction Fingerprints (ProLIF). We next used TTclust to cluster the

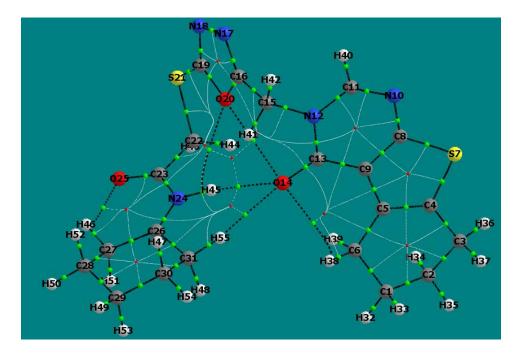
trajectories, and the obtained representative frames were used with the Protein-Ligand interaction profiler (PLIP) to extract the interactions as 3D conformations.

# **Principal Component Analysis:**

When the mass-weighted covariance matrix (C) of the positional fluctuations of a subset of atoms in a protein is analyzed using a Principal Component Analysis (PCA), the presence of coordinated motion at large amplitudes in MD trajectories becomes apparent. The alpha carbon atoms of amino acids Glu826:Leu1161 were used in the PCA analysis as a subset of atoms to detect the coordinated motion (15a). After equilibration, the protein's configuration in each trajectory was used as the reference structure while performing the analyses that used a single trajectory. In contrast, the last frame from the equilibration of the apo system was chosen as the reference for the concatenated trajectory analyses. The PCA technique, in particular, uses the information revealed by diagonalizing the C matrix to determine the eigenvectors and eigenvalues that define the atomic motions' direction and amplitude. For any given system, the first PC displays the largest motion, whereas subsequent PCs show smaller motions. We were able to analyze the C matrix in GROMACS by utilizing the gmx covar command to diagonalize the matrix and the gmx anaeig command to complete the analysis.

Essential subspace size was determined based on the cumulative eigenvalues with respect to the number of eigenvectors used, where the variance maintained by the selected eigenvectors was shown. Additionally, the scree plot was made by plotting the eigenvalue of each eigenvector against its index number.

To make a direct comparison between the frames in the reduced subspace, we first merged the apo-protein and complex trajectories, then aligned them to the apo-protein configuration we obtained after equilibration, then constructed a new C matrix for the combined trajectories, and finally projected each trajectory onto the new C matrix. As a means of gauging the degree to which the two trajectories are similar, we plotted the projection on the first three eigenvectors by using different pair combinations of eigenvectors.


#### **S.3.4. Density Function Theory (DFT) calculations**

The Gaussian 09 program was used to perform the quantum chemistry calculations using the DFT method. GaussianView5 was used to display all of the data files. The density function theory (DFT) at 6-311G++(d,p) basis set/B3LYP approach was utilized to optimize organic chemical structure of the compound under investigation and Chem3D 15.0 software was used to create the original chemical structures. Both the Total Electron Density (TED) and the Electrostatic Surface (ESP) maps were examined at the same theoretical level. GaussSum3.0 software was used to compute and evaluate the total density of state (TDOS) for the optimized log file.

Equations of Koopmans' theory: The chemical potential ( $\mu$ ), maximal charge acceptance ( $\Delta N_{max}$ ), global hardness ( $\eta$ ), energy change ( $\Delta E$ ), electronegativity ( $\chi$ ), the global softness ( $\sigma$ ), electrophilicity index ( $\omega$ ), ionization potential (IP) and electron affinity (EA)

 $IP = -E_{HOMO}$  $EA = -E_{LUMO}$  $\mu =$ (IP+EA)/2 $\eta = (IP-EA)$  $\chi = - \eta$  $\omega = \mu^{2}/(2$  $\eta) \sigma = 1/$  $\eta$  $\Delta N = -(\mu/\eta)$  $\Delta E = -\omega$ 

 $E_{gap} = E_{LUMO} - E_{HOMO}$ 



QTAIM analysis: molecular graph showing the bonding critical points (BCPs) for compound **15a**.

| BCP<br># | Atoms     | (ρ)      | (∇2ρ)    | K(r)     | G(r)     | V(r)     | H(r)     |
|----------|-----------|----------|----------|----------|----------|----------|----------|
| 1        | N1 - C2   | 0.352145 | -1.06484 | 0.496979 | 0.23077  | -0.72775 | -0.49698 |
| 2        | C2 - N3   | 0.317941 | -0.73416 | 0.457061 | 0.273522 | -0.73058 | -0.45706 |
| 3        | N1 - C5   | 0.335873 | -1.00592 | 0.435063 | 0.183584 | -0.61865 | -0.43506 |
| 4        | C5 - C6   | 0.323138 | -0.91608 | 0.342533 | 0.113513 | -0.45605 | -0.34253 |
| 5        | N4 - C5   | 0.306468 | -0.86102 | 0.411731 | 0.196475 | -0.60821 | -0.41173 |
| 6        | N3 - C6   | 0.295186 | -0.69173 | 0.399687 | 0.226754 | -0.62644 | -0.39969 |
| 7        | C6 - C7   | 0.293145 | -0.79626 | 0.280738 | 0.081672 | -0.36241 | -0.28074 |
| 8        | C7 - N8   | 0.277213 | -0.73348 | 0.323491 | 0.140121 | -0.46361 | -0.32349 |
| 9        | N4 - C9   | 0.312245 | -0.91964 | 0.40409  | 0.17418  | -0.57827 | -0.40409 |
| 10       | N8 - C9   | 0.298059 | -0.84511 | 0.359575 | 0.148298 | -0.50787 | -0.35958 |
| 11       | C7 - O10  | 0.408671 | -0.31429 | 0.688523 | 0.60995  | -1.29847 | -0.68852 |
| 12       | C9 - O11  | 0.401887 | -0.42566 | 0.672446 | 0.56603  | -1.23848 | -0.67245 |
| 13       | N8 - C12  | 0.244313 | -0.57819 | 0.276931 | 0.132382 | -0.40931 | -0.27693 |
| 14       | C13 - N14 | 0.311455 | -0.87859 | 0.420546 | 0.2009   | -0.62145 | -0.42055 |
| 15       | С12 - Н38 | 0.288802 | -1.01713 | 0.288357 | 0.034074 | -0.32243 | -0.28836 |
| 16       | C12 - C13 | 0.243593 | -0.55834 | 0.191945 | 0.05236  | -0.24431 | -0.19195 |
| 17       | N14 - H40 | 0.335076 | -1.7095  | 0.477909 | 0.050535 | -0.52844 | -0.47791 |
| 18       | 011 - H40 | 0.02629  | 0.095956 | -0.0021  | 0.021886 | -0.01978 | 0.002102 |

The QTAIM parameters (a.u.) at bond critical points (BCPs) of 15a.

| 19 | C15 - C23  | 0.303551 | -0.83814 | 0.307231 | 0.097696 | -0.40493 | -0.30723 |
|----|------------|----------|----------|----------|----------|----------|----------|
| 20 | N14 - C15  | 0.285804 | -0.78105 | 0.36808  | 0.172817 | -0.5409  | -0.36808 |
| 21 | C13 - O16  | 0.407738 | -0.23735 | 0.686246 | 0.626909 | -1.31315 | -0.68625 |
| 22 | O16 - H50  | 0.017103 | 0.062213 | -0.00209 | 0.013459 | -0.01137 | 0.002094 |
| 23 | N4 - C17   | 0.245777 | -0.57459 | 0.293121 | 0.149474 | -0.4426  | -0.29312 |
| 24 | N3 - C18   | 0.249278 | -0.59364 | 0.301776 | 0.153366 | -0.45514 | -0.30178 |
| 25 | C15 - C19  | 0.306358 | -0.84787 | 0.310026 | 0.098059 | -0.40809 | -0.31003 |
| 26 | C19 - C20  | 0.310831 | -0.86724 | 0.319965 | 0.103156 | -0.42312 | -0.31997 |
| 27 | C22 - C23  | 0.31167  | -0.87322 | 0.321575 | 0.10327  | -0.42485 | -0.32158 |
| 28 | H48 - H51  | 0.012224 | 0.04628  | -0.00223 | 0.009336 | -0.0071  | 0.002234 |
| 29 | C20 - C21  | 0.303371 | -0.82866 | 0.304111 | 0.096947 | -0.40106 | -0.30411 |
| 30 | C21 - C22  | 0.302991 | -0.82986 | 0.303181 | 0.095716 | -0.3989  | -0.30318 |
| 31 | C21 - C24  | 0.265962 | -0.6608  | 0.230706 | 0.065507 | -0.29621 | -0.23071 |
| 32 | C23 - H50  | 0.28812  | -1.01506 | 0.289253 | 0.035488 | -0.32474 | -0.28925 |
| 33 | C24 - N25  | 0.363201 | -0.71157 | 0.565109 | 0.387217 | -0.95233 | -0.56511 |
| 34 | N25 - N27  | 0.353768 | -0.65735 | 0.336922 | 0.172583 | -0.50951 | -0.33692 |
| 35 | C22 - H49  | 0.285066 | -0.99253 | 0.284507 | 0.036374 | -0.32088 | -0.28451 |
| 36 | C24 - C26  | 0.249004 | -0.57724 | 0.203825 | 0.059514 | -0.26334 | -0.20383 |
| 37 | C26 - H53  | 0.270312 | -0.88389 | 0.263739 | 0.042766 | -0.30651 | -0.26374 |
| 38 | N27 - H54  | 0.336355 | -1.61974 | 0.457269 | 0.052333 | -0.5096  | -0.45727 |
| 39 | N27 - C28  | 0.304684 | -0.86629 | 0.404129 | 0.187557 | -0.59169 | -0.40413 |
| 40 | N25 - H55  | 0.013862 | 0.050995 | -0.00216 | 0.010591 | -0.00843 | 0.002158 |
| 41 | C28 - C29  | 0.260182 | -0.64141 | 0.220781 | 0.060428 | -0.28121 | -0.22078 |
| 42 | C28 - O30  | 0.40493  | -0.29827 | 0.680068 | 0.605501 | -1.28557 | -0.68007 |
| 43 | C29 - C31  | 0.30523  | -0.83908 | 0.308267 | 0.098498 | -0.40677 | -0.30827 |
| 44 | C31 - C32  | 0.309679 | -0.86665 | 0.317097 | 0.100434 | -0.41753 | -0.3171  |
| 45 | C32 - C33  | 0.308339 | -0.85851 | 0.315388 | 0.100761 | -0.41615 | -0.31539 |
| 46 | C29 - C35  | 0.304005 | -0.83088 | 0.305946 | 0.098225 | -0.40417 | -0.30595 |
| 47 | C33 - C34  | 0.309655 | -0.86308 | 0.318268 | 0.102497 | -0.42077 | -0.31827 |
| 48 | C34 - C35  | 0.312427 | -0.87571 | 0.324143 | 0.105215 | -0.42936 | -0.32414 |
| 49 | C34 - Br36 | 0.154795 | -0.14054 | 0.086295 | 0.051162 | -0.13746 | -0.0863  |
| 50 | C2 - H37   | 0.288373 | -1.02535 | 0.288501 | 0.032163 | -0.32067 | -0.2885  |
| 51 | C12 - H39  | 0.281891 | -0.96316 | 0.278282 | 0.037493 | -0.31578 | -0.27828 |
| 52 | C17 - H41  | 0.28166  | -0.9653  | 0.278541 | 0.037216 | -0.31576 | -0.27854 |
| 53 | C17 - H42  | 0.284628 | -0.98761 | 0.283108 | 0.036206 | -0.31931 | -0.28311 |
| 54 | C17 - H43  | 0.280472 | -0.95647 | 0.276769 | 0.037652 | -0.31442 | -0.27677 |
| 55 | C18 - H44  | 0.280738 | -0.96028 | 0.278301 | 0.03823  | -0.31653 | -0.2783  |
| 56 | C18 - H45  | 0.282496 | -0.97264 | 0.279488 |          | -0.31582 | -0.27949 |
| 57 | C18 - H46  | 0.282068 | -0.96947 | 0.278823 |          | -0.31528 | -0.27882 |
| 58 | C19 - H47  | 0.279876 | -0.9535  | 0.278226 | 0.039851 | -0.31808 | -0.27823 |
| 59 | C20 - H48  | 0.282203 | -0.96872 |          |          | -0.32223 | -0.2822  |
| 60 | C26 - H51  | 0.278384 | -0.93551 | 0.2765   |          | -0.31912 | -0.2765  |
| 61 | C26 - H52  | 0.270335 | -0.88329 |          | 0.04362  | -0.30806 | -0.26444 |
|    |            |          |          |          |          |          |          |

| 62 | C31 - H55 | 0.28726  | -1.00754 | 0.288168 | 0.036282 | -0.32445 | -0.28817 |
|----|-----------|----------|----------|----------|----------|----------|----------|
| 63 | C32 - H56 | 0.282203 | -0.97338 | 0.281122 | 0.037777 | -0.3189  | -0.28112 |
| 64 | C33 - H57 | 0.283715 | -0.98504 | 0.282892 | 0.036631 | -0.31952 | -0.28289 |
| 65 | C35 - H58 | 0.285885 | -1.00154 | 0.285163 | 0.034777 | -0.31994 | -0.28516 |

#### S.3.5. ADMET studies

ADMET descriptors (absorption, distribution, metabolism, excretion and toxicity) of the compounds were determined using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the tested compounds were prepared and minimized according to the preparation of small molecule protocol.

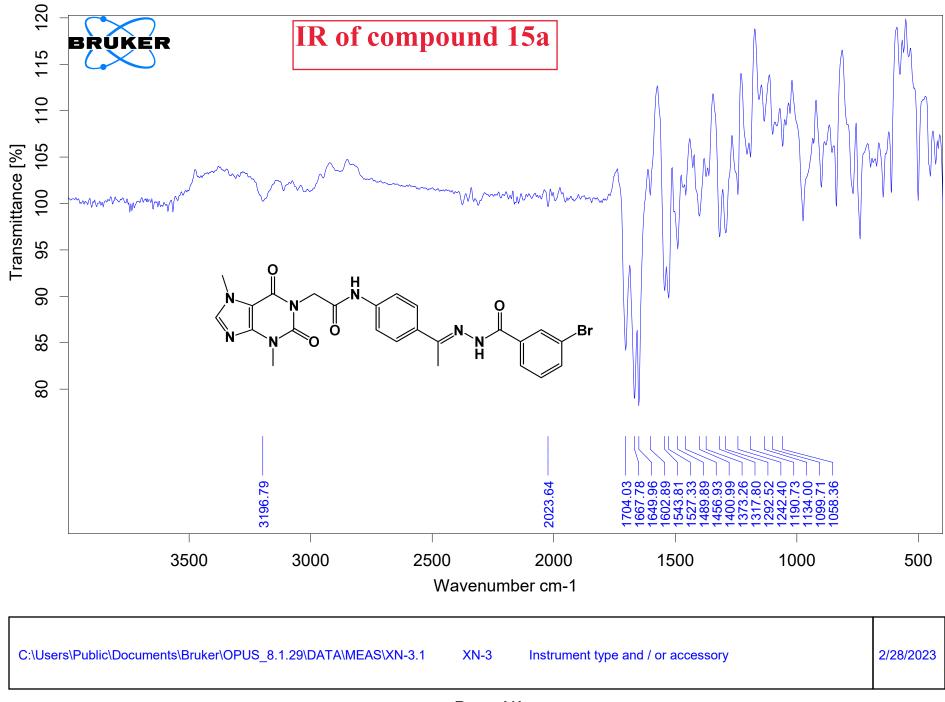
#### • Preparation of the tested compounds:

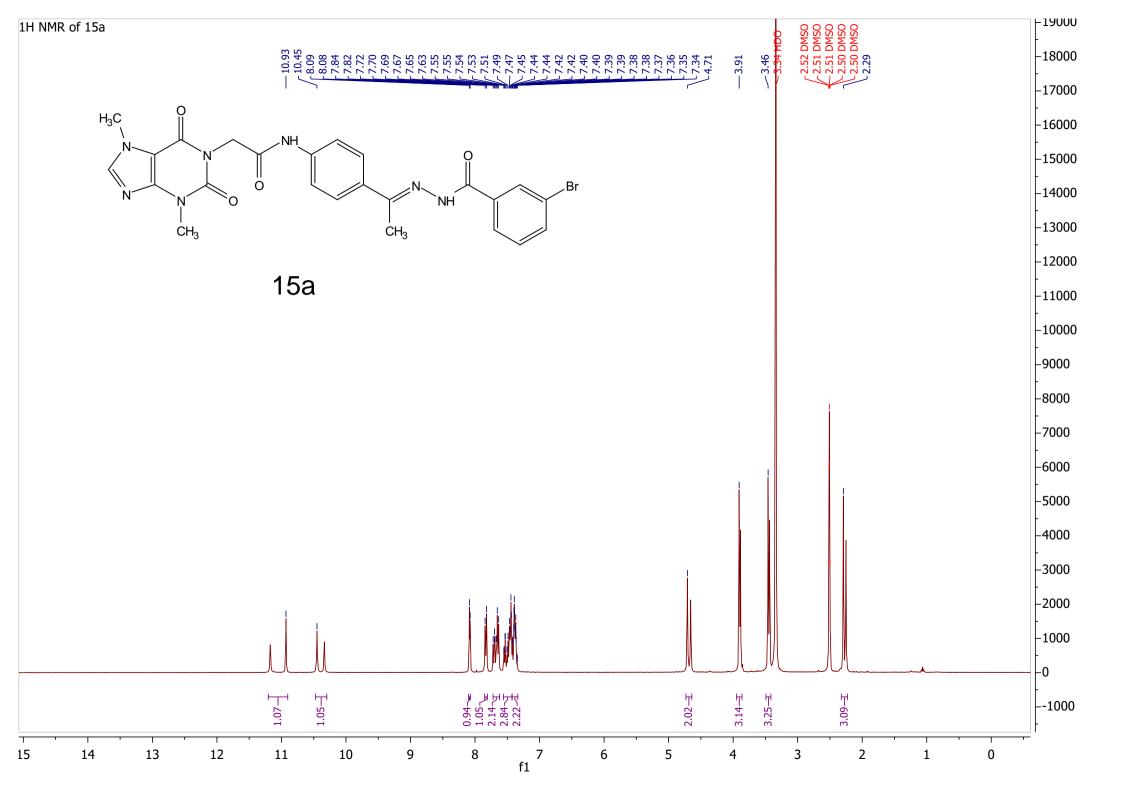
In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

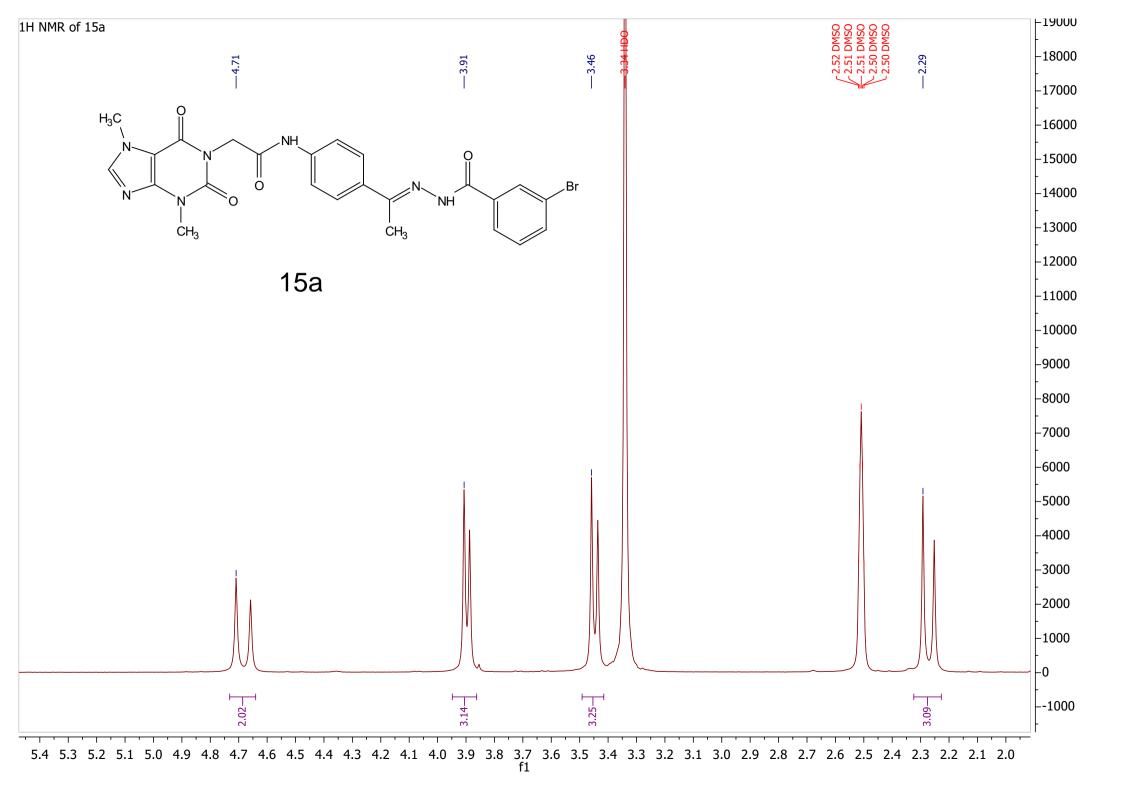
#### • Running of ADMET protocol

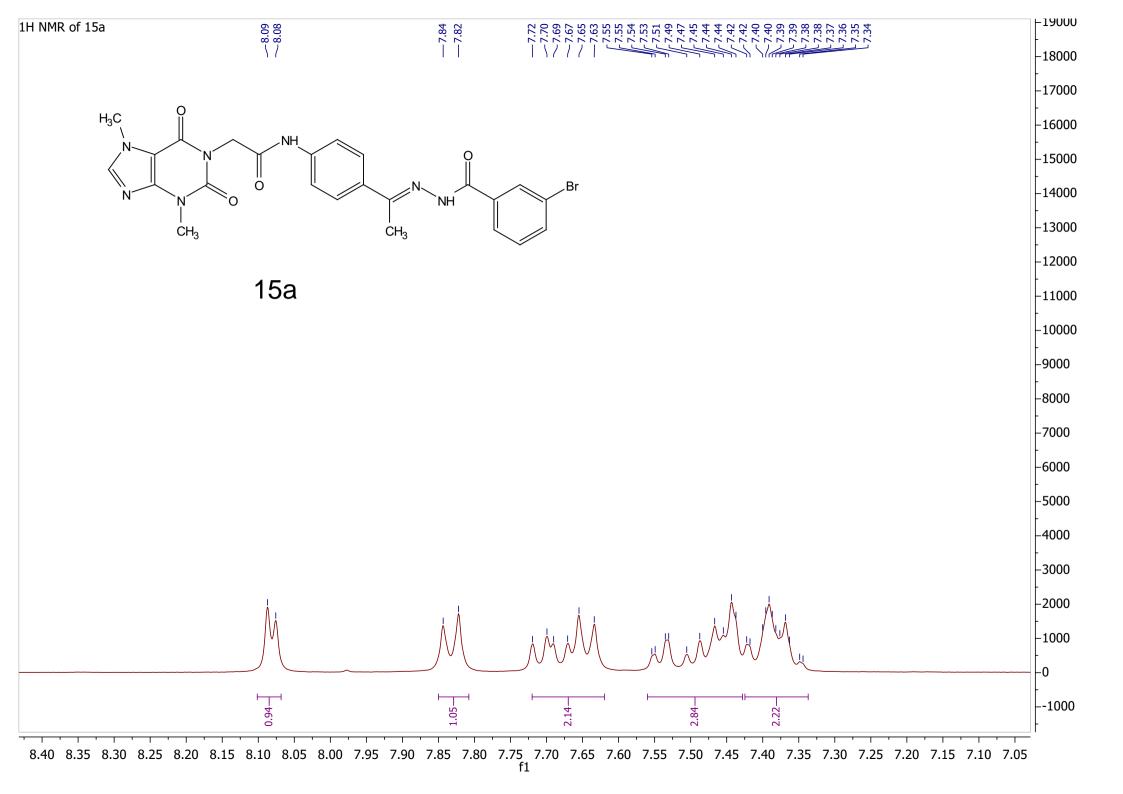
In this protocol, the small molecules panel was utilized with the activation of the ADMET descriptors option. Then, we selected the prepared compounds as the input ligands. Further, all the ADMET parameters (aqueous solubility, Blood brain barrier, intestinal absorption, CYP2D6, and plasma protein binding) were selected. Then, the output of the running protocol was visualized to give the ADMET chart.

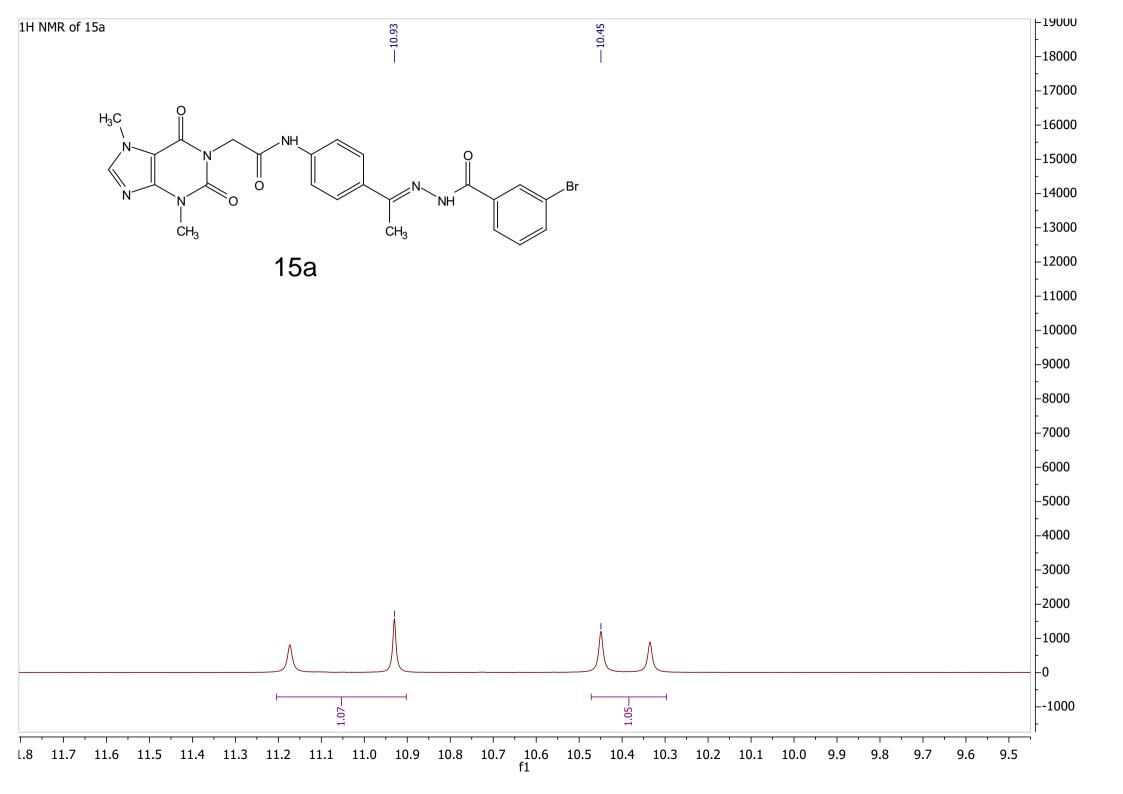
#### S.3.6 Toxicity studies

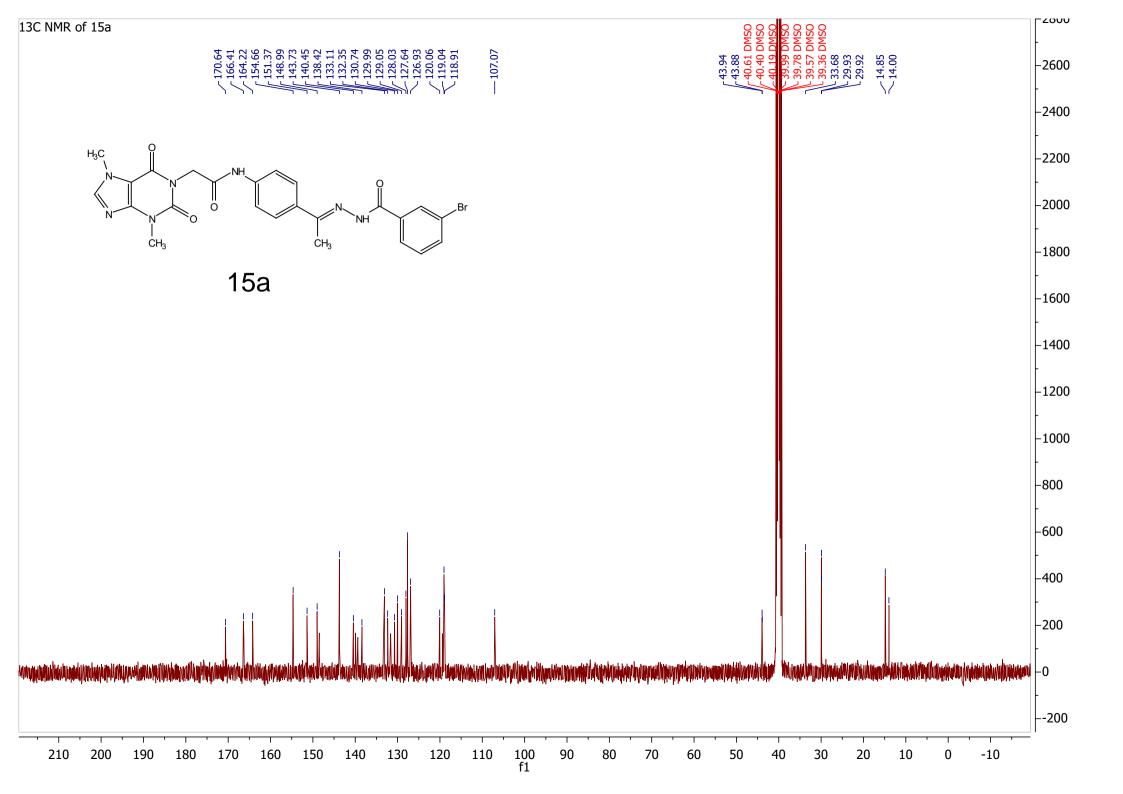

The toxicity parameters of the synthesized compounds were calculated using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol.

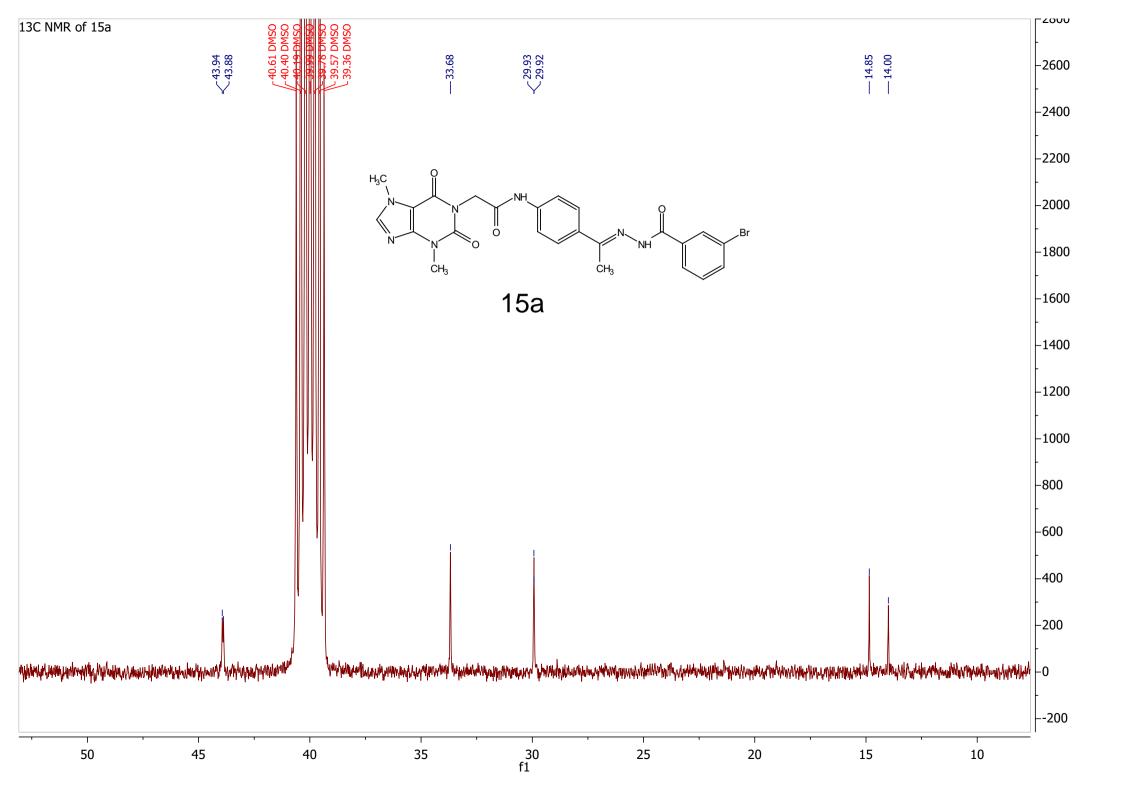

• Preparation of the tested compounds:

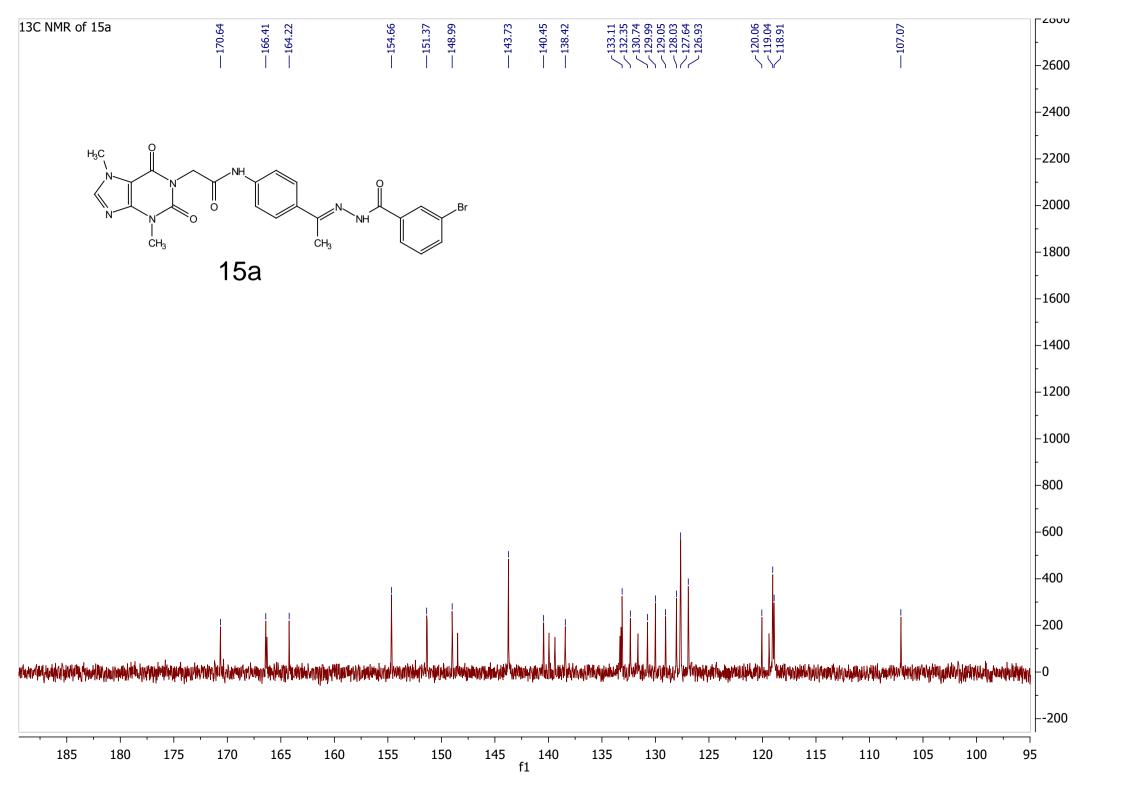

In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

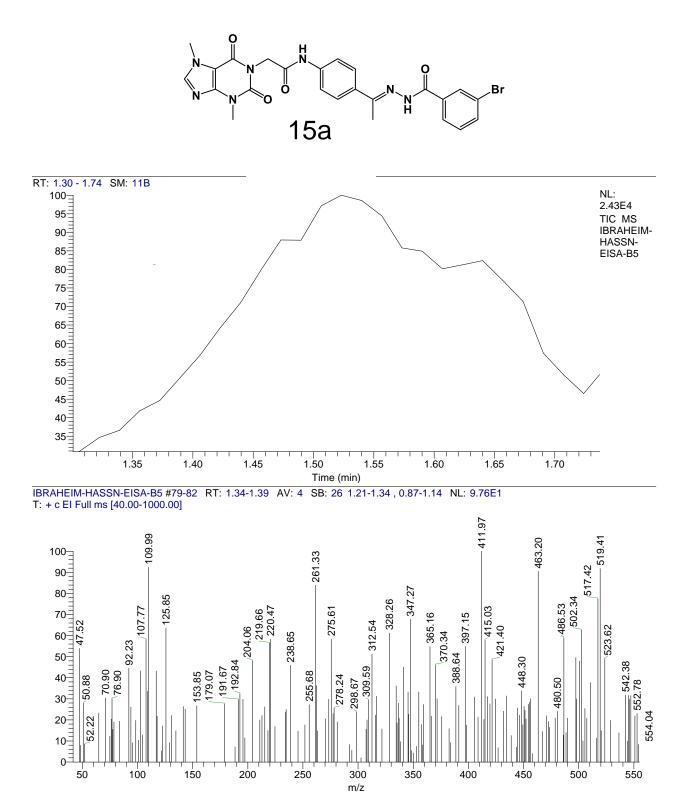

# • Running of Toxicity protocol

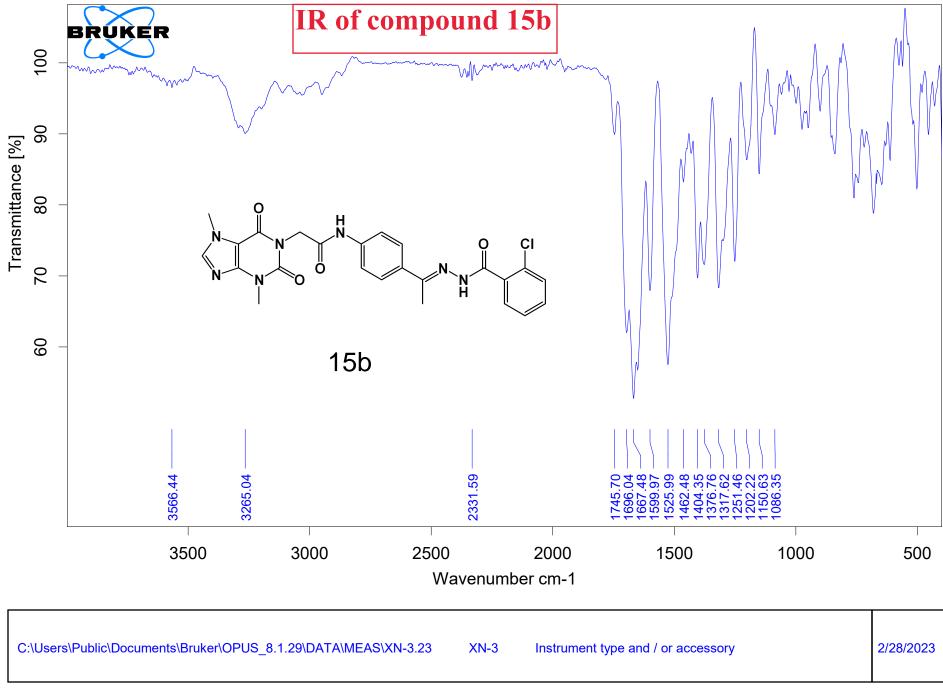

In this protocol, the small molecules panel was utilized with the activation of the toxicity prediction (extensible) option. Then, we selected the prepared compounds as the input ligands. Further, the different toxicity models were selected from the model panel. The similarity search task was activated to be true. The detailed report task was switched on as a PDF file. Then, the output of the running protocol was visualized to give the toxicity PDF report.

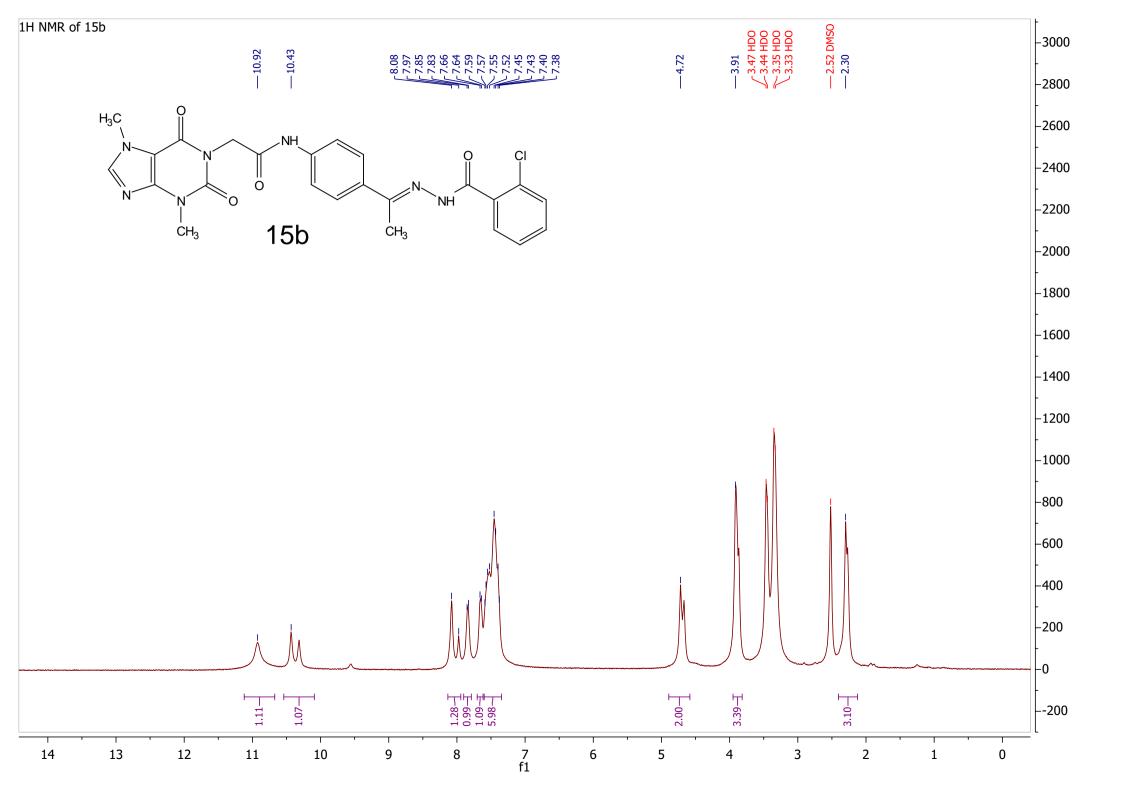


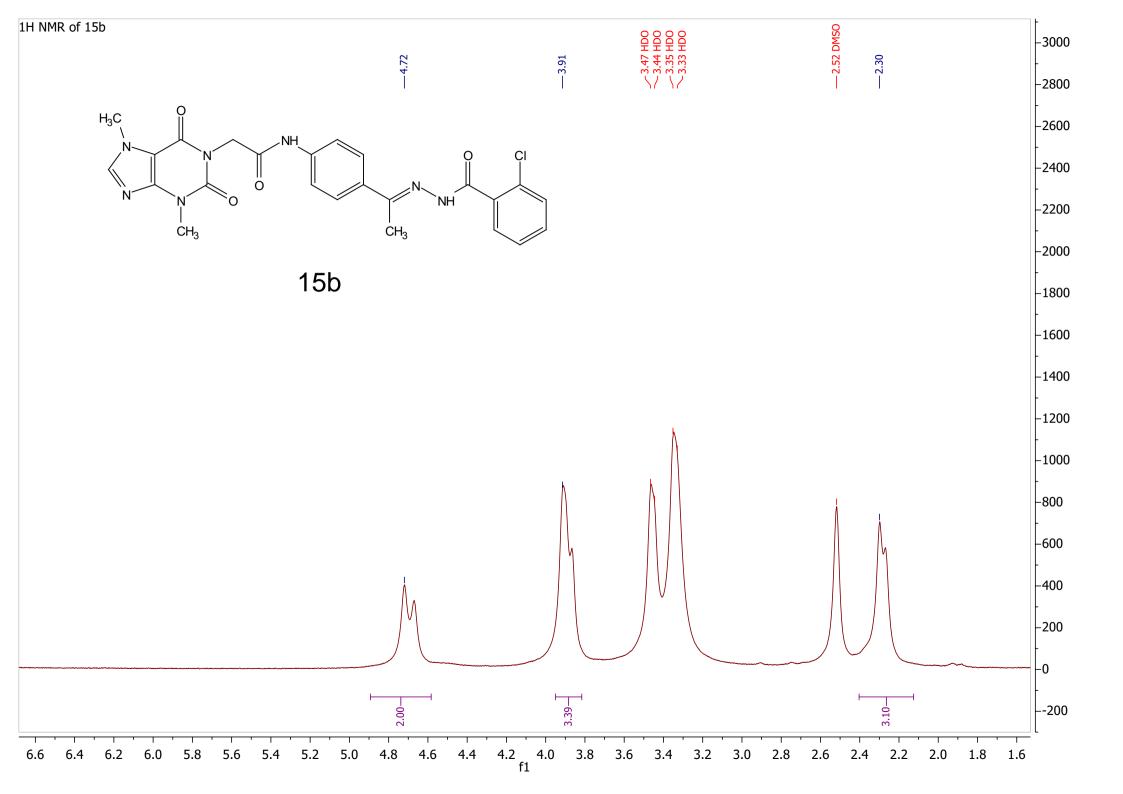



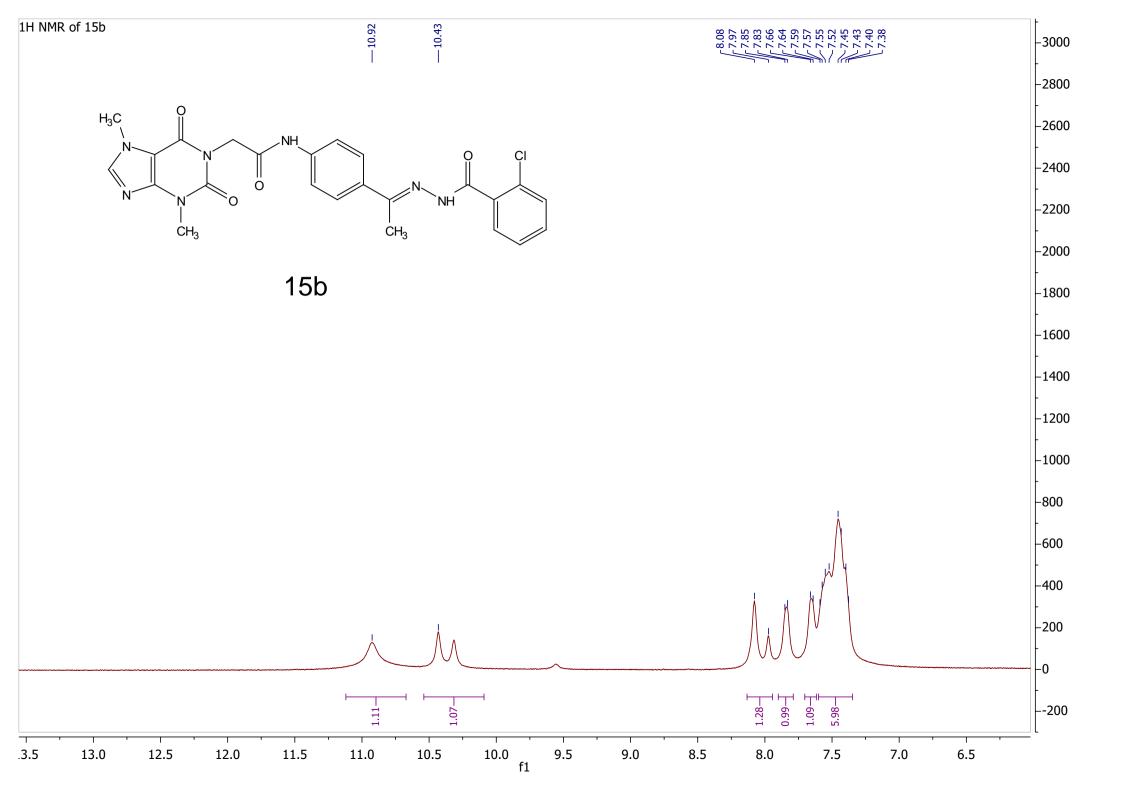



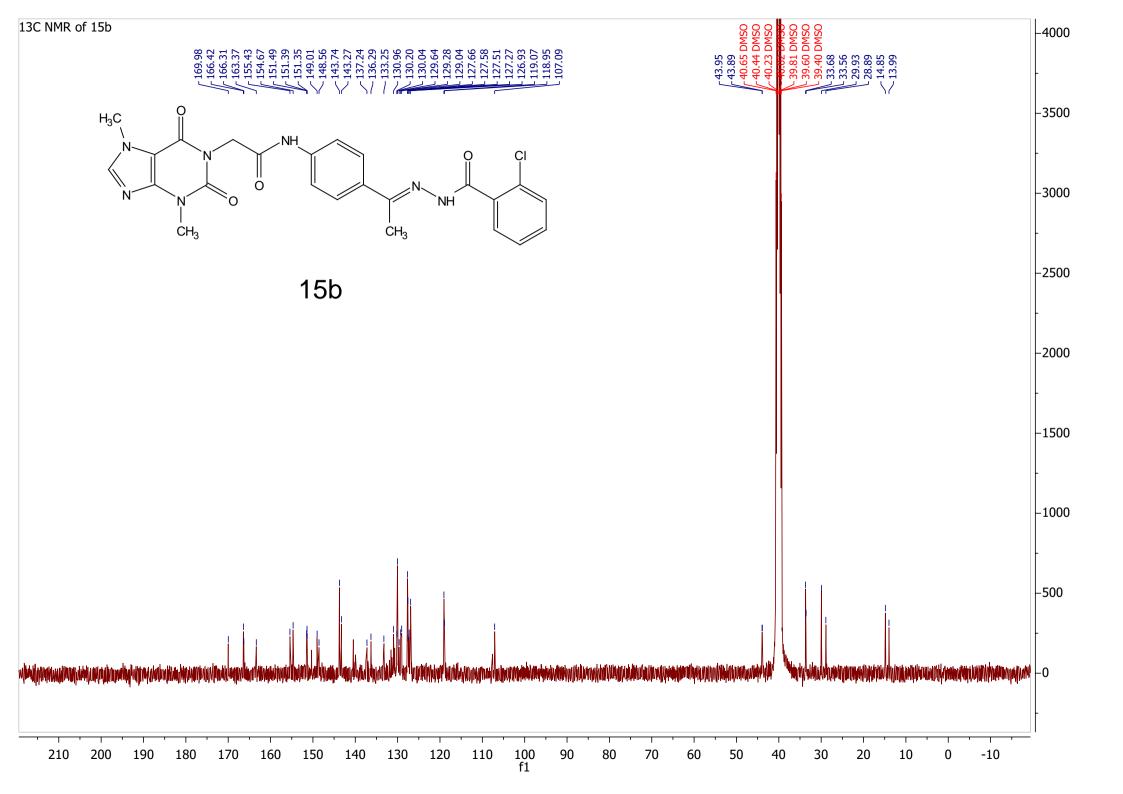



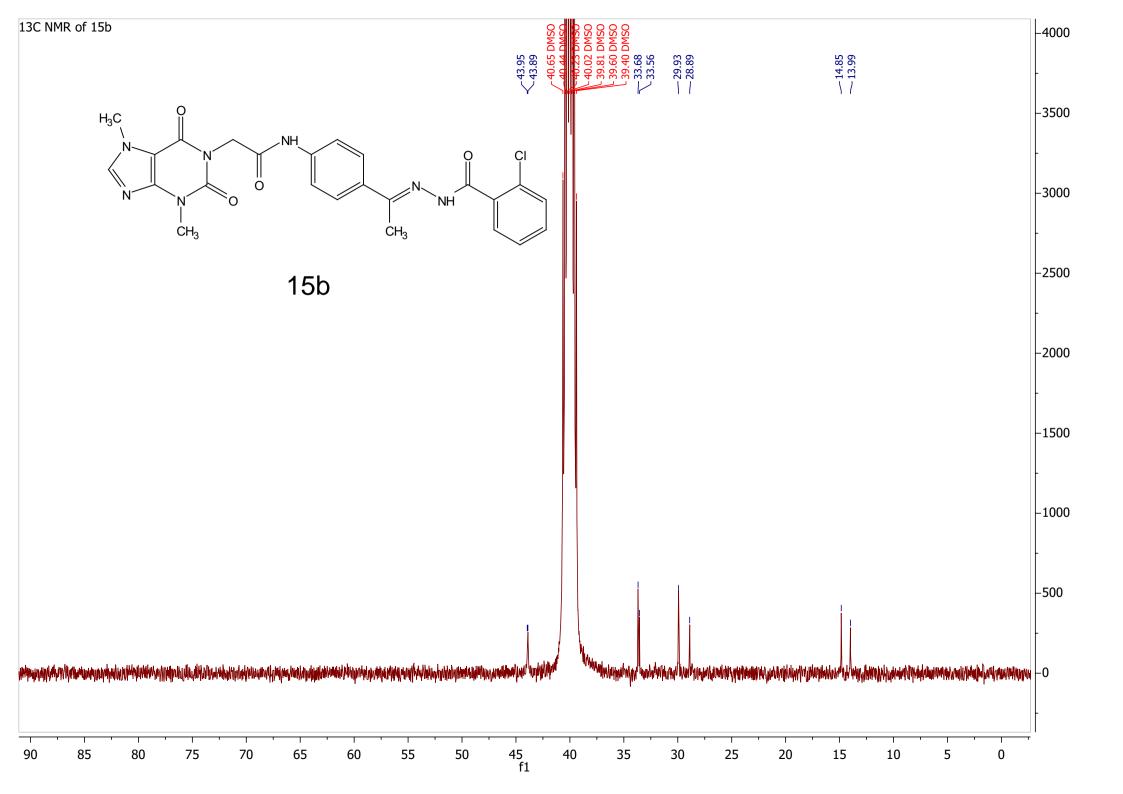



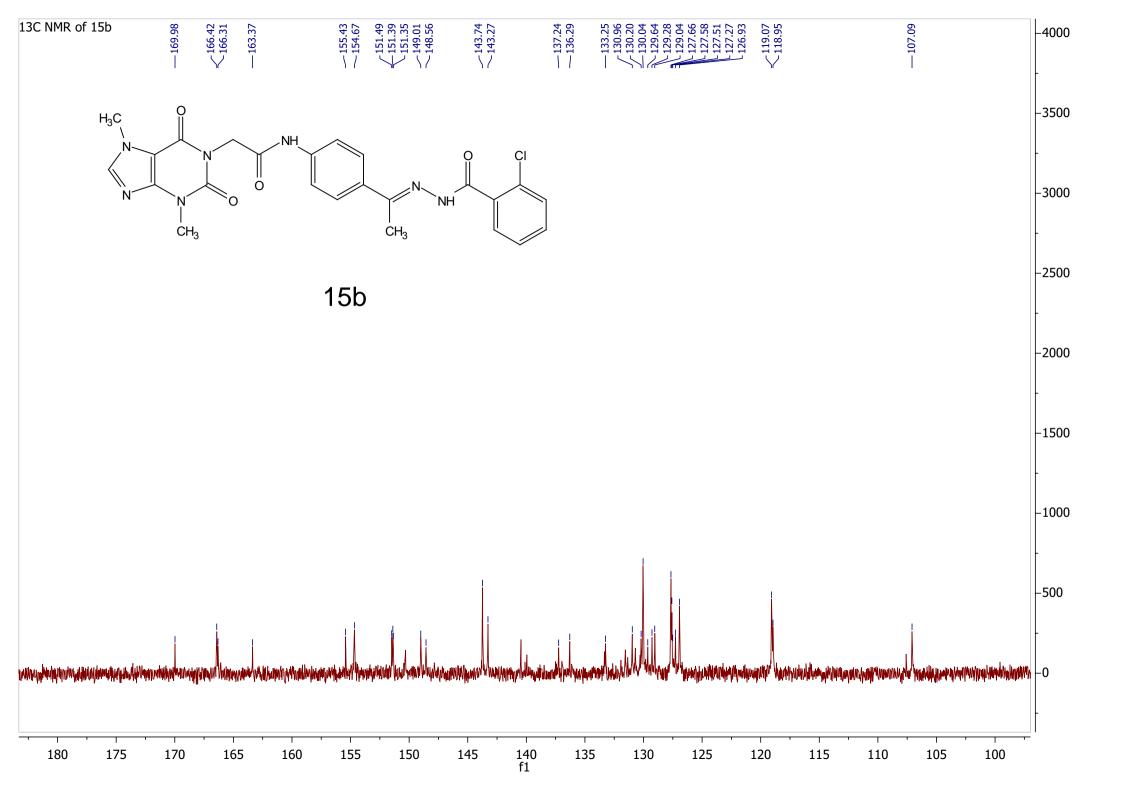



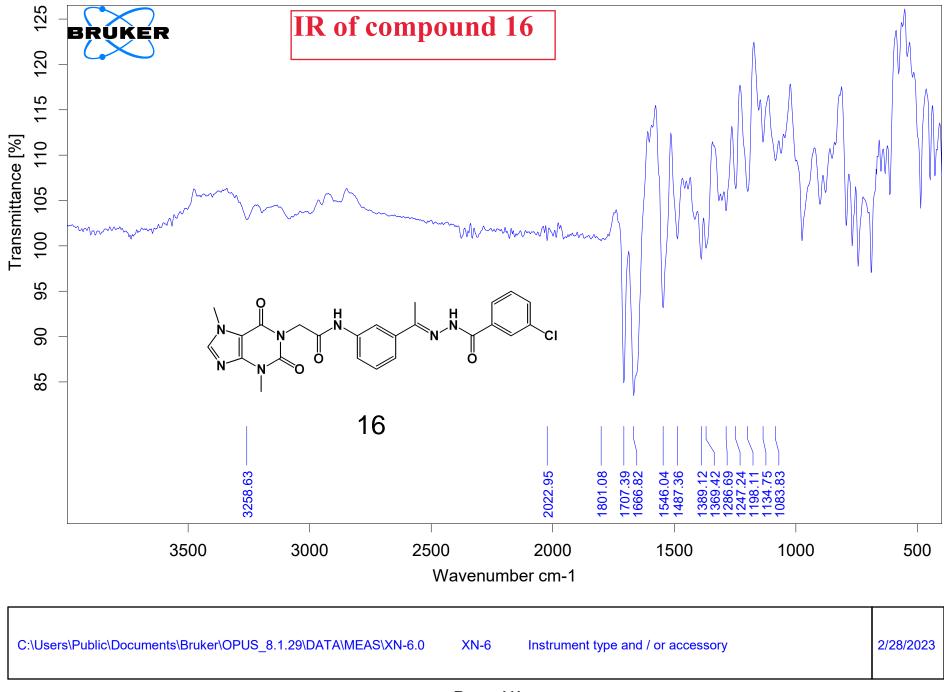



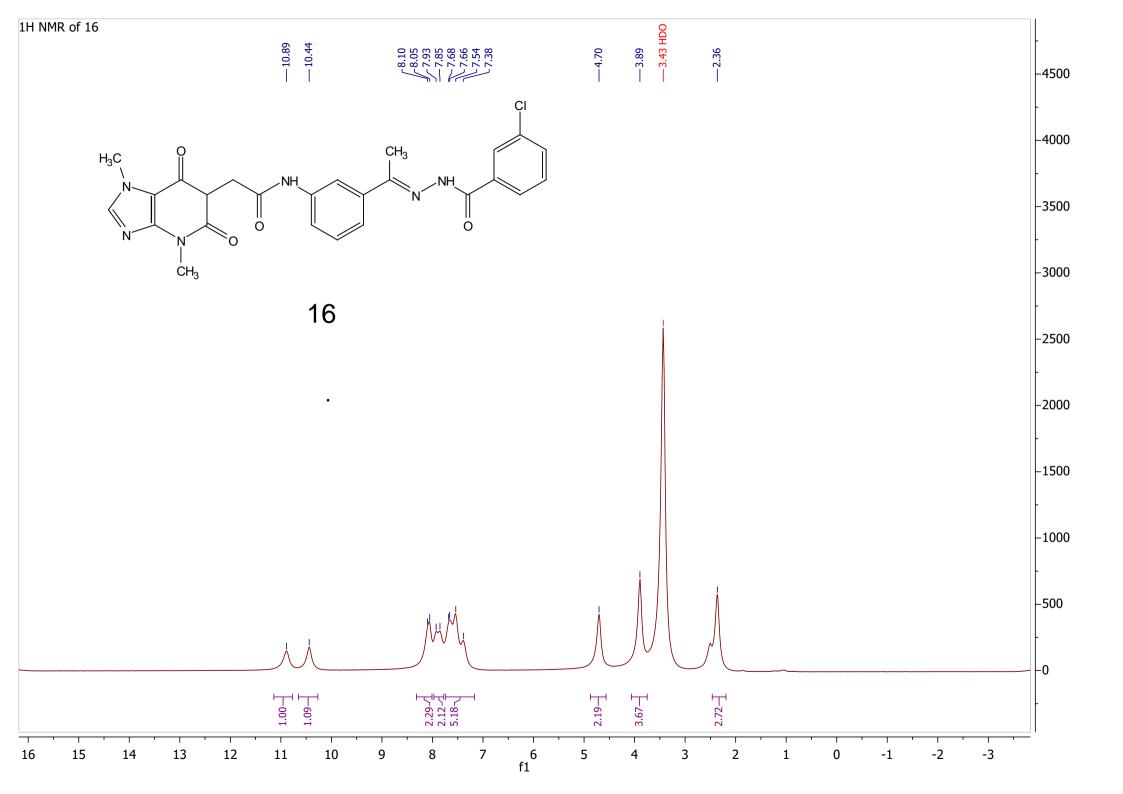



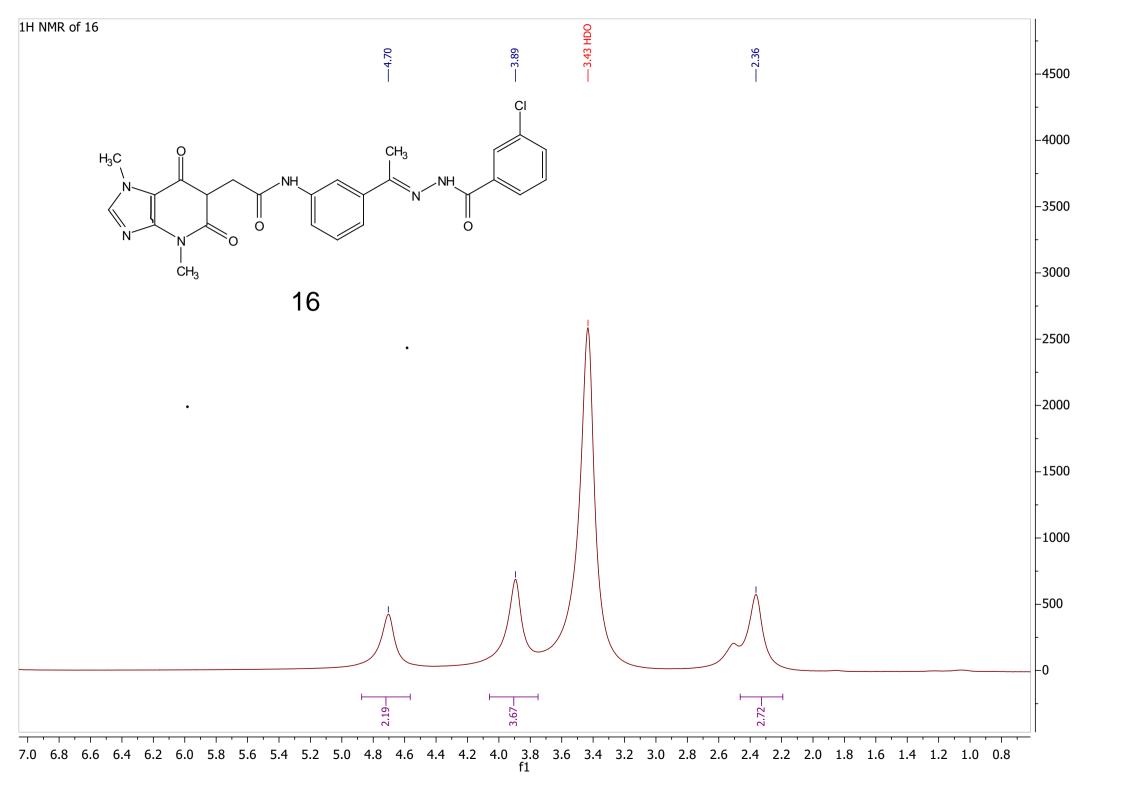



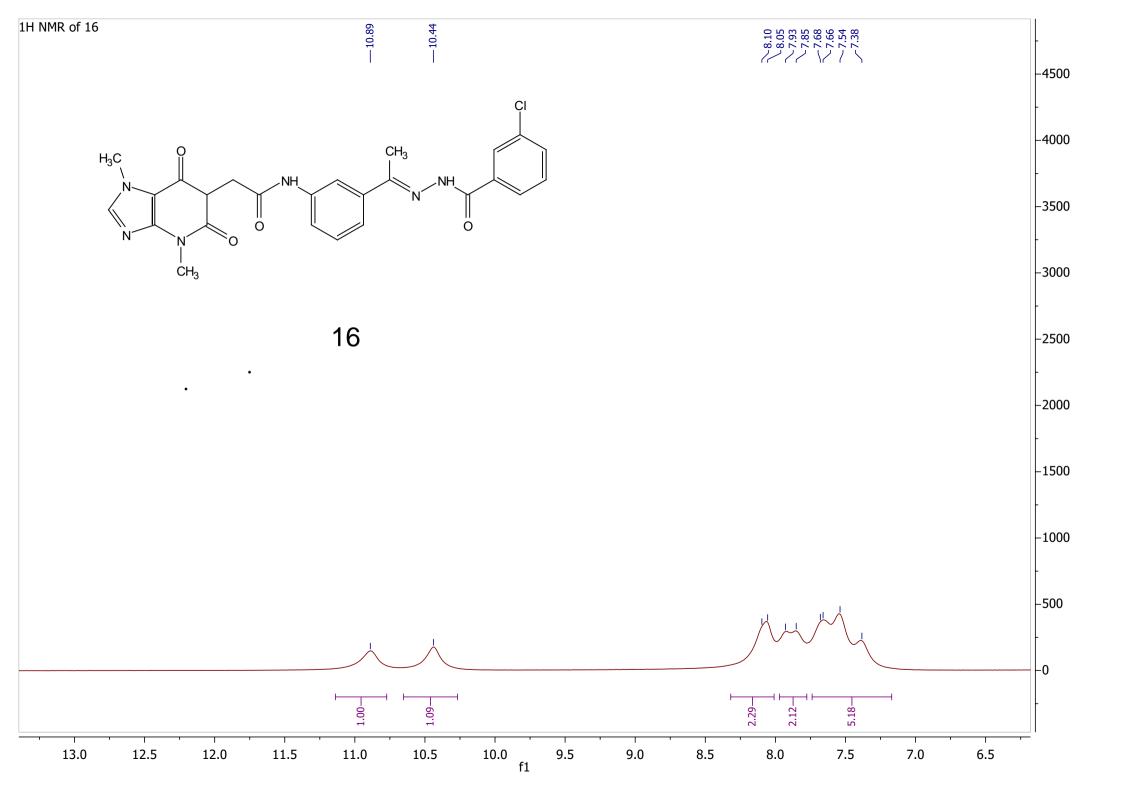



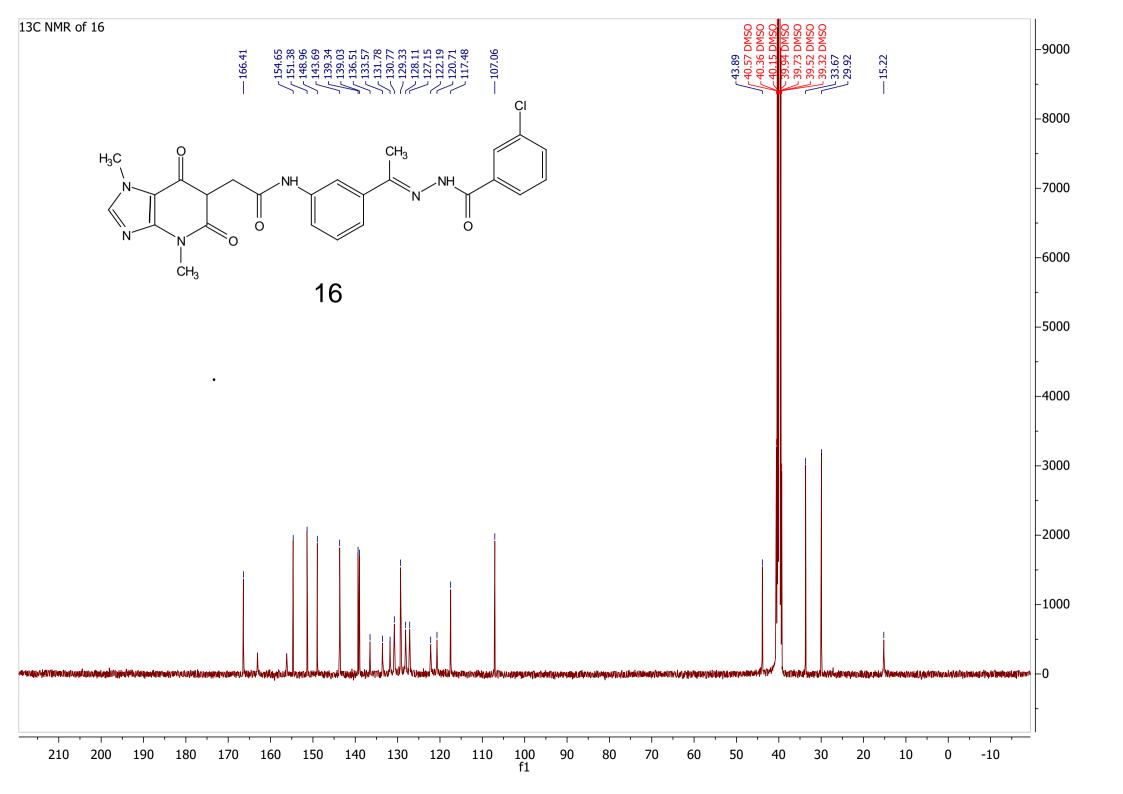



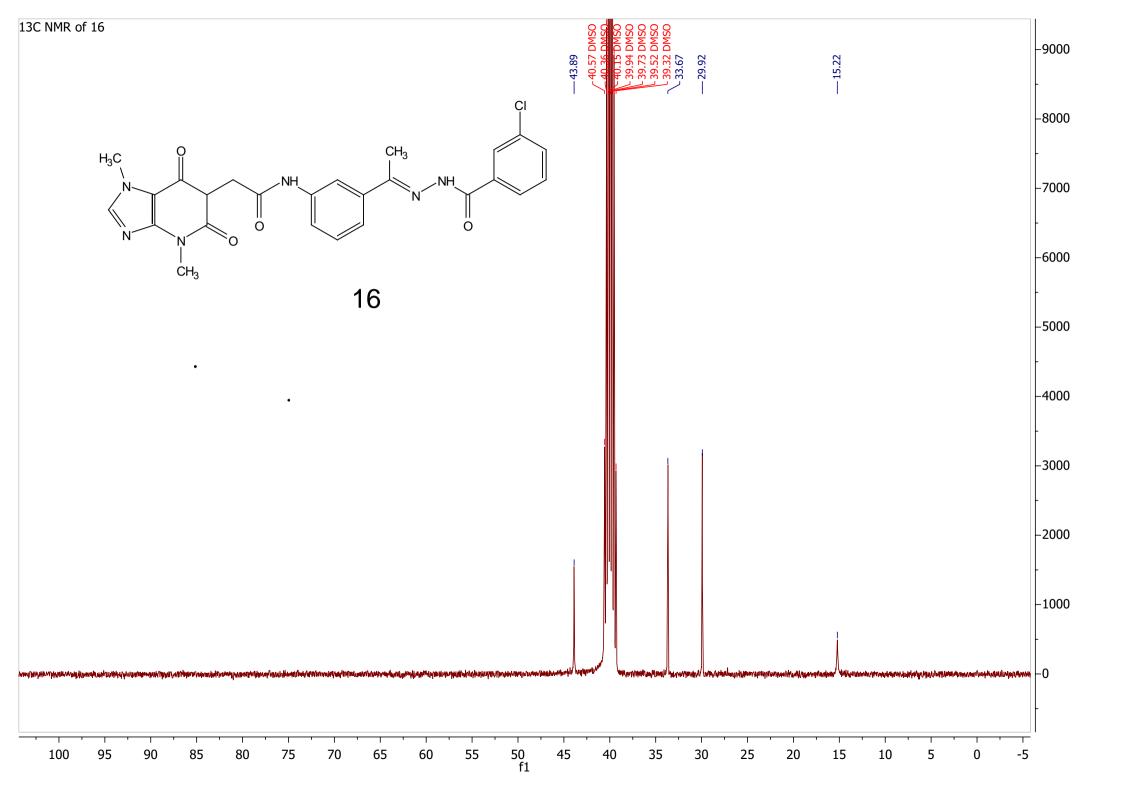



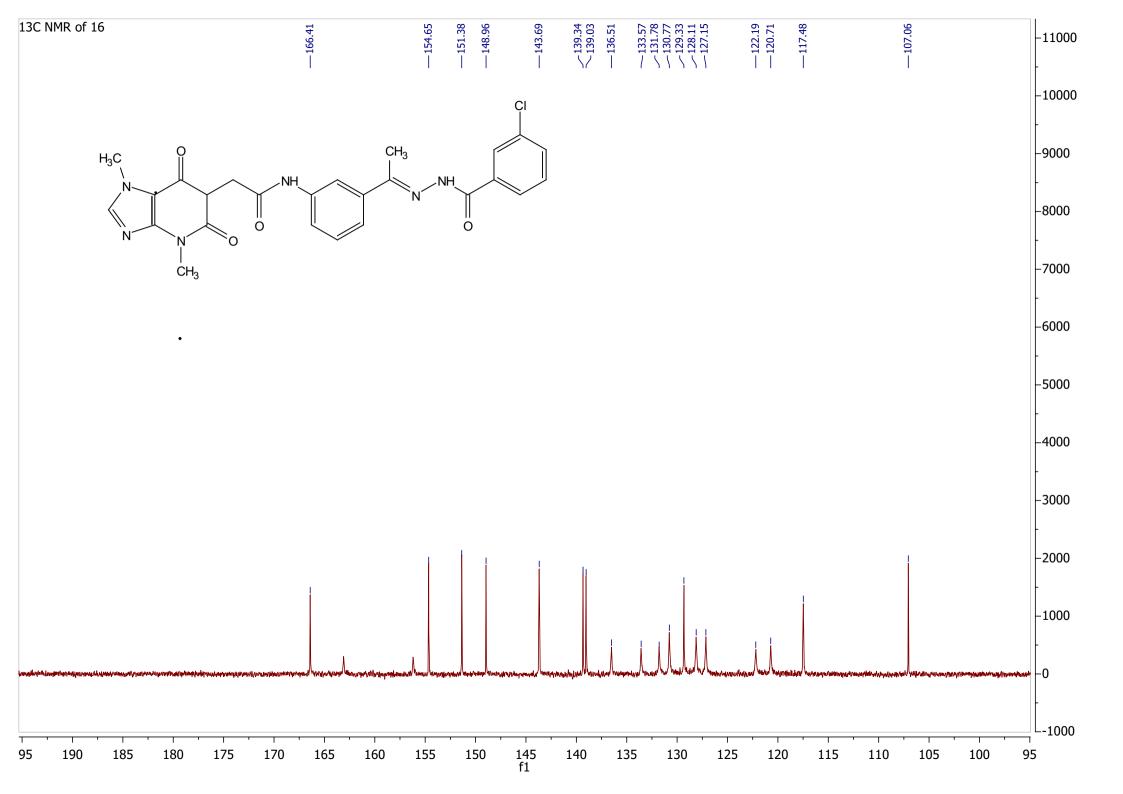



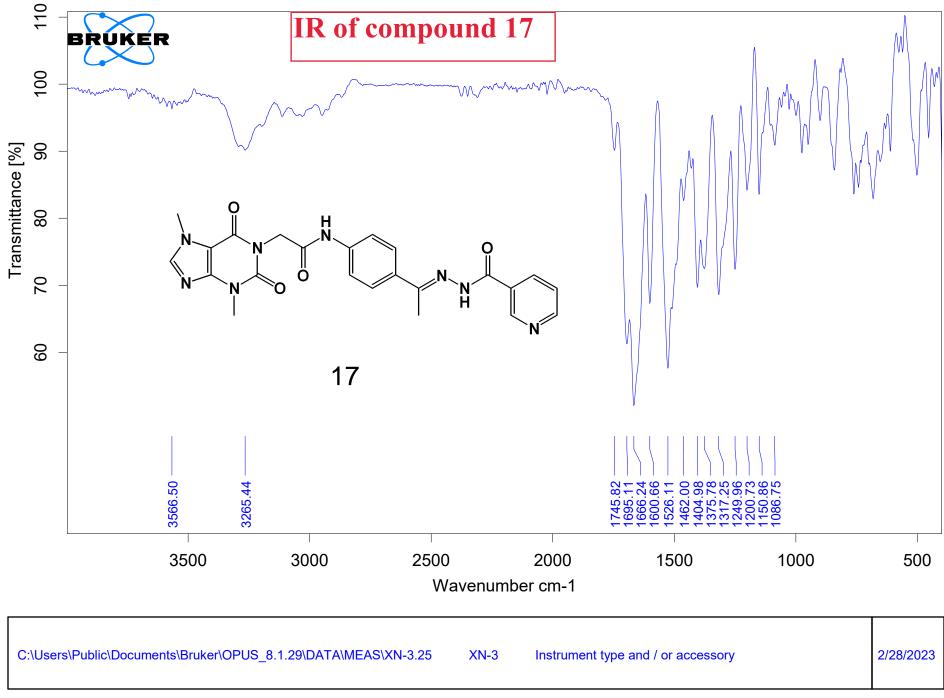



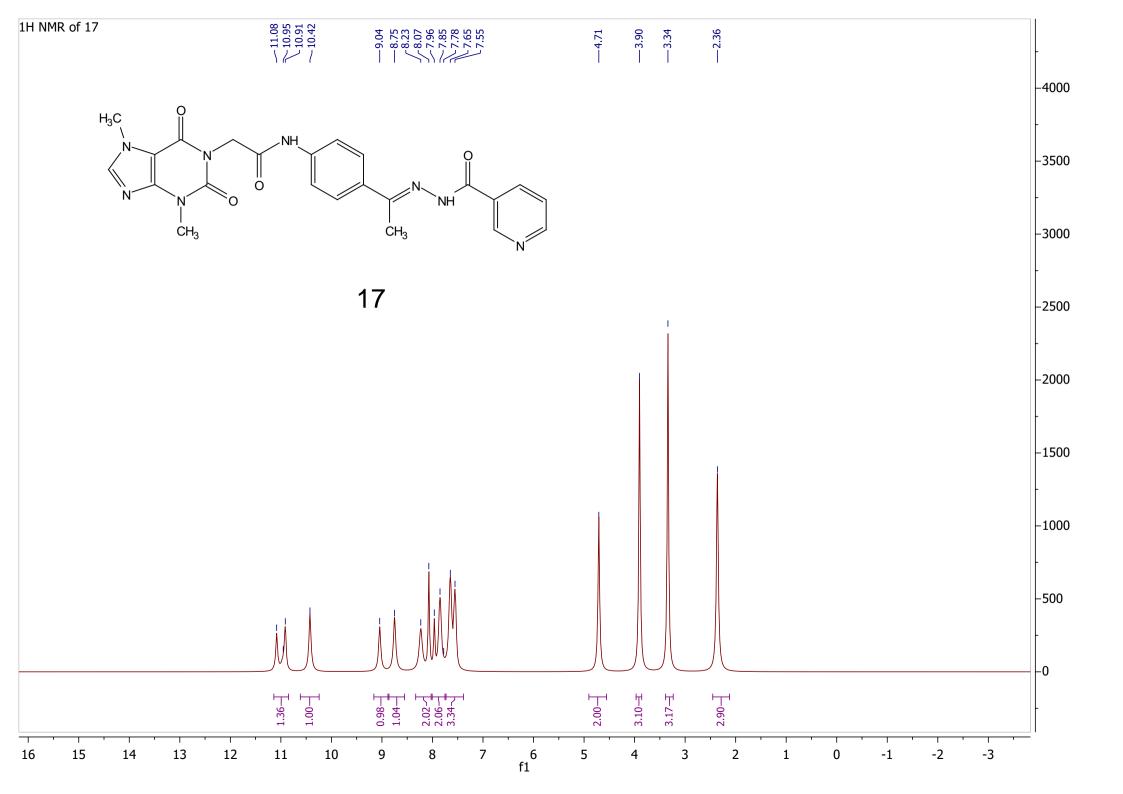



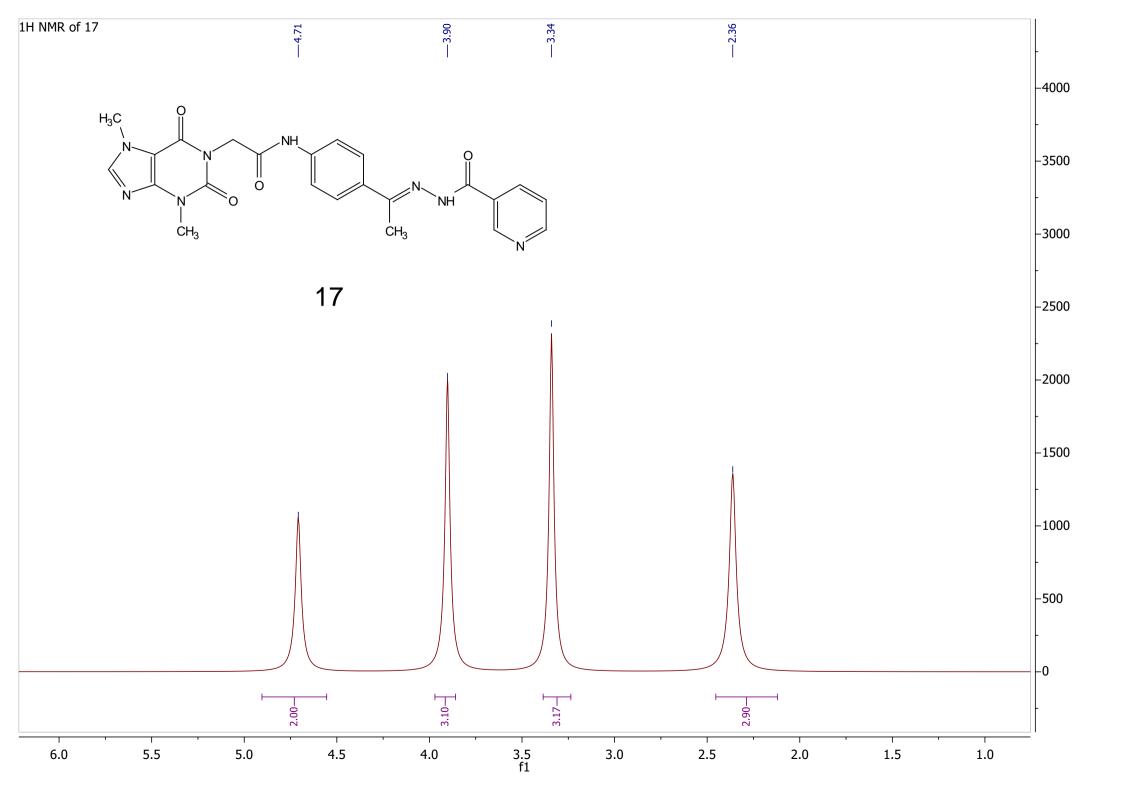



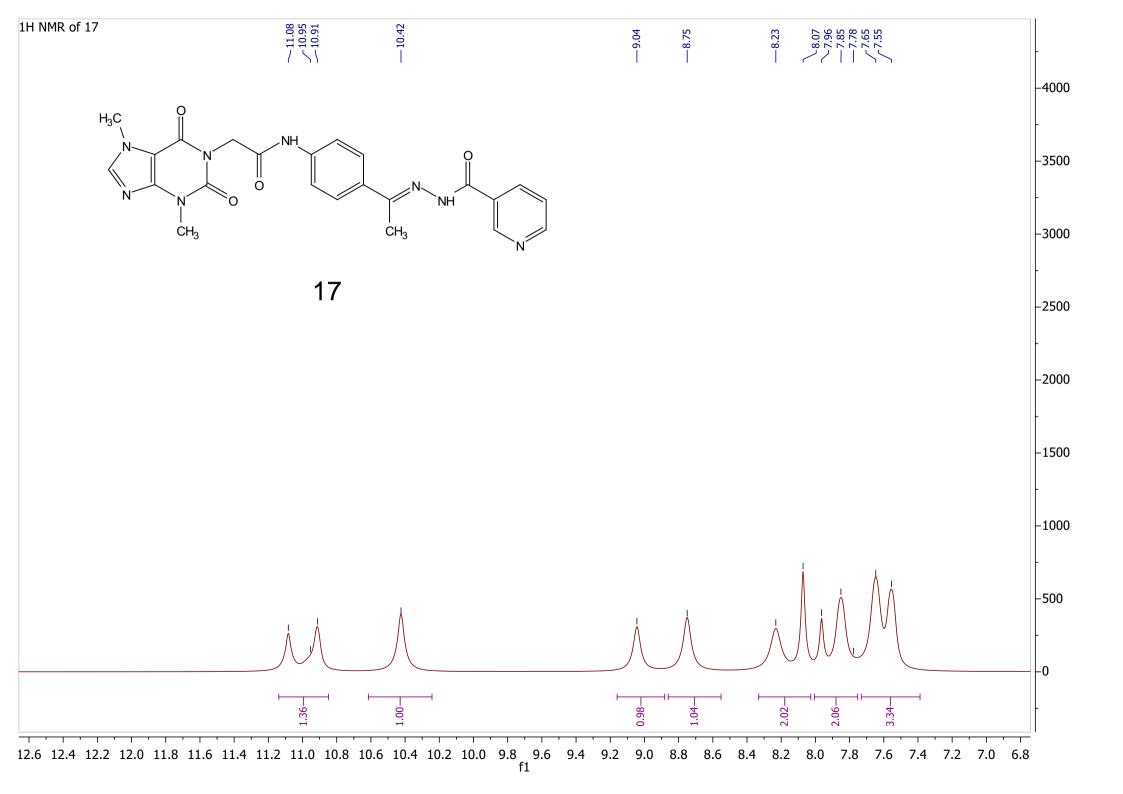



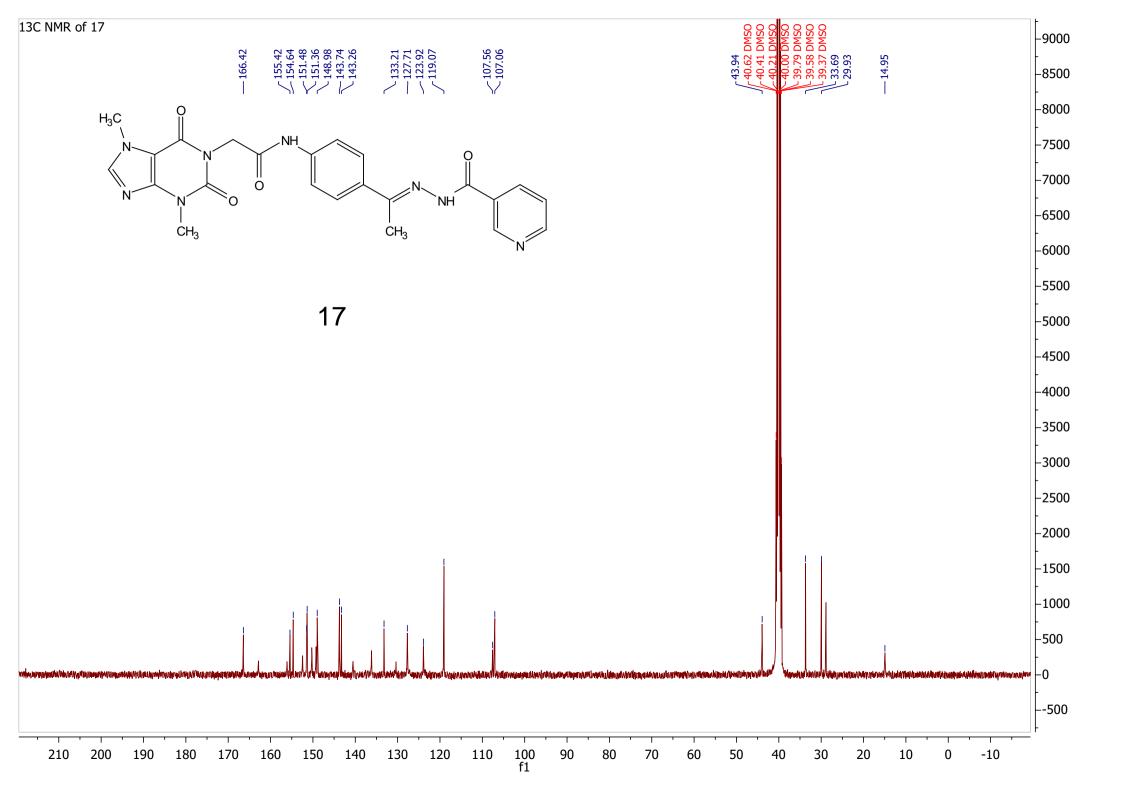



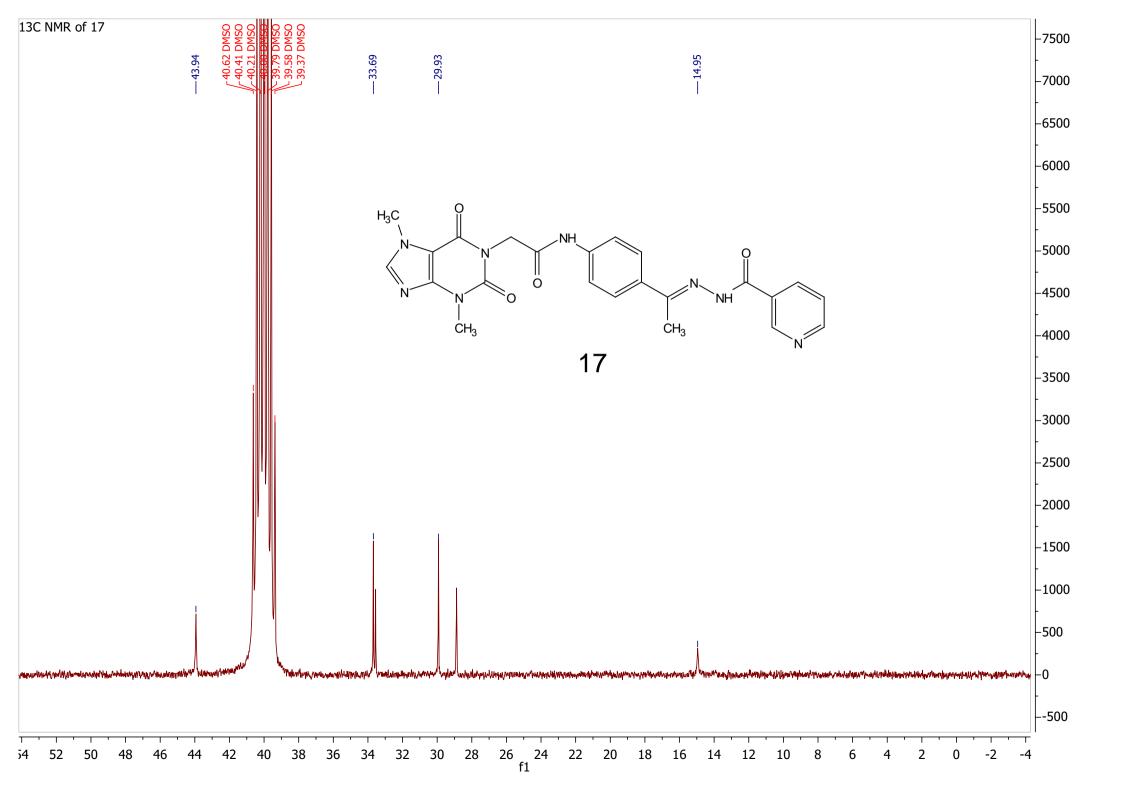



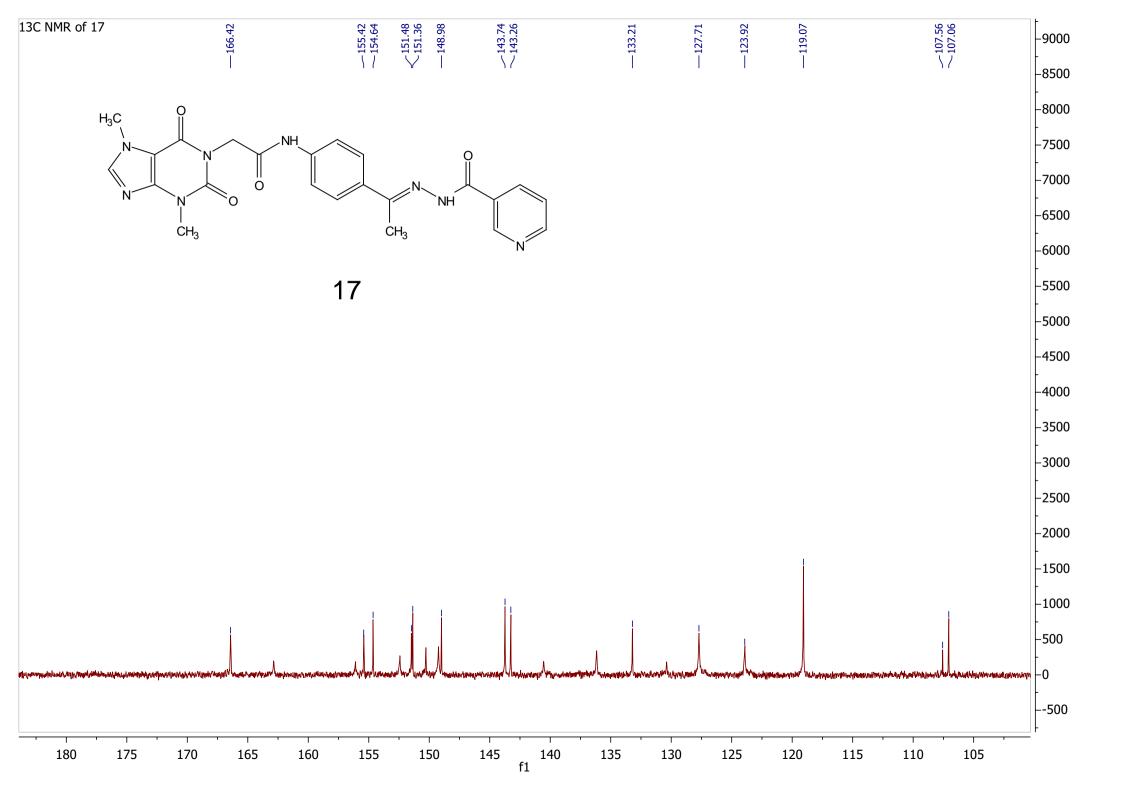



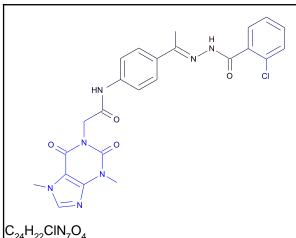














ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

#### **Model Prediction**

Prediction: Non-Mutagen

Probability: 0.182

Enrichment: 0.326

Bayesian Score: -14.6

Mahalanobis Distance: 13.4

#### Mahalanobis Distance p-value: 4.74e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Structural Similar Compounds |                                                                                                                                      |                                                     |             |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|--|
| Name                         | Delavirdine                                                                                                                          | 67450-45-7                                          | GLIPIZIDE   |  |
| Structure                    |                                                                                                                                      |                                                     |             |  |
| Actual Endpoint              | Non-Mutagen                                                                                                                          | Non-Mutagen                                         | Non-Mutagen |  |
| Predicted Endpoint           | Non-Mutagen                                                                                                                          | Non-Mutagen                                         | Non-Mutagen |  |
| Distance                     | 0.567                                                                                                                                | 0.576                                               | 0.635       |  |
| Reference                    | Contrera, J.F., Matthews,<br>E.J., Kruhlak, N.L., and<br>Benz, R.D., Regulatory<br>Toxicology and<br>Pharmacology 2005, 313-<br>323. | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320 | PDR 1994    |  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

|             | Top features for positive contribution |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                            |  |
|-------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|--|
| Fingerprint | Bit/Smiles                             | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Score | Mutagen in training<br>set |  |
| SCFP_12     | 136358998                              | N<br>N<br>N<br>N<br>N<br>O<br>C<br>I<br>N<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>N<br>H<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>N<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>O<br>C<br>I<br>I<br>I<br>O<br>C<br>I<br>I<br>I<br>I | 0.455 | 142 out of 157             |  |
|             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                            |  |

| SCFP_12     | -443505090  | [*][c]1:[*]:[cH]:<br>n:1C                     | 0.343        | 176 out of 218             |
|-------------|-------------|-----------------------------------------------|--------------|----------------------------|
| SCFP_12     | -1326021460 |                                               | 0.328        | 44 out of 55               |
|             |             | tures for negative of                         | contribution |                            |
| Fingerprint | Bit/Smiles  | Feature Structure                             | Score        | Mutagen in training<br>set |
| SCFP_12     | 1205795299  | [*]N([*])[c]1:n:[*]:[<br>*]:[c]:1[*]          | -1.22        | 2 out of 16                |
| SCFP_12     | 1731225349  | [*]N1[*][c]2:[*]:<br>n:[c]:2N(C)C1=O          | -1.19        | 0 out of 4                 |
| SCFP_12     | 1445006032  | ["]CN1C(=["])["][C]2:["]:"]:"[("]):[C]:2:C1=0 | -1.19        | 0 out of 4                 |

C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: Non-Mutagen

Probability: 0.124

Enrichment: 0.223

Bayesian Score: -16.4

Mahalanobis Distance: 13.4

#### Mahalanobis Distance p-value: 4.74e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

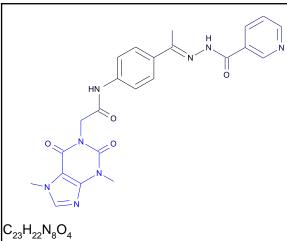
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Structural Similar Compounds |                                                                                                                                      |                                                     |             |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|--|
| Name                         | Delavirdine                                                                                                                          | 67450-45-7                                          | GLIPIZIDE   |  |
| Structure                    |                                                                                                                                      | AND Exercitories                                    |             |  |
| Actual Endpoint              | Non-Mutagen                                                                                                                          | Non-Mutagen                                         | Non-Mutagen |  |
| Predicted Endpoint           | Non-Mutagen                                                                                                                          | Non-Mutagen                                         | Non-Mutagen |  |
| Distance                     | 0.567                                                                                                                                | 0.577                                               | 0.635       |  |
| Reference                    | Contrera, J.F., Matthews,<br>E.J., Kruhlak, N.L., and<br>Benz, R.D., Regulatory<br>Toxicology and<br>Pharmacology 2005, 313-<br>323. | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320 | PDR 1994    |  |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

|             | Top features for positive contribution |                   |       |                            |  |  |
|-------------|----------------------------------------|-------------------|-------|----------------------------|--|--|
| Fingerprint | Bit/Smiles                             | Feature Structure | Score | Mutagen in training<br>set |  |  |
| SCFP_12     | 136358998                              | [*]:n(:[*])C      | 0.455 | 142 out of 157             |  |  |
|             |                                        |                   |       |                            |  |  |

| SCFP_12     | -443505090 | [*][c]1:[*]:[cH]:<br>n:1C                                                      | 0.343 | 176 out of 218             |
|-------------|------------|--------------------------------------------------------------------------------|-------|----------------------------|
| SCFP_12     | -319622735 | (")C(=NNC(=0)[c]1:[cH<br>]:[cH]:[7]:[c](")):<br>[cH]:1)["]                     | 0.337 | 2 out of 2                 |
|             |            | tures for negative of                                                          |       |                            |
| Fingerprint | Bit/Smiles | Feature Structure                                                              | Score | Mutagen in training<br>set |
| SCFP_12     | 1205795299 | [*]N([*])[c]1:n:[*]:[<br>*]:[c]:1[*]                                           | -1.22 | 2 out of 16                |
| SCFP_12     | 1731225349 | [*]N1[*][c]2:[*]:[*]:<br>n:[c]:2N(C)C1=O                                       | -1.19 | 0 out of 4                 |
| SCFP_12     | 1445006032 | [*]CN1C(=[*])[*][c]2:<br>[*]:(*]:n(*]):[c]:2<br>[*]:[*]:(*]:(*]):[c]:2<br>C1=0 | -1.19 | 0 out of 4                 |



Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

#### **Model Prediction**

Prediction: Non-Mutagen

Probability: 0.212

Enrichment: 0.38

Bayesian Score: -13.8

Mahalanobis Distance: 13.2

#### Mahalanobis Distance p-value: 1.65e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Name               | 67450-45-7                                          | 27833-64-3                                          | 61477-96-1                                                                                                                                                                                                                                                                              |
|--------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          |                                                     |                                                     | AND Exertionset<br>$HO \longrightarrow O$ $f \longrightarrow H \longrightarrow O$ $H \longrightarrow H$ |
| Actual Endpoint    | Non-Mutagen                                         | Non-Mutagen                                         | Non-Mutagen                                                                                                                                                                                                                                                                             |
| Predicted Endpoint | Non-Mutagen                                         | Non-Mutagen                                         | Non-Mutagen                                                                                                                                                                                                                                                                             |
| Distance           | 0.620                                               | 0.625                                               | 0.636                                                                                                                                                                                                                                                                                   |
| Reference          | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320 | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320 | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320                                                                                                                                                                                                                                     |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

| Top features for positive contribution |                                                                                                                              |       |                             |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|--|
| Bit/Smiles                             | Feature Structure                                                                                                            | Score | Mutagen in training<br>set  |  |
| 136358998                              | <sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup> | 0.455 | 142 out of 157              |  |
|                                        |                                                                                                                              |       | 136358998<br>0.455<br>0.455 |  |

| SCFP_12     | -443505090  | [*][c]1:[*]:[cH]:<br>n:1C                    | 0.343        | 176 out of 218             |
|-------------|-------------|----------------------------------------------|--------------|----------------------------|
| SCFP_12     | -1326021460 |                                              | 0.328        | 44 out of 55               |
|             | Top Fea     | tures for negative of                        | contribution | I                          |
| Fingerprint | Bit/Smiles  | Feature Structure                            | Score        | Mutagen in training<br>set |
| SCFP_12     | 1205795299  | [*]N([*])[c]1:n:[*]:[<br>*]:[c]:1[*]         | -1.22        | 2 out of 16                |
| SCFP_12     | 1731225349  | [*]N1[*][c]2:[*]:[*]:<br>n:[c]:2N(C)C1=O     | -1.19        | 0 out of 4                 |
| SCFP_12     | 1445006032  | ("]CN1C(=[*])[*][c]2:[*]:"]:n([*]):[c]:2C1=0 | -1.19        | 0 out of 4                 |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997
ALogP: 2.118
Rotatable Bonds: 6

Acceptors: 6

Donors: 2

# **Model Prediction**

Prediction: Non-Mutagen

Probability: 0.178

Enrichment: 0.318

Bayesian Score: -14.7

Mahalanobis Distance: 15.3

#### Mahalanobis Distance p-value: 1.39e-013

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

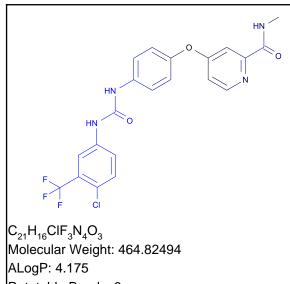
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Structural Similar Compounds |                                                                                                                                      |                                                     |                                                     |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|
| Name                         | Delavirdine                                                                                                                          | 57781-14-3                                          | 67450-45-7                                          |  |
| Structure                    |                                                                                                                                      |                                                     | AND Exertioner                                      |  |
| Actual Endpoint              | Non-Mutagen                                                                                                                          | Non-Mutagen                                         | Non-Mutagen                                         |  |
| Predicted Endpoint           | Non-Mutagen                                                                                                                          | Non-Mutagen                                         | Non-Mutagen                                         |  |
| Distance                     | 0.618                                                                                                                                | 0.625                                               | 0.639                                               |  |
| Reference                    | Contrera, J.F., Matthews,<br>E.J., Kruhlak, N.L., and<br>Benz, R.D., Regulatory<br>Toxicology and<br>Pharmacology 2005, 313-<br>323. | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320 | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320 |  |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

|             | Top features for positive contribution |                                                                     |       |                            |  |  |
|-------------|----------------------------------------|---------------------------------------------------------------------|-------|----------------------------|--|--|
| Fingerprint | Bit/Smiles                             | Feature Structure                                                   | Score | Mutagen in training<br>set |  |  |
| SCFP_12     | 136358998                              | Br<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→ | 0.455 | 142 out of 157             |  |  |
|             |                                        |                                                                     |       |                            |  |  |

| SCFP_12     | -443505090 | Pr<br>N NH<br>N NH<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.343 | 176 out of 218             |
|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| SCFP_12     | -319622735 | Provide the second seco                                                                                                                                                                                                                                                                                                | 0.337 | 2 out of 2                 |
|             |            | tures for negative of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                            |
| Fingerprint | Bit/Smiles | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Score | Mutagen in training<br>set |
| SCFP_12     | 1205795299 | [*]N([*])[c]1:n:[*]:[<br>*]:[c]:1[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.22 | 2 out of 16                |
| SCFP_12     | 1445006032 | $[*]CN1C(=[*])(*][c]2: \\ [*].(*]:n([*]):c]2: \\ C1=0 \\ C1=$ | -1.19 | 0 out of 4                 |
| SCFP_12     | 1731225349 | [*]N1[*][c]2:[*]:[*]:<br>n:[c]:2N(C)C1=O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.19 | 0 out of 4                 |

# Sorafenib



Rotatable Bonds: 6 Acceptors: 4

Donors: 3

#### **Model Prediction**

Prediction: Non-Mutagen

Probability: 0.0531

Enrichment: 0.0951

Bayesian Score: -19.7

Mahalanobis Distance: 13.1

#### Mahalanobis Distance p-value: 2.73e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

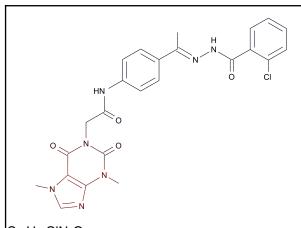
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# **TOPKAT\_Ames\_Mutagenicity**

| Name               | GLYBURIDE   | 38914-96-4                                          | 93957-54-1                                                                                                 |
|--------------------|-------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Structure          |             |                                                     |                                                                                                            |
| Actual Endpoint    | Non-Mutagen | Mutagen                                             | Non-Mutagen                                                                                                |
| Predicted Endpoint | Non-Mutagen | Mutagen                                             | Non-Mutagen                                                                                                |
| Distance           | 0.590       | 0.592                                               | 0.600                                                                                                      |
| Reference          | PDR 1994    | Kazius et. al., J. Med.<br>Chem. (2005) 48, 312-320 | US Environmental<br>Protection Agency at<br>http://www.epa.gov/NCCT<br>dsstox/sdf_isscan_externa<br>I.html |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

|             | Top features for positive contribution |                                                              |       |                            |  |
|-------------|----------------------------------------|--------------------------------------------------------------|-------|----------------------------|--|
| Fingerprint | Bit/Smiles                             | Feature Structure                                            | Score | Mutagen in training<br>set |  |
| SCFP_12     | -347281112                             | [*]N[c]:[cH]:[*]:[c]<br>([*]):[c](:[cH]:1)C(<br>[*])([*])[*] | 0.337 | 18 out of 22               |  |
|             |                                        |                                                              |       |                            |  |

| SCFP_12     | 1208843554  | [*]N[c] f:[cH]:[c<br>](O[c](:[*]):[*]):[c<br>H]:[cH]:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.337        | 6 out of 7                 |
|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|
| SCFP_12     | -1943080297 | [*]Ntg17[cH]:[cH]:[c<br>](O[c]2:[cH]:[cH]:[t*<br>]:[c]([*]):[cH]:2):[<br>cH]:[cH]:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.304        | 5 out of 6                 |
|             |             | tures for negative of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | contribution |                            |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Score        | Mutagen in training<br>set |
| SCFP_12     | 816802409   | ["]NC(=O)N[c]1:[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[c]("]):[cH]:[cH]:[cH]:[c]("]):[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH] | -1.82        | 0 out of 9                 |
| SCFP_12     | -300280774  | [*]:[c](:[*])C(F)(F)F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.51        | 3 out of 30                |
| SCFP_12     | -1903175541 | N <sup>N</sup> →<br>[*][c](:[*]):[c](:[cH<br>]:[*])C(F)(F)F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.51        | 3 out of 30                |

#### **TOPKAT\_Developmental\_Toxicity\_Potential**



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

#### **Model Prediction**

#### Prediction: Toxic

Probability: 0.583

Enrichment: 1.11

Bayesian Score: 0.933

Mahalanobis Distance: 9.26

#### Mahalanobis Distance p-value: 0.11

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

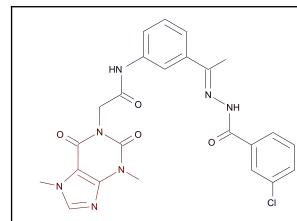
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name               | -<br>Citreoviridin                        | Ochratoxin a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Domperidone                            |
|--------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Structure          | HO. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | OH WNH<br>OH OF THE |                                        |
| Actual Endpoint    | Toxic                                     | Toxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Toxic                                  |
| Predicted Endpoint | Toxic                                     | Toxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Toxic                                  |
| Distance           | 0.647                                     | 0.684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.694                                  |
| Reference          | Food Chem Toxicol<br>24(12):1315-20; 1986 | Toxicol Appl Pharmacol 37(2):331-8; 1976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yakuri to Chiryo 8:4125-<br>4136; 1980 |

#### Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

|             | Top features for positive contribution |                                   |       |                       |  |
|-------------|----------------------------------------|-----------------------------------|-------|-----------------------|--|
| Fingerprint | Bit/Smiles                             | Feature Structure                 | Score | Toxic in training set |  |
| SCFP_6      | 1257084377                             | ('')N(('))C(=0)[c]((''<br>)).('') | 0.362 | 14 out of 18          |  |
|             | · · ·                                  |                                   |       | •                     |  |

| SCFP_6      | -1181430618 | [*]n1:[*]:[*]:n:[cH]:                        | 0.298  | 6 out of 8               |
|-------------|-------------|----------------------------------------------|--------|--------------------------|
| SCFP_6      | 1443356060  | [*]N1[*]N([*])[c]2:n:<br>[cH]:n(C):[c]:2C1=O | 0.271  | 1 out of 1               |
|             |             | tures for negative o                         |        |                          |
| Fingerprint | Bit/Smiles  | Feature Structure                            | Score  | Toxic in training<br>set |
| SCFP_6      | 136358998   | [*]:n(:[*])C                                 | -0.55  | 2 out of 8               |
| SCFP_6      | 399659969   |                                              | -0.526 | 3 out of 11              |
| SCFP_6      | 2097618059  | (')Cc(=0)N[c](:[cH]:[<br>']):[cH]:[']        | -0.422 | 0 out of 1               |

#### **TOPKAT\_Developmental\_Toxicity\_Potential**



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

#### **Model Prediction**

#### Prediction: Toxic

Probability: 0.588

Enrichment: 1.12

Bayesian Score: 1.06

Mahalanobis Distance: 8.81

#### Mahalanobis Distance p-value: 0.24

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Name               | Citreoviridin                             | Ochratoxin a                             | Domperidone                            |
|--------------------|-------------------------------------------|------------------------------------------|----------------------------------------|
| Structure          | Ho ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   | HO WH CI                                 |                                        |
| Actual Endpoint    | Toxic                                     | Toxic                                    | Toxic                                  |
| Predicted Endpoint | Toxic                                     | Toxic                                    | Toxic                                  |
| Distance           | 0.648                                     | 0.681                                    | 0.692                                  |
| Reference          | Food Chem Toxicol<br>24(12):1315-20; 1986 | Toxicol Appl Pharmacol 37(2):331-8; 1976 | Yakuri to Chiryo 8:4125-<br>4136; 1980 |

#### Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

| Top features for positive contribution |            |                                                     |       |                       |
|----------------------------------------|------------|-----------------------------------------------------|-------|-----------------------|
| Fingerprint                            | Bit/Smiles | Feature Structure                                   | Score | Toxic in training set |
| SCFP_6                                 | 282594097  | (")NC(=0)[c]1:[cH];[c<br>H]:[']:[c]((')):[cH]<br>;1 | 0.441 | 3 out of 3            |
|                                        |            |                                                     |       |                       |

| SCFP_6      | 1257084377  | $[I,]N(\{,,])C(=O)[C](C[, \\ )):[,]$                                                                                                                                                                                                    | 0.362  | 14 out of 18             |
|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|
| SCFP_6      | -1181430618 | [*]n1:[*]:[*]:n:[cH]:                                                                                                                                                                                                                   | 0.298  | 6 out of 8               |
|             | Top Feat    | tures for negative of                                                                                                                                                                                                                   |        | 1                        |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                                                                                                                                                       | Score  | Toxic in training<br>set |
| SCFP_6      | 52043406    | [*][c]1:[cH]:[cH]:1                                                                                                                                                                                                                     | -0.718 | 0 out of 2               |
| SCFP_6      | 136358998   | <sup>N</sup> <sup>H</sup> <sub>O</sub> <sup>N</sup> <sub>N</sub><br><sup>N</sup> <sub>N</sub> <sup>O</sup> O <sup>H</sup> <sub>C</sub><br><sup>N</sup> <sub>N</sub> <sup>N</sup> <sub>N</sub> <sup>N</sup> <sub>C</sub><br>[*]:n(:[*])C | -0.55  | 2 out of 8               |
| SCFP_6      | 399659969   | [']CN(C(=['])['])C(=[<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                           | -0.526 | 3 out of 11              |

#### **TOPKAT\_Developmental\_Toxicity\_Potential**

C<sub>23</sub>H<sub>22</sub>N<sub>8</sub>O<sub>4</sub> Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

# **Model Prediction**

Prediction: Toxic

Probability: 0.599

Enrichment: 1.14

Bayesian Score: 1.34

Mahalanobis Distance: 8.98

#### Mahalanobis Distance p-value: 0.183

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

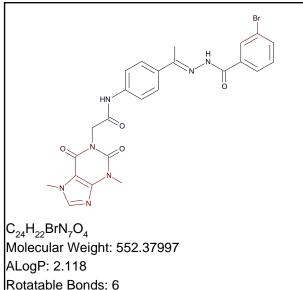
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name               | Lenampicillin .HCI (Free base form)                                                                             | Prazosin .HCl (Free base form)                            | Bunazosin .HCI (Free base form)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          | HN<br>HN<br>Star<br>N<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | N<br>N<br>H <sub>2</sub> N <sup>4</sup><br>H <sub>0</sub> | Provide the second seco |
| Actual Endpoint    | Non-Toxic                                                                                                       | Toxic                                                     | Toxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted Endpoint | Non-Toxic                                                                                                       | Toxic                                                     | Toxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distance           | 0.650                                                                                                           | 0.736                                                     | 0.743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reference          | Chemotherapy 32:130-<br>145; 1984                                                                               | Oyo Yakuri 17:57-62;<br>1979                              | Kiso to Rinsho 17:914-<br>924; 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

|                                        |            |                   |       | Feature Contribution     |  |  |  |  |
|----------------------------------------|------------|-------------------|-------|--------------------------|--|--|--|--|
| Top features for positive contribution |            |                   |       |                          |  |  |  |  |
| Fingerprint                            | Bit/Smiles | Feature Structure | Score | Toxic in training<br>set |  |  |  |  |
| SCFP_6                                 | 1257084377 |                   | 0.362 | 14 out of 18             |  |  |  |  |

| SCFP_6      | -1181430618 | [*]n1:[*]:[*]:n:[cH]:                                                                                                                                 | 0.298       | 6 out of 8               |
|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|
| SCFP_6      | -587539325  | [*]N([*])CC(=[*])[*]                                                                                                                                  | 0.271       | 1 out of 1               |
|             |             | tures for negative o                                                                                                                                  | ontribution |                          |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                                                                     | Score       | Toxic in training<br>set |
| SCFP_6      | -758850909  | (*)[c]1:[*]:n:[cH]:[c<br>H]:[cH]:1                                                                                                                    | -0.646      | 2 out of 9               |
| SCFP_6      | 136358998   | <sup>N</sup> → | -0.55       | 2 out of 8               |
| SCFP_6      | 399659969   | ("]CN(C(=["])[")C(=[<br>"])["]                                                                                                                        | -0.526      | 3 out of 11              |



Acceptors: 6

Donors: 2

#### **Model Prediction**

#### Prediction: Toxic

Probability: 0.655

Enrichment: 1.25

Bayesian Score: 2.76

Mahalanobis Distance: 8.15

#### Mahalanobis Distance p-value: 0.535

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

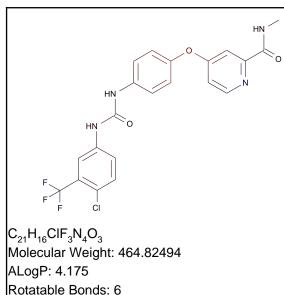
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name               | Citreoviridin                             | Ochratoxin a                                | Amsacrine                                |
|--------------------|-------------------------------------------|---------------------------------------------|------------------------------------------|
| Structure          |                                           | OH WINH<br>OH OH HOW WILL<br>HOW WILL       | N. NH<br>NH<br>OB                        |
| Actual Endpoint    | Toxic                                     | Toxic                                       | Toxic                                    |
| Predicted Endpoint | Toxic                                     | Toxic                                       | Toxic                                    |
| Distance           | 0.695                                     | 0.732                                       | 0.734                                    |
| Reference          | Food Chem Toxicol<br>24(12):1315-20; 1986 | Toxicol Appl Pharmacol<br>37(2):331-8; 1976 | Fundam Appl Toxicol<br>7(2):214-20; 1986 |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

# Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Toxic in training set SCFP\_6 282594097 Image: Color of the set o

| SCFP_6      | -1505150337 | [*]:[CH]:[C](Br):[CH]<br>:[*]                                                       | 0.369  | 5 out of 6               |
|-------------|-------------|-------------------------------------------------------------------------------------|--------|--------------------------|
| SCFP_6      | 1257084377  | Pr<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→                          | 0.362  | 14 out of 18             |
|             |             | tures for negative o                                                                |        |                          |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                   | Score  | Toxic in training<br>set |
| SCFP_6      | 136358998   | Pr<br>N NH<br>N NH<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | -0.55  | 2 out of 8               |
| SCFP_6      | 399659969   | [']CN(C(=['])['])C(=[<br>'])[']                                                     | -0.526 | 3 out of 11              |
| SCFP_6      | 2097618059  | Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr                            | -0.422 | 0 out of 1               |

# Sorafenib



Acceptors: 4

Donors: 3

#### **Model Prediction**

#### Prediction: Toxic

Probability: 0.592

Enrichment: 1.13

Bayesian Score: 1.15

Mahalanobis Distance: 12.6

#### Mahalanobis Distance p-value: 2.07e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

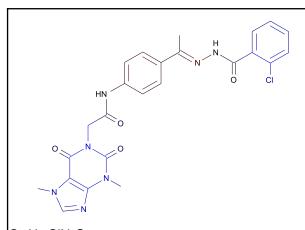
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### Structural Similar Compounds

| Name               | Chenodiol                            | Amsacrine                                | Ochratoxin a                                              |
|--------------------|--------------------------------------|------------------------------------------|-----------------------------------------------------------|
| Structure          | OH<br>THOH<br>THOH                   | NI H                                     | OH WNH<br>HO WA HI<br>HO WA HI<br>HO WA HI<br>OH OH HO WA |
| Actual Endpoint    | Toxic                                | Toxic                                    | Toxic                                                     |
| Predicted Endpoint | Toxic                                | Toxic                                    | Toxic                                                     |
| Distance           | 0.631                                | 0.637                                    | 0.644                                                     |
| Reference          | Arch Int Pharm 246:149-<br>158; 1980 | Fundam Appl Toxicol<br>7(2):214-20; 1986 | Toxicol Appl Pharmacol 37(2):331-8; 1976                  |

#### Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

#### 

| SCFP_6      | -488587948  | [*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH                                                        | 0.381  | 2 out of 2               |
|-------------|-------------|---------------------------------------------------------------------------------------------------|--------|--------------------------|
| SCFP_6      | -975241316  | [*][c]1:[cH]:[cH]:[cH]<br>[c][c](:[cH]:[cH]:[cH]:[cH]<br>[c][cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[c | 0.381  | 2 out of 2               |
|             |             | tures for negative of                                                                             |        |                          |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                 | Score  | Toxic in training<br>set |
| SCFP_6      | -1794974220 | [*]C([*])([*])F                                                                                   | -0.55  | 2 out of 8               |
| SCFP_6      | -937094999  | PF CI<br>[*]1:[cH]:[cH]:n<br>:[cH]:1                                                              | -0.358 | 3 out of 9               |
| SCFP_6      | -496201075  | [*][c](:[*]):[cH]:n:[<br>*]                                                                       | -0.289 | 8 out of 21              |

#### TOPKAT\_Mouse\_Female\_FDA\_None\_vs\_Carcinogen



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

#### **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.221

Enrichment: 0.69

Bayesian Score: -9.76

Mahalanobis Distance: 12.9

#### Mahalanobis Distance p-value: 0.000676

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

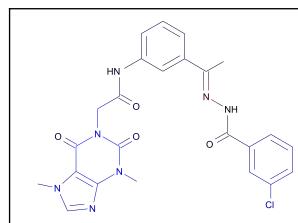
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name               | Bicalutamide                                                              | Glipizide                                                                 | Moricizine                                                                |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | HO H                                  |                                                                           |                                                                           |
| Actual Endpoint    | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Carcinogen                                                                |
| Predicted Endpoint | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Carcinogen                                                                |
| Distance           | 0.640                                                                     | 0.662                                                                     | 0.674                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]

|             | Top features for positive contribution |                   |       |                               |  |
|-------------|----------------------------------------|-------------------|-------|-------------------------------|--|
| Fingerprint | Bit/Smiles                             | Feature Structure | Score | Carcinogen in<br>training set |  |
| ECFP_6      | -1087070950                            |                   | 0.724 | 10 out of 14                  |  |
|             |                                        | [*]N=[*]          |       |                               |  |
|             |                                        |                   |       |                               |  |

| ECFP_6      | 544048674   | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | 0.617  | 2 out of 2                    |
|-------------|-------------|---------------------------------------------------------------------------------------------|--------|-------------------------------|
| ECFP_6      | 738938915   | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:1                                                    | 0.617  | 2 out of 2                    |
|             |             | ures for negative o                                                                         |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                           | Score  | Carcinogen in<br>training set |
| ECFP_6      | -661097313  | [']CN(C(=['))['))C(=[<br>,))[']                                                             | -1.55  | 0 out of 12                   |
| ECFP_6      | -1625071872 | [*][c]1:[cH]:[c]1:[c]                                                                       | -0.935 | 0 out of 5                    |
| ECFP_6      | 1641317964  | (*][c]1:[*]:[cH]:[cH]<br>:[cH]:[c]:1Cl                                                      | -0.789 | 1 out of 11                   |



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

#### **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.228

Enrichment: 0.712

Bayesian Score: -11.4

Mahalanobis Distance: 19.4

#### Mahalanobis Distance p-value: 1.19e-016

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

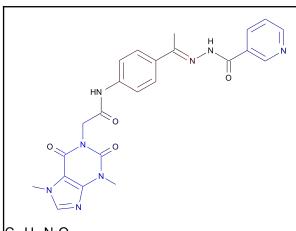
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name               | Bicalutamide                                                              | Glipizide                                                                 | Moricizine                                                                |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | HO AND                                |                                                                           |                                                                           |
| Actual Endpoint    | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Carcinogen                                                                |
| Predicted Endpoint | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Carcinogen                                                                |
| Distance           | 0.637                                                                     | 0.663                                                                     | 0.674                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]

| Top features for positive contribution |             |                   |       |                               |  |
|----------------------------------------|-------------|-------------------|-------|-------------------------------|--|
| Fingerprint                            | Bit/Smiles  | Feature Structure | Score | Carcinogen in<br>training set |  |
| ECFP_6                                 | -1087070950 |                   | 0.724 | 10 out of 14                  |  |

| ECFP_6      | 544048674  |                                                               | 0.617  | 2 out of 2                    |
|-------------|------------|---------------------------------------------------------------|--------|-------------------------------|
| ECFP_6      | -407983022 | [*][c]1:[*]:[*]:[cH]:<br>n:1C                                 | 0.442  | 2 out of 3                    |
|             |            | tures for negative o                                          |        |                               |
| Fingerprint | Bit/Smiles | Feature Structure                                             | Score  | Carcinogen in<br>training set |
| ECFP_6      | -661097313 | [']CN(C(=['])['])C(=[<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -1.55  | 0 out of 12                   |
| ECFP_6      | 1731843802 |                                                               | -0.657 | 0 out of 3                    |
| ECFP_6      | 2007300961 | [*][c]1:[*]:[c]([*]):<br>[cH]:[cH]:[cH]:1                     | -0.652 | 5 out of 34                   |



C<sub>23</sub>H<sub>22</sub>N<sub>8</sub>O<sub>4</sub> Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

#### **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.214

Enrichment: 0.667

Bayesian Score: -8.9

Mahalanobis Distance: 12.9

#### Mahalanobis Distance p-value: 0.000644

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name               | Budesonide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glipizide                                                                 | Penicillin                                                                |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Structure          | HO the second se |                                                                           |                                                                           |  |
| Actual Endpoint    | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Non-Carcinogen                                                            | Non-Carcinogen                                                            |  |
| Predicted Endpoint | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Non-Carcinogen                                                            | Non-Carcinogen                                                            |  |
| Distance           | 0.685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.697                                                                     | 0.711                                                                     |  |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]

| ECFP_6 -1087070950 0.724 10 out of 14 | Top features for positive contribution |            |                   |       |                               |
|---------------------------------------|----------------------------------------|------------|-------------------|-------|-------------------------------|
|                                       | gerprint                               | Bit/Smiles | Feature Structure |       | Carcinogen in<br>training set |
| Ĩ⊆Ň                                   | FP_6                                   | 1087070950 |                   | 0.724 | 10 out of 14                  |
| [*]N=[*]                              |                                        |            | [*]N=[*]          |       |                               |

| ECFP_6                                 | 738938915  | [*]C(=['])N[c]1:[cH]:<br>[cH]:[']:[cH]:[cH]:1                                                                                | 0.617  | 2 out of 2                    |
|----------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|
| ECFP_6                                 | 544048674  | [*]C(=[*])NN=[*]                                                                                                             | 0.617  | 2 out of 2                    |
| Top Features for negative contribution |            |                                                                                                                              |        |                               |
| Fingerprint                            | Bit/Smiles | Feature Structure                                                                                                            | Score  | Carcinogen in<br>training set |
| ECFP_6                                 | -661097313 | [']CN(C(=['])['])C(=[<br>'])[']                                                                                              | -1.55  | 0 out of 12                   |
| ECFP_6                                 | 2013347047 | <sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup> | -0.805 | 0 out of 4                    |
| ECFP_6                                 | 1731843802 | (*]CC(=O)N[*]                                                                                                                | -0.657 | 0 out of 3                    |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997
ALogP: 2.118

Rotatable Bonds: 6

Acceptors: 6

Donors: 2

# **Model Prediction**

Prediction: Non-Carcinogen

Probability: 0.212

Enrichment: 0.66

Bayesian Score: -8.58

Mahalanobis Distance: 13.9

## Mahalanobis Distance p-value: 2.08e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

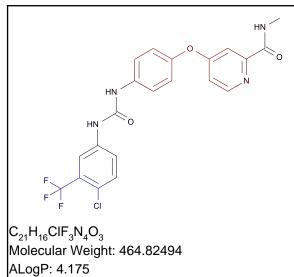
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# **Structural Similar Compounds**

| Name               | Bicalutamide                                                              | Glipizide                                                                 | Glimepride                                                                |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | F<br>HO<br>HN<br>AN<br>HN<br>AN<br>HN<br>AN<br>HN<br>N                    |                                                                           | NH                                                                        |
| Actual Endpoint    | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Carcinogen                                                                |
| Predicted Endpoint | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Carcinogen                                                                |
| Distance           | 0.696                                                                     | 0.713                                                                     | 0.718                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]
- 4. Unknown ECFP\_2 feature: -177935549: [\*]:[cH]:[c](Br):[cH]:[\*]

| Feature Contribution |             |                                                                |             |                               |
|----------------------|-------------|----------------------------------------------------------------|-------------|-------------------------------|
|                      | Top fea     | tures for positive c                                           | ontribution |                               |
| Fingerprint          | Bit/Smiles  | Feature Structure                                              | Score       | Carcinogen in<br>training set |
| ECFP_6               | -1087070950 | Pr<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH<br>NH | 0.724       | 10 out of 14                  |
|                      | -           |                                                                |             |                               |

| ECFP_6      | 544048674  | [*]C(=[*])NN=[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.617  | 2 out of 2                    |
|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|
| ECFP_6      | 738938915  | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.617  | 2 out of 2                    |
|             |            | atures for negative o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                               |
| Fingerprint | Bit/Smiles | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Score  | Carcinogen in<br>training set |
| ECFP_6      | -661097313 | (')CN(C(=[''))[')C(=['')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')])C(=[''')[''])C(=[''')[''])C(=[''')[''])C(=[''')])C(=[''')])C(=[''')[''])C(=[''')])C(=[''')]C(=[''')])C(=[''')])C(=[''')]C(=[''')])C(=[''')]C(=[''')])C(=[''')]C(=[''')])C(=[''')]C(=[''')]C(=['''')]C(=['''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=[''')]C(=['')]C(=[''')]C(=[''')]C(=['')]C(=[''')]C(=[''')]C(=['')]C(=[''')]C(=[''')]C(=['')]C(=['')]C(=['')]C(=['')]C(=[''')]C(=[''')]C(=[''')]C(=['')]C(=[''')]C(=[''')]C(=['')]C(=[''')]C(=[''')]C(=['')]C(=[''')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=['')]C(=[''))C(=['')]C(=['')]C(=['')]C(=['')]C(=[''))C(=[''))C(=['') | -1.55  | 0 out of 12                   |
| ECFP_6      | -302078100 | N, NH, S<br>N, S<br>N, S<br>N, S<br>N, S<br>N, S<br>N, S<br>N, S<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.805 | 0 out of 4                    |
| ECFP_6      | 1731843802 | [*]CC(=O)N[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.657 | 0 out of 3                    |



Rotatable Bonds: 6

Acceptors: 4

Donors: 3

# **Model Prediction**

Prediction: Carcinogen

Probability: 0.257

Enrichment: 0.801

Bayesian Score: -0.321

Mahalanobis Distance: 14.9

#### Mahalanobis Distance p-value: 4.21e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

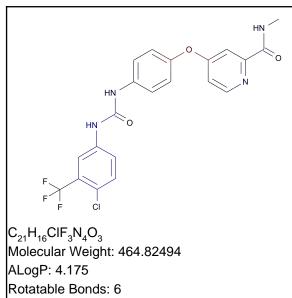
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Mouse\_Female\_FDA\_None\_vs\_Carcinogen

## Structural Similar Compounds

| Name               | Glimepride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glyburide                                                                 | Fluvastatin                                                               |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | The second secon | HIN CO                                                                    |                                                                           |
| Actual Endpoint    | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Predicted Endpoint | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Distance           | 0.605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.615                                                                     | 0.625                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC20 out of range. Value: -3.3309. Training min, max, SD, explained variance: -3.1862, 4.4571, 1.28, 0.0167.

| Top features for positive contribution |            |                                                        |       |                               |  |
|----------------------------------------|------------|--------------------------------------------------------|-------|-------------------------------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure                                      | Score | Carcinogen in<br>training set |  |
| ECFP_6                                 | 738938915  | FF CI<br>[*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 | 0.617 | 2 out of 2                    |  |
|                                        |            |                                                        |       |                               |  |

| ECFP_6      | 1338334141  | $F_{F \in Ci}$                                          | 0.442  | 2 out of 3                    |
|-------------|-------------|---------------------------------------------------------|--------|-------------------------------|
| ECFP_6      | -335167981  | [*]0[c]f?[cH]:[cH]:[c<br>](NC(=[*])[*]):[cH]:<br>[cH]:1 | 0.424  | 1 out of 1                    |
|             |             | tures for negative o                                    |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                       | Score  | Carcinogen in<br>training set |
| ECFP_6      | 1335691903  | [*][c](:[*]):[c](CI):[cH]:[*]                           | -0.669 | 3 out of 22                   |
| ECFP_6      | 1336678434  | [*][c](:[*]):[c](:[cH<br>]:[*])C([*])([*])[*]           | -0.657 | 0 out of 3                    |
| ECFP_6      | -1952889961 | [*]:[c](:[*])C(F)(F)F                                   | -0.657 | 0 out of 3                    |



Acceptors: 4

Donors: 3

# **Model Prediction**

#### Prediction: Single-Carcinogen

Probability: 0.283

Enrichment: 0.691

Bayesian Score: -3.89

Mahalanobis Distance: 11.1

## Mahalanobis Distance p-value: 0.00221

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

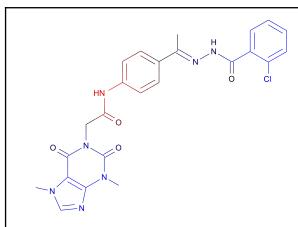
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Mouse\_Female\_FDA\_Single\_vs\_Multiple

## Structural Similar Compounds

| Structural Similar Compounds       Name     Glimepride     Labetalol     Lansoprazole |                                                                           |                                                                           |                                                                           |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
|                                                                                       | Gimepride                                                                 |                                                                           |                                                                           |  |  |
| Structure                                                                             | NH                                                                        | HN HNH 2                                                                  |                                                                           |  |  |
| Actual Endpoint                                                                       | Single-Carcinogen                                                         | Single-Carcinogen                                                         | Single-Carcinogen                                                         |  |  |
| Predicted Endpoint                                                                    | Single-Carcinogen                                                         | Single-Carcinogen                                                         | Single-Carcinogen                                                         |  |  |
| Distance                                                                              | 0.599                                                                     | 0.808                                                                     | 0.820                                                                     |  |  |
| Reference                                                                             | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |  |  |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 1336678434: [\*][c](:[\*]):[c](C([\*])([\*])[\*]):c:[\*]
- 3. Unknown ECFP\_2 feature: -1952889961: [\*]:[c](:[\*])C(F)(F)F

| Top features for positive contribution |            |                                                                                                             |       |                                            |  |
|----------------------------------------|------------|-------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure                                                                                           | Score | Multiple-<br>Carcinogen in<br>training set |  |
| ECFP_4                                 | -834094296 | [ <sup>1</sup> ]:[dH]?[c](O[c](:[c<br>H]:[ <sup>4</sup> ]):[cH]:[ <sup>4</sup> ]):[c<br>H]:[ <sup>4</sup> ] | 0.351 | 1 out of 1                                 |  |

| ECFP_4      | 1407472008 | [*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH              | 0.351        | 1 out of 1                                 |
|-------------|------------|---------------------------------------------------------|--------------|--------------------------------------------|
| ECFP_4      | 143734695  | [*][0]14*]:[cH]:[cH]<br>:[c](0[c](:[*]):[*])<br>:[cH]:1 | 0.351        | 1 out of 1                                 |
|             |            | tures for negative of                                   | contribution | I                                          |
| Fingerprint | Bit/Smiles | Feature Structure                                       | Score        | Multiple-<br>Carcinogen in<br>training set |
| ECFP_4      | 888054369  | [*]N[c]1:[cH]:[*]:[c]<br>([*]):[cH]:[cH]:1              | -0.8         | 0 out of 3                                 |
| ECFP_4      | 1335691903 | [*][c](:[*]):[c](CI):<br>[cH]:[*]                       | -0.8         | 0 out of 3                                 |
| ECFP_4      | 1338334141 | $F_{F \in Cl}$                                          | -0.597       | 0 out of 2                                 |



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.137

Enrichment: 0.466

Bayesian Score: -10.5

Mahalanobis Distance: 17

#### Mahalanobis Distance p-value: 5.83e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## **Structural Similar Compounds**

| Name               | Bicalutamide                                                              | Glipizide                                                                 | Moricizine                                                                |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | F<br>HO<br>HO<br>HN AN<br>C<br>HN AN<br>C<br>HN AN<br>N                   |                                                                           |                                                                           |
| Actual Endpoint    | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Predicted Endpoint | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Distance           | 0.594                                                                     | 0.654                                                                     | 0.672                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Contribution<br>Top features for positive contribution |            |                                                       |       |            |  |
|----------------------------------------------------------------|------------|-------------------------------------------------------|-------|------------|--|
|                                                                |            |                                                       |       |            |  |
| FCFP_6                                                         | -451043714 | (*)CC(=0)N[c]1;[cH];[<br>cH];[c]((*));[cH];[c<br>H];1 | 0.676 | 2 out of 2 |  |
|                                                                |            |                                                       |       |            |  |

| FCFP_6      | 1175665944  | [']CC(=O)N[c](:[cH]):[<br>')):[cH]:[']                     | 0.655        | 7 out of 12                   |
|-------------|-------------|------------------------------------------------------------|--------------|-------------------------------|
| FCFP_6      | -1838187238 | (*)C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1              | 0.565        | 4 out of 7                    |
|             | Top Feat    | tures for negative of                                      | contribution |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                          | Score        | Carcinogen in<br>training set |
| FCFP_6      | -543363217  | [*]C(=[ <sup>N</sup> ])[c]1:[cH]:[<br>cH]:[cH]:[cH]:[c]:1C | -1.29        | 0 out of 10                   |
| FCFP_6      | -2095752315 | [*][c]1:[cH]:[c]1:[c]                                      | -1.13        | 0 out of 8                    |
| FCFP_6      | 2104062943  | [*]C(=[*])[c]1:[cH]:[<br>*]:[cH]:[cH]:[c]:1Cl              | -1.01        | 1 out of 17                   |

C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.164

Enrichment: 0.556

Bayesian Score: -7.66

Mahalanobis Distance: 16.3

#### Mahalanobis Distance p-value: 1.77e-010

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Name               | Bicalutamide                                                              | Glipizide                                                                 | Cisapride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Structure          | HO HO HO THE F                                                            |                                                                           | H <sub>2</sub> N <sub>4</sub><br>H <sub>2</sub> N <sub>4</sub><br>H <sub>2</sub> N <sub>4</sub><br>H <sub>2</sub> N <sub>4</sub><br>H <sub>3</sub> |  |
| Actual Endpoint    | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Predicted Endpoint | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Distance           | 0.587                                                                     | 0.656                                                                     | 0.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Contribution Top features for positive contribution |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |            |  |
|-------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--|
|                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |            |  |
| FCFP_6                                                      | -581879738 | (I']NC(=O)[c]1:[cH]:[cH]:[']:[c]((I')):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[cH]:[c]H]:[']:[c](I'):[c](I'):[c]H]:[']:[c](I'):[c](I'):[c]H]:[']:[c](I'):[c](I'):[c]H]:[']:[c](I'):[c](I'):[c]H]:[']:[c](I'):[c](I'):[c]H]:[']:[c](I'):[c](I'):[c]H]:[']:[c](I'):[c](I'):[c](I'):[c]H]:[']:[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I'):[c](I') | 0.77 | 4 out of 5 |  |
|                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |            |  |

| FCFP_6      | 1175665944  | [']CC(=0)N[c](:[cH]:[<br>']);[cH]:[']         | 0.655       | 7 out of 12                   |
|-------------|-------------|-----------------------------------------------|-------------|-------------------------------|
| FCFP_6      | -1838187238 | (*)C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 | 0.565       | 4 out of 7                    |
|             | Top Featu   | ures for negative c                           | ontribution |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                             | Score       | Carcinogen in<br>training set |
| FCFP_6      | -885520711  | [*]C(=[*])NN=[*]                              | -0.839      | 0 out of 5                    |
| FCFP_6      | -124685461  | (*)n1:[*]:[*]:n:[cH]:                         | -0.731      | 1 out of 12                   |
| FCFP_6      | -1549192822 | (']\N=C(/C)\[c](:['])<br>:[']                 | -0.489      | 3 out of 21                   |

C<sub>23</sub>H<sub>22</sub>N<sub>8</sub>O<sub>4</sub> Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

# **Model Prediction**

Prediction: Non-Carcinogen

Probability: 0.201

Enrichment: 0.684

Bayesian Score: -4.9

Mahalanobis Distance: 14.9

## Mahalanobis Distance p-value: 1.25e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Structural Similar Co | ompounds |
|-----------------------|----------|
|-----------------------|----------|

| Name               | Glipizide                                                                 | Budesonide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Penicillin                                                                |
|--------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          |                                                                           | HO to the total of |                                                                           |
| Actual Endpoint    | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Non-Carcinogen                                                            |
| Predicted Endpoint | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Non-Carcinogen                                                            |
| Distance           | 0.688                                                                     | 0.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.717                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Contribution                   |            |                                                       |       |                               |  |
|----------------------------------------|------------|-------------------------------------------------------|-------|-------------------------------|--|
| Top features for positive contribution |            |                                                       |       |                               |  |
| Fingerprint                            | Bit/Smiles | Feature Structure                                     | Score | Carcinogen in<br>training set |  |
| FCFP_6                                 | -451043714 | (']CC(=0)N(c]1:(cH):(<br>cH):(c]((')):(cH):(c<br>H):1 | 0.676 | 2 out of 2                    |  |
|                                        |            |                                                       |       |                               |  |

| FCFP_6      | 1175665944  | [']CC(=O)N[c](;[cH];[<br>']);[cH];[']                                                                                        | 0.655       | 7 out of 12                   |
|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|
| FCFP_6      | -1838187238 | (*)C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1                                                                                | 0.565       | 4 out of 7                    |
|             | Top Feat    | ures for negative o                                                                                                          | ontribution |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                                            | Score       | Carcinogen in<br>training set |
| FCFP_6      | -885520711  | [*]C(=[*])NN=[*]                                                                                                             | -0.839      | 0 out of 5                    |
| FCFP_6      | -124685461  | <sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup> | -0.731      | 1 out of 12                   |
| FCFP_6      | 1153798395  | (*)[c]1:[cH]:[<br>*]:[cH]:n:[cH]:1                                                                                           | -0.582      | 0 out of 3                    |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997
ALogP: 2.118
Rotatable Bonds: 6

Acceptors: 6 Donors: 2

## **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.167

Enrichment: 0.567

Bayesian Score: -7.38

Mahalanobis Distance: 16.7

## Mahalanobis Distance p-value: 3.44e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

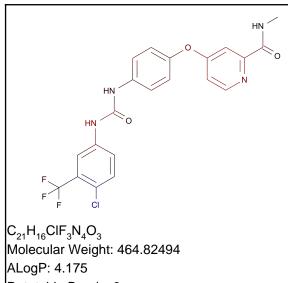
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# **Structural Similar Compounds**


| Structural Simila  | r compounds                                                               |                                                                           |                                                                           |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Name               | Bicalutamide                                                              | Cisapride                                                                 | Glipizide                                                                 |
| Structure          | HO H                                  |                                                                           |                                                                           |
| Actual Endpoint    | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Predicted Endpoint | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Distance           | 0.650                                                                     | 0.697                                                                     | 0.706                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Contribution                   |            |                                                                             |       |                               |  |
|----------------------------------------|------------|-----------------------------------------------------------------------------|-------|-------------------------------|--|
| Top features for positive contribution |            |                                                                             |       |                               |  |
| Fingerprint                            | Bit/Smiles | Feature Structure                                                           | Score | Carcinogen in<br>training set |  |
| FCFP_6                                 | -581879738 | ("]NC(=0)[c]1:[cH]:[c<br>H]:[1]:[c](t')]:[cH]:[c<br>H]:[1]:[c](t')]:[cH]:[c | 0.77  | 4 out of 5                    |  |
|                                        |            |                                                                             |       |                               |  |

| FCFP_6      | -451043714  | Br<br>NH<br>O<br>NN<br>(']CC(=0)N[c]1:[cH]:[<br>cH]:[c]((']):[cH]:[c<br>H]:1                        | 0.676  | 2 out of 2                    |
|-------------|-------------|-----------------------------------------------------------------------------------------------------|--------|-------------------------------|
| FCFP_6      | 1175665944  | [*]CC(=0)N[c](:[cH]:[<br>')):[cH]:[']                                                               | 0.655  | 7 out of 12                   |
|             |             | tures for negative o                                                                                |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                   | Score  | Carcinogen in<br>training set |
| FCFP_6      | -885520711  | [*]C(=[*])NN=[*]                                                                                    | -0.839 | 0 out of 5                    |
| FCFP_6      | -124685461  | [*]n1:[*]:[*]:n:[cH]:                                                                               | -0.731 | 1 out of 12                   |
| FCFP_6      | -1549192822 | Pr<br>N NH<br>N NH<br>N NH<br>N NH<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | -0.489 | 3 out of 21                   |



Rotatable Bonds: 6

Acceptors: 4 Donors: 3

## **Model Prediction**

Prediction: Carcinogen

Probability: 0.444

Enrichment: 1.51

Bayesian Score: 4.21

Mahalanobis Distance: 20.3

#### Mahalanobis Distance p-value: 1.28e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

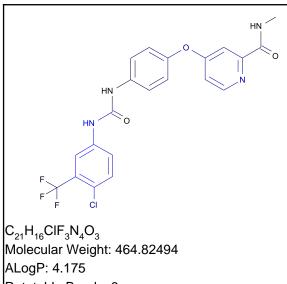
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Structural Simila  | rcompounds                                                                |                                                                           |                                                                           |  |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Name               | Glyburide                                                                 | Glimepride                                                                | Fluvastatin                                                               |  |
| Structure          |                                                                           |                                                                           |                                                                           |  |
| Actual Endpoint    | Non-Carcinogen                                                            | Carcinogen                                                                | Non-Carcinogen                                                            |  |
| Predicted Endpoint | Non-Carcinogen                                                            | Carcinogen                                                                | Non-Carcinogen                                                            |  |
| Distance           | 0.594                                                                     | 0.599                                                                     | 0.603                                                                     |  |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Co                             | ntribution |                                                          |       |                               |  |
|----------------------------------------|------------|----------------------------------------------------------|-------|-------------------------------|--|
| Top features for positive contribution |            |                                                          |       |                               |  |
| Fingerprint                            | Bit/Smiles | Feature Structure                                        | Score | Carcinogen in<br>training set |  |
| FCFP_6                                 | 71953198   | $ \begin{array}{c}                                     $ | 0.612 | 12 out of 23                  |  |
|                                        |            | [*]C([*])([*])F                                          |       |                               |  |

| FCFP_6      | -1838187238 | PF CI<br>[*]C(=[*])N[c]1:[cH]:<br>[cH]:[']:[cH]:[cH]:1 | 0.565  | 4 out of 7                    |
|-------------|-------------|--------------------------------------------------------|--------|-------------------------------|
| FCFP_6      | 140656626   | [*]O[c]?![cH]:[cH]:n:<br>[c](:[cH]:1)C(=[*])[<br>*]    | 0.46   | 1 out of 1                    |
|             |             | tures for negative o                                   |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                      | Score  | Carcinogen in<br>training set |
| FCFP_6      | 2104062943  | (*)[cH]:[cH]:[cH]:[                                    | -1.01  | 1 out of 17                   |
| FCFP_6      | 551850122   | [*][c]1:[*]:[cH]:[cH]<br>:[cH]:[c]:1CI                 | -0.433 | 8 out of 49                   |
| FCFP_6      | 71476542    | [*]:[c](:[*])Cl                                        | -0.406 | 10 out of 59                  |



Rotatable Bonds: 6

Acceptors: 4

#### Donors: 3

## **Model Prediction**

#### Prediction: Single-Carcinogen

Probability: 0.139

Enrichment: 0.461

Bayesian Score: -14.7

Mahalanobis Distance: 21.3

## Mahalanobis Distance p-value: 4.93e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

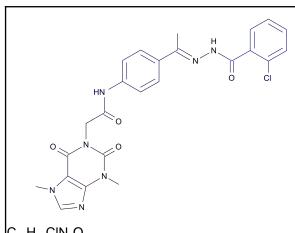
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Mouse\_Male\_FDA\_Single\_vs\_Multiple

## Structural Similar Compounds

| Name               | Glimepride                                                                | Bicalutamide                                                              | Lansoprazole                                                              |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | NH                                                                        | HN ANCOLANT                                                               |                                                                           |
| Actual Endpoint    | Single-Carcinogen                                                         | Single-Carcinogen                                                         | Single-Carcinogen                                                         |
| Predicted Endpoint | Single-Carcinogen                                                         | Single-Carcinogen                                                         | Single-Carcinogen                                                         |
| Distance           | 0.626                                                                     | 0.700                                                                     | 0.866                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Co  | Feature Contribution                   |                         |                                            |  |  |  |  |
|-------------|----------------------------------------|-------------------------|--------------------------------------------|--|--|--|--|
|             | Top features for positive contribution |                         |                                            |  |  |  |  |
| Fingerprint | Bit/Smiles                             | Feature Structure Score | Multiple-<br>Carcinogen in<br>training set |  |  |  |  |
| FCFP_12     | 1499521844                             | 0.39                    | 5 out of 9                                 |  |  |  |  |
|             | ·                                      |                         |                                            |  |  |  |  |

| FCFP_12     | -904785030  | [*]:[cH]:[c](:n:[*])C<br>(=O)NC                      | 0.174        | 1 out of 2                                 |
|-------------|-------------|------------------------------------------------------|--------------|--------------------------------------------|
| FCFP_12     | -1549103449 | ["]NC(=O)[c](:[*]):[*]                               | 0.168        | 3 out of 7                                 |
|             |             | ures for negative of                                 | contribution |                                            |
| Fingerprint | Bit/Smiles  | Feature Structure                                    | Score        | Multiple-<br>Carcinogen in<br>training set |
| FCFP_12     | 1294255210  | $[^{n}]_{C(=[^{*}])N[C](:[^{*}]):}^{N}$              | -1.63        | 0 out of 12                                |
| FCFP_12     | 590925877   | [*]N[c](:[cH]:[*]):[c<br>H]:[*]                      | -0.998       | 1 out of 13                                |
| FCFP_12     | -1462709112 | PF = Ci<br>[*]C(=[*])[c]1:[cH]:[<br>*]:[cH]:[cH]:n:1 | -0.994       | 0 out of 5                                 |

# TOPKAT\_Ocular\_Irritancy\_Mild\_vs\_Moderate\_Severe



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

## **Model Prediction**

#### Prediction: Mild

Probability: 0.575

Enrichment: 0.834

Bayesian Score: -5.32

Mahalanobis Distance: 11.2

#### Mahalanobis Distance p-value: 0.00244

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

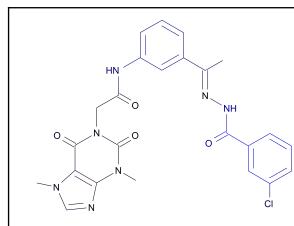
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Name               | 5-NORBORNENE-2;3-<br>DICARBOXYLIC ACID;<br>1;4;5;6;7;7-<br>HEXACHLORO- | COLCHICINE       | 4;4'-DIAMINO-1;1'-<br>DIANTHRIMIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          | OHCI CI<br>OHCI CI<br>OHCI CI<br>CI CI<br>OH                           |                  | NH 2<br>HN 4<br>HN 4 |
| Actual Endpoint    | Moderate_Severe                                                        | Moderate_Severe  | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Predicted Endpoint | Moderate_Severe                                                        | Moderate_Severe  | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Distance           | 0.788                                                                  | 0.806            | 0.809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference          | 28ZPAK-;92;72                                                          | AJOPAA 31;837;48 | 28ZPAK-;125;72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 4. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]

|             | Top features for positive contribution |                                      |       |                                    |  |  |
|-------------|----------------------------------------|--------------------------------------|-------|------------------------------------|--|--|
| Fingerprint | Bit/Smiles                             | Feature Structure                    | Score | Moderate_Severe<br>in training set |  |  |
| FCFP_10     | -1410049896                            | [*]N([*])[c]1:n:[*]:[<br>*]:[c]:1[*] | 0.256 | 2 out of 2                         |  |  |
|             | 2                                      |                                      | -     |                                    |  |  |

| FCFP_10     | -885520711  | [*]C(=[*])NN=[*]                             | 0.256        | 2 out of 2                         |
|-------------|-------------|----------------------------------------------|--------------|------------------------------------|
| FCFP_10     | -1539132615 | [*]n1:[*]:[c]:[C]([*]<br>):[c]:1C(=[*])[*]   | 0.224        | 11 out of 13                       |
|             |             | tures for negative o                         | contribution | า                                  |
| Fingerprint | Bit/Smiles  | Feature Structure                            | Score        | Moderate_Severe<br>in training set |
| FCFP_10     | -543363217  | (*)C(=N))[C]1:[CH]:[<br>cH]:[CH]:[CH]:[C]:1C | -1.01        | 2 out of 11                        |
| FCFP_10     | -306856457  | [*][c]1:[*]:[cH]:<br>n:1C                    | -0.842       | 0 out of 2                         |
| FCFP_10     | 2104062943  | (*):[cH]:[c]:1Cl                             | -0.745       | 7 out of 24                        |



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Mild

Probability: 0.306

Enrichment: 0.445

Bayesian Score: -8.13

Mahalanobis Distance: 11.2

#### Mahalanobis Distance p-value: 0.00244

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

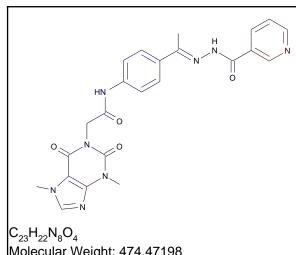
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Name               | 5-NORBORNENE-2;3-<br>DICARBOXYLIC ACID;<br>1;4;5;6;7;7-<br>HEXACHLORO- | COLCHICINE       | 4;4'-DIAMINO-1;1'-<br>DIANTHRIMIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          |                                                                        |                  | NH 2<br>HN 4<br>HN 4 |
| Actual Endpoint    | Moderate_Severe                                                        | Moderate_Severe  | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Predicted Endpoint | Moderate_Severe                                                        | Moderate_Severe  | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Distance           | 0.788                                                                  | 0.806            | 0.813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference          | 28ZPAK-;92;72                                                          | AJOPAA 31;837;48 | 28ZPAK-;125;72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]
- 4. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Top features for positive contribution |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |  |  |
|----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Bit/Smiles                             | Feature Structure                        | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Moderate_Severe<br>in training set                                              |  |  |
| -745491832                             | [*][c]1:[*]:[cH]:[cH]<br>:[c](CI):[cH]:1 | 0.304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29 out of 32                                                                    |  |  |
|                                        | Bit/Smiles                               | Bit/Smiles     Feature Structure       -745491832     Image: Comparison of the structure of the struct | Bit/Smiles     Feature Structure     Score       -745491832 <ul> <li></li></ul> |  |  |

| FCFP_10     | -885520711  |                                                                                   | 0.256       | 2 out of 2                         |
|-------------|-------------|-----------------------------------------------------------------------------------|-------------|------------------------------------|
| FCFP_10     | -1410049896 | [*]N([*])[c]1:n:[*]:[<br>*]:[c]:1[*]                                              | 0.256       | 2 out of 2                         |
|             | Top Feat    | ures for negative of                                                              | contributio | n                                  |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                 | Score       | Moderate_Severe<br>in training set |
| FCFP_10     | -1700637232 | [ <sup>1</sup> ]C(=[ <sup>1</sup> ])[c]1:[cH]:[<br>cH]:[cH]:[c](C)1:[cH]:[<br>]:1 | -1.34       | 1 out of 10                        |
| FCFP_10     | -581879738  | (')NC(=0)[c]1:[cH][c<br>H]:[']:[c]((T)):[cH]]:1                                   | -1.29       | 0 out of 4                         |
| FCFP_10     | -1205069278 | [']NC(=0)[c]1:[cH];[c<br>H];[cH];[c]([']);[cH<br>];1                              | -1.29       | 0 out of 4                         |

# TOPKAT\_Ocular\_Irritancy\_Mild\_vs\_Moderate\_Severe



AlogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

## **Model Prediction**

#### Prediction: Mild

Probability: 0.783

Enrichment: 1.14

Bayesian Score: -1.59

Mahalanobis Distance: 10.6

#### Mahalanobis Distance p-value: 0.0193

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

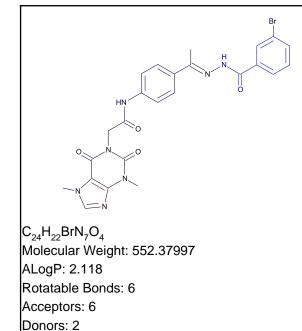
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Structural | Similar | Compounds |
|------------|---------|-----------|
| onuclurar  | Ommai   | Compounds |

| Name               | COLCHICINE       | 2-Anthracenesulfonic<br>acid; 9;10-dihydro-1-<br>amino-4-bromo-9;10-<br>dioxo-; sodium | 2H-Naphtho(1;2-d)triazole-<br>6;8-disulfonic acid;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          |                  | Br MH 2<br>0 HI 0<br>0 HI 0                                                            | A REAL PROVIDENCE OF A REAL PR |
| Actual Endpoint    | Moderate_Severe  | Mild                                                                                   | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Predicted Endpoint | Moderate_Severe  | Mild                                                                                   | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Distance           | 0.840            | 0.851                                                                                  | 0.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reference          | AJOPAA 31;837;48 | Prehled Prumyslove<br>Toxikologie; Organicke<br>Latky; Marhold; J. pp<br>1062;86       | Prehled Prumyslove<br>Toxikologie; Organicke<br>Latky; Marhold; J. pp<br>1065;86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 4. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]

| Top features for positive contribution |            |                   |       |                                    |  |
|----------------------------------------|------------|-------------------|-------|------------------------------------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score | Moderate_Severe<br>in training set |  |
|                                        |            |                   | -     | -                                  |  |
|                                        |            |                   |       |                                    |  |
|                                        |            |                   |       |                                    |  |
|                                        |            |                   |       |                                    |  |

| FCFP_10     | 547884906   | (*][c]1:[*]:[cH]:[cH]<br>(*][cH]:1 | 0.317        | 4 out of 4                         |
|-------------|-------------|------------------------------------|--------------|------------------------------------|
| FCFP_10     | -1695756380 | (*)1:[cH]:[cH]:n<br>:[cH]:1        | 0.285        | 10 out of 11                       |
| FCFP_10     | -124655670  | [*][c](:[*]):[cH]:n:[<br>*]        | 0.259        | 14 out of 16                       |
|             | Top Fea     | tures for negative of              | contribution |                                    |
| Fingerprint | Bit/Smiles  | Feature Structure                  | Score        | Moderate_Severe<br>in training set |
| FCFP_10     | -306856457  | [*][c]1:[*]:[cH]:<br>n:1C          | -0.842       | 0 out of 2                         |
| FCFP_10     | -1549163031 | [']N(['])C(=O)[c](:[*<br>)):[']    | -0.657       | 5 out of 16                        |

| FCFP_10 | -790336137 |                                                                | -0.507 | 0 out of 1 |
|---------|------------|----------------------------------------------------------------|--------|------------|
|         |            |                                                                |        |            |
|         |            |                                                                |        |            |
|         |            | [*]C("=[*])N[c]1:[cH]:<br>[cH]:[c](:[cH]:[cH]:<br>1)C(=[*])[*] |        |            |
|         |            | 1)C(=[*])[*]                                                   |        |            |

# TOPKAT\_Ocular\_Irritancy\_Mild\_vs\_Moderate\_Severe



# **Model Prediction**

#### Prediction: Mild

Probability: 0.375

Enrichment: 0.544

Bayesian Score: -7.44

Mahalanobis Distance: 11.7

#### Mahalanobis Distance p-value: 0.000241

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

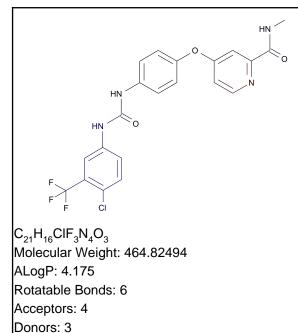
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Name               | 4;4'-DIAMINO-1;1'-<br>DIANTHRIMIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-NORBORNENE-2;3-<br>DICARBOXYLIC ACID;<br>1;4;5;6;7;7-<br>HEXACHLORO- | COLCHICINE       |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------|
| Structure          | NH 2<br>NH 2 |                                                                        |                  |
| Actual Endpoint    | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Moderate_Severe                                                        | Moderate_Severe  |
| Predicted Endpoint | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Moderate_Severe                                                        | Moderate_Severe  |
| Distance           | 0.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.843                                                                  | 0.858            |
| Reference          | 28ZPAK-;125;72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28ZPAK-;92;72                                                          | AJOPAA 31;837;48 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 4. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]

|             | Top features for positive contribution |                                                       |       |                                    |  |
|-------------|----------------------------------------|-------------------------------------------------------|-------|------------------------------------|--|
| Fingerprint | Bit/Smiles                             | Feature Structure                                     | Score | Moderate_Severe<br>in training set |  |
| FCFP_10     | -745491832                             | [*][c] <sup>1</sup> :[*]:[cH]:[cH]<br>:[c](CI):[cH]:1 | 0.304 | 29 out of 32                       |  |
|             |                                        | •                                                     | •     | •                                  |  |

| FCFP_10     | -885520711  | Br<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | 0.256 | 2 out of 2                         |
|-------------|-------------|---------------------------------------------------------------------|-------|------------------------------------|
| FCFP_10     | -1410049896 | [*]]N([N])[c]:1:n:[*]:[<br>*]:[c]:1[*]                              | 0.256 | 2 out of 2                         |
|             |             | ures for negative of                                                |       |                                    |
| Fingerprint | Bit/Smiles  | Feature Structure                                                   | Score | Moderate_Severe<br>in training set |
| FCFP_10     | -1700637232 | [*]C(+]:[c](C)):[cH]<br>]:1                                         | -1.34 | 1 out of 10                        |
| FCFP_10     | -581879738  | Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr            | -1.29 | 0 out of 4                         |
| FCFP_10     | -1205069278 | Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr            | -1.29 | 0 out of 4                         |



# **Model Prediction**

Prediction: Mild

Probability: 0.776

Enrichment: 1.13

Bayesian Score: -1.8

Mahalanobis Distance: 8.95

#### Mahalanobis Distance p-value: 0.537

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

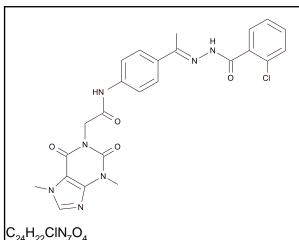
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Ocular\_Irritancy\_Mild\_vs\_Moderate\_Severe

# Structural Similar Compounds Name 4;4'-DIAMINO-1;1' 5-NORBORNEN

| Name               | 4;4'-DIAMINO-1;1'-<br>DIANTHRIMIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-NORBORNENE-2;3-<br>DICARBOXYLIC ACID;<br>1;4;5;6;7;7-<br>HEXACHLORO- | METHANE;TRIS(4-<br>AMINOPHENYL)- |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|
| Structure          | NH 2<br>HN rts<br>HN rts<br>HN rts<br>O<br>HN RTS<br>O<br>H | OHCI CI<br>OHCI CI<br>OHCI CI<br>OHCI CI<br>CI CI                      | H <sub>2</sub> N NH <sub>2</sub> |
| Actual Endpoint    | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Moderate_Severe                                                        | Moderate_Severe                  |
| Predicted Endpoint | Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Moderate_Severe                                                        | Moderate_Severe                  |
| Distance           | 0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.816                                                                  | 0.827                            |
| Reference          | 28ZPAK-;125;72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28ZPAK-;92;72                                                          | 28ZPAK-;73;72                    |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

| Top features for positive contribution |             |                             |       |                                    |  |
|----------------------------------------|-------------|-----------------------------|-------|------------------------------------|--|
| Fingerprint                            | Bit/Smiles  | Feature Structure           | Score | Moderate_Severe<br>in training set |  |
| FCFP_10                                | -1695756380 | [*]1:[cH]:[cH]:n<br>:[cH]:1 | 0.285 | 10 out of 11                       |  |
|                                        |             |                             |       |                                    |  |

| FCFP_10     | -124655670  | N <sup>H</sup> O<br>FFF Cl<br>[*][c](:[*]):[cH]:n:[<br>*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.259  | 14 out of 16                       |
|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------|
| FCFP_10     | -885550502  | $ \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ | 0.239  | 54 out of 64                       |
|             |             | tures for negative of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                    |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Score  | Moderate_Severe<br>in training set |
| FCFP_10     | 2104062943  | (1) = [CH]:[CH]:[CH]:[CH]:[CH]:[CH]:[CH]:[CH]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.745 | 7 out of 24                        |
| FCFP_10     | -174293376  | [*]N[c]f?[cH]:[cH]:[c<br>](Cl):[c](:[cH]:1)C(<br>[*])([*])([*])[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.507 | 0 out of 1                         |
| FCFP_10     | -1549103449 | $["]{}^{N}NC(=O)[c](:["]):["]{}^{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.504 | 2 out of 6                         |



ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 2.82

Mahalanobis Distance: 9.61

#### Mahalanobis Distance p-value: 0.21

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

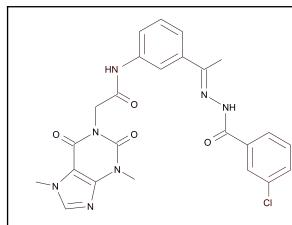
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Name               | 5-NORBORNENE-2;3-<br>DICARBOXYLIC ACID;<br>1;4;5;6;7;7-<br>HEXACHLORO- | 4;4'-DIAMINO-1;1'-<br>DIANTHRIMIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COLCHICINE       |
|--------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Structure          |                                                                        | HN rth 2<br>HN |                  |
| Actual Endpoint    | Irritant                                                               | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Irritant         |
| Predicted Endpoint | Irritant                                                               | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Irritant         |
| Distance           | 0.773                                                                  | 0.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.800            |
| Reference          | 28ZPAK-;92;72                                                          | 28ZPAK-;125;72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AJOPAA 31;837;48 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 4. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]

| Top features for positive contribution |            |                              |       |                             |  |
|----------------------------------------|------------|------------------------------|-------|-----------------------------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure            | Score | Irritant in training<br>set |  |
| FCFP_12                                | 1747237384 | [*][c]1:[*]:[*]:[cH]:<br>n:1 | 0.208 | 44 out of 44                |  |
|                                        |            |                              |       |                             |  |

| FCFP_12     | 1175665944  | (")CC(=0)N[c](:[CH]]:[<br>"):[cH]:["]                            | 0.198   | 14 out of 14                |
|-------------|-------------|------------------------------------------------------------------|---------|-----------------------------|
| FCFP_12     | -1539132615 | [*]n1:[*]:[c]:([*]<br>):[c]:1C(=[*])[*]                          | 0.197   | 13 out of 13                |
|             |             | tures for negative of                                            |         |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                                | Score   | Irritant in training<br>set |
| FCFP_12     | -1549163031 | ["]N(["])C(=O)[C](:"<br>]):["]                                   | -0.623  | 16 out of 38                |
| FCFP_12     | -1698724694 | ( <sup>*</sup> ]C(=[*])[c]1:[cH]:[<br>cH]:[cH]:[cH]:[c]:1[<br>*] | -0.0964 | 107 out of 146              |
| FCFP_12     | -581162801  | ("]\N=C(/C)\[c]1:[cH]<br>:[cH]:[']:[cH]:[cH]:<br>1               | 0       | 7 out of 9                  |



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Irritant

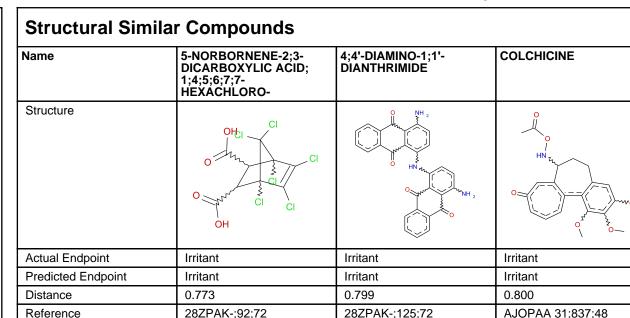
Probability: 1

Enrichment: 1.18

Bayesian Score: 3.04

Mahalanobis Distance: 9.61

#### Mahalanobis Distance p-value: 0.21


Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

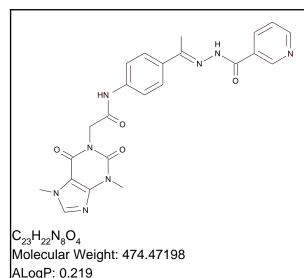
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.




# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]
- 4. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Top features for positive contribution |            |                              |       |                             |  |
|----------------------------------------|------------|------------------------------|-------|-----------------------------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure            | Score | Irritant in training<br>set |  |
| FCFP_12                                | 1747237384 | [*][c]1:[*]:[*]:[cH]:<br>n:1 | 0.208 | 44 out of 44                |  |
|                                        |            |                              |       |                             |  |

| FCFP_12     | 1175665944  | [']CC(=O)N[c](:[cH]:[']<br>)):[cH]:[']                | 0.198   | 14 out of 14                |
|-------------|-------------|-------------------------------------------------------|---------|-----------------------------|
| FCFP_12     | -1539132615 | [*]n1:[*]:[c]:[C]([*]<br>):[c]:1C(=[*])[*]            | 0.197   | 13 out of 13                |
|             |             | ures for negative of                                  |         |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                     | Score   | Irritant in training<br>set |
| FCFP_12     | -1549163031 | [']N(('))C(=O)[c](:[*<br>)):[*]                       | -0.623  | 16 out of 38                |
| FCFP_12     | 975909016   | [*]\N=C(/C)\[c]1:[cH]<br>:[cH]:[cH]:[cH]:1            | -0.0639 | 6 out of 8                  |
| FCFP_12     | -453677277  | [*]C(=[*])[c]1:[cH]:[<br>*]:[c]([*]):[cH]:[cH]<br>]:1 | 0       | 264 out of 323              |



Rotatable Bonds: 6

Acceptors: 7

Donors: 2

## **Model Prediction**

#### Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 2.92

Mahalanobis Distance: 9.56

#### Mahalanobis Distance p-value: 0.232

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

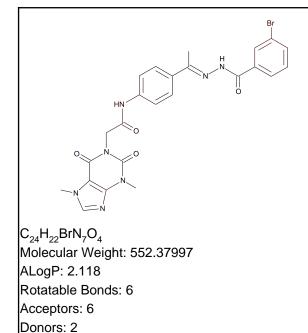
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Name               | COLCHICINE       | Fumaric acid; bis(3-<br>allyloxy-2-hydroxypropyl)<br>ester               | 2-Anthracenesulfonic<br>acid; 9;10-dihydro-1-<br>amino-4-bromo-9;10-<br>dioxo-; sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          |                  | <sup>ور م</sup> ر و مر و مر و مر و مر و مر و مر و م                      | Br the second se |
| Actual Endpoint    | Irritant         | Irritant                                                                 | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Predicted Endpoint | Irritant         | Irritant                                                                 | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Distance           | 0.824            | 0.833                                                                    | 0.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reference          | AJOPAA 31;837;48 | Prehled Prumyslove<br>Toxikologie; Organicke<br>Latky; Marhold; J;646;86 | Prehled Prumyslove<br>Toxikologie; Organicke<br>Latky; Marhold; J. pp<br>1062;86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 4. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]

| Top features for positive contribution |            |                   |       |                             |  |  |
|----------------------------------------|------------|-------------------|-------|-----------------------------|--|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score | Irritant in training<br>set |  |  |
|                                        |            | ·                 | •     | ·                           |  |  |
|                                        |            |                   |       |                             |  |  |
|                                        |            |                   |       |                             |  |  |
|                                        |            |                   |       |                             |  |  |

| FCFP_12     | 1747237384  | (*][c]1:[*]:[cH]:<br>n:1                            | 0.208        | 44 out of 44                |
|-------------|-------------|-----------------------------------------------------|--------------|-----------------------------|
| FCFP_12     | -124655670  | (*][c](:[*]):[cH]:n:[<br>*]                         | 0.2          | 16 out of 16                |
| FCFP_12     | 1175665944  | (']CC(=0)N[c](:[cH]:[<br>']):[cH]:[']               | 0.198        | 14 out of 14                |
|             | Top Fea     | tures for negative of                               | contribution |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                   | Score        | Irritant in training<br>set |
| FCFP_12     | -1549163031 | [']N(['])C(=O)[c](['<br>]):[']                      | -0.623       | 16 out of 38                |
| FCFP_12     | -453677277  | (*][C][(*]):[CH]:[CH]:[CH]:[CH]:[CH]:[CH]:[CH]:[CH] | 0            | 264 out of 323              |

| FCFP_12 | -773983804 |                                            | 0 | 102 out of 121 |
|---------|------------|--------------------------------------------|---|----------------|
|         |            | [*]N[c]1:[cH]:[*]:[c]<br>([*]):[cH]:[cH]:1 |   |                |



# **Model Prediction**

#### Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.05

Mahalanobis Distance: 10.4

#### Mahalanobis Distance p-value: 0.0308

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

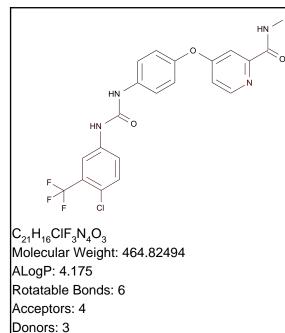
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Name               | 4;4'-DIAMINO-1;1'-<br>DIANTHRIMIDE                                     | 5-NORBORNENE-2;3-<br>DICARBOXYLIC ACID;<br>1;4;5;6;7;7-<br>HEXACHLORO- | COLCHICINE       |
|--------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------|
| Structure          | NH 2<br>NH 2<br>HN 4th Charles And | OHCI CI<br>OHCI CI<br>OHCI CI<br>CI<br>CI<br>CI<br>CI                  |                  |
| Actual Endpoint    | Irritant                                                               | Irritant                                                               | Irritant         |
| Predicted Endpoint | Irritant                                                               | Irritant                                                               | Irritant         |
| Distance           | 0.821                                                                  | 0.826                                                                  | 0.848            |
| Reference          | 28ZPAK-;125;72                                                         | 28ZPAK-;92;72                                                          | AJOPAA 31:837:48 |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 4. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]

|            |                              |            | Top features for positive contribution |  |  |  |  |  |
|------------|------------------------------|------------|----------------------------------------|--|--|--|--|--|
| Bit/Smiles | Feature Structure            | Score      | Irritant in training<br>set            |  |  |  |  |  |
| 1747237384 | [*][c]1:[*]:[*]:[cH]:<br>n:1 | 0.208      | 44 out of 44                           |  |  |  |  |  |
| -          |                              | 1747237384 | 1747237384                             |  |  |  |  |  |

| FCFP_12     | 1175665944  | Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr                                                                                                                     | 0.198        | 14 out of 14             |
|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| FCFP_12     | -1539132615 | [*]n1:[*]:[*]:[c]([*]<br>):[c]:1C(=[*])[*]                                                                                                                                   | 0.197        | 13 out of 13             |
|             | Top Fea     | tures for negative of                                                                                                                                                        | contribution |                          |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                                                                                            | Score        | Irritant in training set |
| FCFP_12     | -1549163031 | Br<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>0<br>N<br>0<br>0<br>N<br>0<br>0<br>N<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -0.623       | 16 out of 38             |
| FCFP_12     | 991735244   | <sup>N</sup><br><sup>N</sup><br>[*][c] <sup>1</sup> ![cH]:[cH]<br>:[cH]:[cH]:1                                                                                               | 0            | 237 out of 291           |
| FCFP_12     | -1205069278 | Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr                                                                                                                     | 0            | 4 out of 5               |

# Sorafenib



# **Model Prediction**

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.04

Mahalanobis Distance: 6.28

#### Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

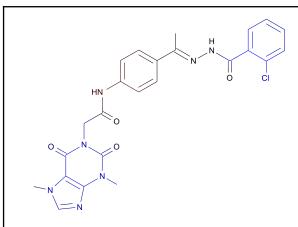
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Ocular\_Irritancy\_None\_vs\_Irritant

| Structural Similar Compounds |                                    |                                          |                                                                        |  |
|------------------------------|------------------------------------|------------------------------------------|------------------------------------------------------------------------|--|
| Name                         | BENZANILIDE;2';2'''-<br>DITHIOBIS- | 4;4'-DIAMINO-1;1'-<br>DIANTHRIMIDE       | 5-NORBORNENE-2;3-<br>DICARBOXYLIC ACID;<br>1;4;5;6;7;7-<br>HEXACHLORO- |  |
| Structure                    |                                    | HN MH 2<br>HN MH 2<br>HN MH 2<br>HN MH 2 |                                                                        |  |
| Actual Endpoint              | Non-Irritant                       | Irritant                                 | Irritant                                                               |  |
| Predicted Endpoint           | Non-Irritant                       | Irritant                                 | Irritant                                                               |  |
| Distance                     | 0.743                              | 0.791                                    | 0.801                                                                  |  |
| Reference                    | 28ZPAK-;173;72                     | 28ZPAK-;125;72                           | 28ZPAK-;92;72                                                          |  |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

| Top features for positive contribution |            |                                       |       |                          |  |
|----------------------------------------|------------|---------------------------------------|-------|--------------------------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure                     | Score | Irritant in training set |  |
| FCFP_12                                | 1747237384 | FF CI<br>[*][c]1:[*]:[*]:[cH]:<br>n:1 | 0.208 | 44 out of 44             |  |
|                                        |            |                                       |       |                          |  |

| FCFP_12     | -124655670  | [*][c](:[*]):[cH]:n:[<br>*]                                                        | 0.2    | 16 out of 16                |
|-------------|-------------|------------------------------------------------------------------------------------|--------|-----------------------------|
| FCFP_12     | -1539132615 |                                                                                    | 0.197  | 13 out of 13                |
|             |             | ures for negative o                                                                |        |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                  | Score  | Irritant in training<br>set |
| FCFP_12     | -747629521  | [']N[6]f <sup>2</sup> [cH]:[cH]:[c<br>](O[c](:"]):[1):[c<br>H]:[cH]:1              | -0.268 | 1 out of 2                  |
| FCFP_12     | 702861189   | [*]N[1]1[cH]:[cH]:[c<br>](O[c]2:[cH]:[cH]:[*<br>]:[c]([*]):[cH]:2):[<br>cH]:[cH]:1 | -0.268 | 1 out of 2                  |
| FCFP_12     | -773983804  | [*]N[c]1:[cH]:[*]:[c]<br>([*]):[cH]:[cH]:1                                         | 0      | 102 out of 121              |



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.174

Enrichment: 0.539

Bayesian Score: -12

Mahalanobis Distance: 12.6

#### Mahalanobis Distance p-value: 0.000729

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

### Structural Similar Compounds

| Name               | Bicalutamide                                                              | Carbenicillin                                                             | Glipizide                                                                 |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | HN and C A A A A A A A A A A A A A A A A A A                              |                                                                           |                                                                           |
| Actual Endpoint    | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Predicted Endpoint | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Distance           | 0.658                                                                     | 0.665                                                                     | 0.678                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]

| Top features for positive contribution |            |                                  |       |                               |
|----------------------------------------|------------|----------------------------------|-------|-------------------------------|
| Fingerprint                            | Bit/Smiles | Feature Structure                | Score | Carcinogen in<br>training set |
| ECFP_12                                | -177077903 | (*)N(c](:[cH]:[*])):[c<br>H]:[*] | 0.529 | 6 out of 10                   |
|                                        |            | ·                                | •     | ·                             |

| ECFP_12     | -1236483485 | [*]<br>[*]<br>[*]<br>[*]<br>[*]          | 0.46   | 9 out of 17                   |
|-------------|-------------|------------------------------------------|--------|-------------------------------|
| ECFP_12     | 888054369   | ([*]):[cH]:[cH]:1                        | 0.454  | 5 out of 9                    |
|             | Top Fea     | tures for negative o                     |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                        | Score  | Carcinogen in<br>training set |
| ECFP_12     | 1337040050  | [*]C(=[*])[C](:[CH]:[<br>*]):[C]([*])[*] | -1.84  | 0 out of 17                   |
| ECFP_12     | 1335691903  | [*][c](:[*]):[c](CI):<br>[cH]:[*]        | -1.11  | 2 out of 26                   |
| ECFP_12     | 1641317964  | (*)[c]1:[*]:[cH]:[cH]<br>:[cH]:[c]:1Cl   | -0.929 | 1 out of 13                   |

C<sub>24</sub>H<sub>22</sub>ClN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.187

Enrichment: 0.582

Bayesian Score: -8.96

Mahalanobis Distance: 18.3

### Mahalanobis Distance p-value: 1.54e-016

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

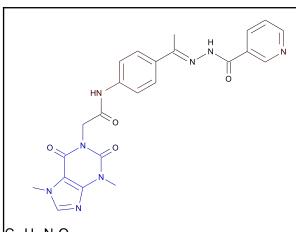
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

### **Structural Similar Compounds**

| Name               | Bicalutamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbenicillin                                                             | Glipizide                                                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | HN and The Real Provide Action of the Real Provi |                                                                           |                                                                           |
| Actual Endpoint    | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Predicted Endpoint | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Distance           | 0.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.665                                                                     | 0.678                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]

|             | Top features for positive contribution |                             |       |                               |  |  |
|-------------|----------------------------------------|-----------------------------|-------|-------------------------------|--|--|
| Fingerprint | Bit/Smiles                             | Feature Structure           | Score | Carcinogen in<br>training set |  |  |
| ECFP_12     | -177077903                             | [*]N[c](:[cH]:[*]):[cH]:[*] | 0.529 | 6 out of 10                   |  |  |

| ECFP_12     | -1236483485 | [*]C(=[*])N[c](:[*]):                                 | 0.46   | 9 out of 17                   |
|-------------|-------------|-------------------------------------------------------|--------|-------------------------------|
| ECFP_12     | 1435111106  | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[c]([*]):[c<br>H]:1 | 0.445  | 3 out of 5                    |
|             |             | tures for negative o                                  |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                     | Score  | Carcinogen in<br>training set |
| ECFP_12     | 99947387    | [*]:[c](:[*])Cl                                       | -0.817 | 8 out of 62                   |
| ECFP_12     | -176494269  | [*]:[cH]:[c](CI):[cH]<br>:[*]                         | -0.714 | 5 out of 36                   |
| ECFP_12     | 577592657   | [*][c]1:[*]:[cH]:[cH]<br>:[c](CI):[cH]:1              | -0.567 | 4 out of 25                   |



C<sub>23</sub>H<sub>22</sub>N<sub>8</sub>O<sub>4</sub> Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.246

Enrichment: 0.764

Bayesian Score: -3.06

Mahalanobis Distance: 12.9

#### Mahalanobis Distance p-value: 0.000226

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# Structural Similar Compounds

| Name               | Budesonide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glipizide                                                                 | Polythiazide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          | HO to the total of |                                                                           | Clauder of the state of the sta |
| Actual Endpoint    | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Predicted Endpoint | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distance           | 0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.717                                                                     | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]

| Top features for positive contribution |            |                                 |       |                               |  |
|----------------------------------------|------------|---------------------------------|-------|-------------------------------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure               | Score | Carcinogen in<br>training set |  |
| ECFP_12                                | -177077903 | (*)N(c)(:[cH]:[*]):[c<br>H]:[*] | 0.529 | 6 out of 10                   |  |
|                                        |            |                                 |       |                               |  |

| ECFP_12     | -1236483485 | [*]C(=[*])N[c](:[*]):     | 0.46         | 9 out of 17                   |
|-------------|-------------|---------------------------|--------------|-------------------------------|
| ECFP_12     | 888054369   | ([*]):[cH]:[cH]:1         | 0.454        | 5 out of 9                    |
|             | Top Fea     | tures for negative of     | contribution |                               |
| Fingerprint | Bit/Smiles  | Feature Structure         | Score        | Carcinogen in<br>training set |
| ECFP_12     | -813242890  | [*]n1:[*]:[c]:1C(=[*])[*] | -0.485       | 0 out of 2                    |
| ECFP_12     | 1997021792  | (*]:[cH]:[cH]:[*<br>]     | -0.296       | 36 out of 156                 |
| ECFP_12     | 866343404   |                           | -0.281       | 4 out of 18                   |

HN HN  $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997 ALogP: 2.118 Rotatable Bonds: 6 Acceptors: 6

### **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.223

Donors: 2

Enrichment: 0.691

Bayesian Score: -4.88

Mahalanobis Distance: 13.6

### Mahalanobis Distance p-value: 1.11e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

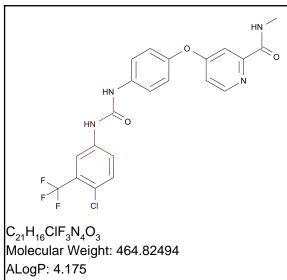
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# Structural Similar Compounds

| Name               | Carbenicillin                                                             | Bicalutamide                                                              | Glipizide                                                                 |  |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Structure          |                                                                           | HN AN CONTRACTOR                                                          |                                                                           |  |
| Actual Endpoint    | Non-Carcinogen                                                            | Carcinogen                                                                | Non-Carcinogen                                                            |  |
| Predicted Endpoint | Non-Carcinogen                                                            | Carcinogen                                                                | Non-Carcinogen                                                            |  |
| Distance           | 0.684                                                                     | 0.717                                                                     | 0.730                                                                     |  |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |  |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: -177935549: [\*]:[cH]:[c](Br):[cH]:[\*]

| Top features for positive contribution |                   |       |                               |  |  |
|----------------------------------------|-------------------|-------|-------------------------------|--|--|
| Bit/Smiles                             | Feature Structure | Score | Carcinogen in<br>training set |  |  |
| 459826767                              |                   | 0.613 | 2 out of 2                    |  |  |
|                                        |                   |       | 459826767 0.613               |  |  |

| ECFP_12     | -302078100 | Br<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N  | 0.575  | 3 out of 4                    |
|-------------|------------|----------------------------------------------------------------------|--------|-------------------------------|
| ECFP_12     | -177077903 | [*]N[c](:[cH]:[*]):[c<br>H]:[*]                                      | 0.529  | 6 out of 10                   |
|             |            | atures for negative o                                                |        |                               |
| Fingerprint | Bit/Smiles | Feature Structure                                                    | Score  | Carcinogen in<br>training set |
| ECFP_12     | -813242890 | [*]n1:[r]:[c]:(c]:([*])<br>):[c]:1C(=[*])[*]                         | -0.485 | 0 out of 2                    |
| ECFP_12     | 2007300961 | [*][C] <sup>1</sup> :[C] <sup>1</sup> :[C]([*]):<br>[CH]:[CH]:[CH]:1 | -0.426 | 7 out of 36                   |
| ECFP_12     | 1997021792 | [*]:[cH]:[cH]:[cH]:[*                                                | -0.296 | 36 out of 156                 |

# Sorafenib



Rotatable Bonds: 6

Acceptors: 4

Donors: 3

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.236

Enrichment: 0.734

Bayesian Score: -3.76

Mahalanobis Distance: 12.2

### Mahalanobis Distance p-value: 0.00229

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

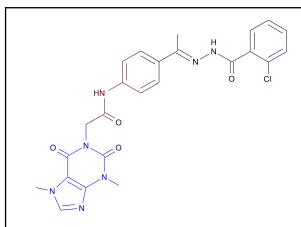
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Rat\_Female\_FDA\_None\_vs\_Carcinogen

### Structural Similar Compounds


| Name               | Glimepride                                                                | Glyburide                                                                 | Fluvastatin                                                               |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | HH<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H            | HN CO                                                                     |                                                                           |
| Actual Endpoint    | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Predicted Endpoint | Non-Carcinogen                                                            | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Distance           | 0.620                                                                     | 0.635                                                                     | 0.635                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Co                             | Feature Contribution |                                                          |       |                               |  |  |
|----------------------------------------|----------------------|----------------------------------------------------------|-------|-------------------------------|--|--|
| Top features for positive contribution |                      |                                                          |       |                               |  |  |
| Fingerprint                            | Bit/Smiles           | Feature Structure                                        | Score | Carcinogen in<br>training set |  |  |
| ECFP_12                                | -970385855           | [*]N[c]3:[cH]:[*]:[c]<br>([*])([cH]:1)C(<br>[*])([*])[*] | 0.613 | 2 out of 2                    |  |  |
|                                        |                      |                                                          |       |                               |  |  |

| ECFP_12     | -177077903  | [*]N[C](:[CH]:[*]):[C<br>H]:[*]        | 0.529        | 6 out of 10                   |
|-------------|-------------|----------------------------------------|--------------|-------------------------------|
| ECFP_12     | -1236483485 | FFF CI<br>[*]C(=[*])N[c](:[*]):<br>[*] | 0.46         | 9 out of 17                   |
|             | Top Fea     | tures for negative of                  | contribution |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                      | Score        | Carcinogen in<br>training set |
| ECFP_12     | 1335691903  | [*][c](:[*]):[c](CI):<br>[cH]:[*]      | -1.11        | 2 out of 26                   |
| ECFP_12     | 99947387    | PF CI<br>[*]:[c](:[*])CI               | -0.817       | 8 out of 62                   |
| ECFP_12     | 1413420509  |                                        | -0.661       | 0 out of 3                    |



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.199

Enrichment: 0.594

Bayesian Score: -7.44

Mahalanobis Distance: 15.3

#### Mahalanobis Distance p-value: 1.43e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

### Structural Similar Compounds

| Structural Similar Compounds |                                                                           |                                                                           |                                                                           |  |  |
|------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Name                         | Bicalutamide                                                              | Carbenicillin                                                             | Glipizide                                                                 |  |  |
| Structure                    | HO HO HIN THE F                                                           |                                                                           |                                                                           |  |  |
| Actual Endpoint              | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |  |  |
| Predicted Endpoint           | Carcinogen                                                                | Non-Carcinogen                                                            | Non-Carcinogen                                                            |  |  |
| Distance                     | 0.637                                                                     | 0.657                                                                     | 0.658                                                                     |  |  |
| Reference                    | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |  |  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Contribution                   |            |                                               |       |                               |  |
|----------------------------------------|------------|-----------------------------------------------|-------|-------------------------------|--|
| Top features for positive contribution |            |                                               |       |                               |  |
| Fingerprint                            | Bit/Smiles | Feature Structure                             | Score | Carcinogen in<br>training set |  |
| SCFP_6                                 | -347048986 | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 | 0.615 | 5 out of 7                    |  |
|                                        |            |                                               |       |                               |  |

| SCFP_6      | 814408713   | (°]CC(=0)N[c]1:[cH]:[<br>cH]:[c]((°)):[cH]:[c<br>H]:1 | 0.603  | 2 out of 2                    |
|-------------|-------------|-------------------------------------------------------|--------|-------------------------------|
| SCFP_6      | 2097618059  | (']CC(=0)N[c](:[cH]:[<br>']):[cH]:[']                 | 0.437  | 7 out of 13                   |
|             |             | tures for negative of                                 |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                     | Score  | Carcinogen in<br>training set |
| SCFP_6      | 399659969   |                                                       | -0.578 | 1 out of 8                    |
| SCFP_6      | -2121589288 | [*]CN1C(=[*])[*]:[c](<br>:[*])N(C)C1=O                | -0.496 | 0 out of 2                    |
| SCFP_6      | 1445006032  | (*)CN1C(=[*])(*](c)2:<br>[*]:(*]:n(*]):[c]:2:<br>C1=0 | -0.496 | 0 out of 2                    |

C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.17

Enrichment: 0.508

Bayesian Score: -9.69

Mahalanobis Distance: 15.7

### Mahalanobis Distance p-value: 2.82e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# Structural Similar Compounds

| Name               | Bicalutamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbenicillin                                                             | Glipizide                                                                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | HN and The Real Provide Action of the Real Provi |                                                                           |                                                                           |
| Actual Endpoint    | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Predicted Endpoint | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                            | Non-Carcinogen                                                            |
| Distance           | 0.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.657                                                                     | 0.659                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Contribution                   |            |                             |       |                               |  |
|----------------------------------------|------------|-----------------------------|-------|-------------------------------|--|
| Top features for positive contribution |            |                             |       |                               |  |
| Fingerprint                            | Bit/Smiles | Feature Structure           | Score | Carcinogen in<br>training set |  |
| SCFP_6                                 | -347048986 | ["]C(=[*])N[c]1:[cH]:[cH]:1 | 0.615 | 5 out of 7                    |  |
|                                        | •          |                             |       |                               |  |

| SCFP_6      | 2097618059 | [']CC(=0)N[e](:[cH]:[<br>'']):[cH]:[']                        | 0.437        | 7 out of 13                   |
|-------------|------------|---------------------------------------------------------------|--------------|-------------------------------|
| SCFP_6      | 698322229  |                                                               | 0.415        | 1 out of 1                    |
|             | Top Fea    | tures for negative of                                         | contribution |                               |
| Fingerprint | Bit/Smiles | Feature Structure                                             | Score        | Carcinogen in<br>training set |
| SCFP_6      | 52043406   | [*][c]1:[cH]:[cH]:[cH]:1                                      | -0.674       | 0 out of 3                    |
| SCFP_6      | 399659969  | [']CN(C(=['])['])C(=[<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -0.578       | 1 out of 8                    |
| SCFP_6      | 2144809592 | [*]N([*]):[c]:1[*]                                            | -0.496       | 0 out of 2                    |

 $\begin{array}{c} & & H \\ & H \\ & & H \\ & H$ 

Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.259

Enrichment: 0.775

Bayesian Score: -3.96

Mahalanobis Distance: 16.6

### Mahalanobis Distance p-value: 2.55e-010

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# Structural Similar Compounds

| Name               | Glipizide                                                                 | Budesonide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polythiazide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure          |                                                                           | HO to the total of | Clark M And |
| Actual Endpoint    | Non-Carcinogen                                                            | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Predicted Endpoint | Non-Carcinogen                                                            | Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Distance           | 0.694                                                                     | 0.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Co  | Feature Contribution                   |                                               |       |                               |  |  |
|-------------|----------------------------------------|-----------------------------------------------|-------|-------------------------------|--|--|
|             | Top features for positive contribution |                                               |       |                               |  |  |
| Fingerprint | Bit/Smiles                             | Feature Structure                             | Score | Carcinogen in<br>training set |  |  |
| SCFP_6      | -347048986                             | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 | 0.615 | 5 out of 7                    |  |  |
|             |                                        |                                               |       |                               |  |  |

| SCFP_6      | 814408713   | (')CC(=O)N[c]1:[cH]:[<br>cH]:[c]((')):[cH]:[c<br>H]:1 | 0.603  | 2 out of 2                    |
|-------------|-------------|-------------------------------------------------------|--------|-------------------------------|
| SCFP_6      | 2097618059  | (']CC(=O)N[c](:[cH]:[<br>']):[cH]:[']                 | 0.437  | 7 out of 13                   |
|             |             | tures for negative of                                 |        |                               |
| Fingerprint | Bit/Smiles  | Feature Structure                                     | Score  | Carcinogen in<br>training set |
| SCFP_6      | 399659969   | (']CN(C(=['])['])C(=[<br>")][']                       | -0.578 | 1 out of 8                    |
| SCFP_6      | 2144809592  | [*]N([*]):[c]:1[*]                                    | -0.496 | 0 out of 2                    |
| SCFP_6      | -1501735365 | ()CN1C(=0)N(C)(e 2:n<br>:[cH]:n((')):[c]:2C1<br>=[']  | -0.496 | 0 out of 2                    |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997
ALogP: 2.118
Rotatable Bonds: 6

Acceptors: 6

Donors: 2

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.23

Enrichment: 0.687

Bayesian Score: -5.5

Mahalanobis Distance: 16.3

### Mahalanobis Distance p-value: 1.33e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

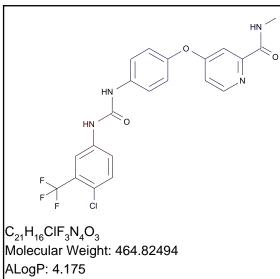
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# Structural Similar Compounds

| Name               | Carbenicillin Bicalutamide                                                |                                                                           | Glipizide                                                                 |
|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          |                                                                           | F C C C C C C C C C C C C C C C C C C C                                   |                                                                           |
| Actual Endpoint    | Non-Carcinogen                                                            | Carcinogen                                                                | Non-Carcinogen                                                            |
| Predicted Endpoint | Non-Carcinogen                                                            | Carcinogen                                                                | Non-Carcinogen                                                            |
| Distance           | 0.677                                                                     | 0.699                                                                     | 0.712                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |


# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Co                             | Feature Contribution |                                       |       |                               |  |  |
|----------------------------------------|----------------------|---------------------------------------|-------|-------------------------------|--|--|
| Top features for positive contribution |                      |                                       |       |                               |  |  |
| Fingerprint                            | Bit/Smiles           | Feature Structure                     | Score | Carcinogen in<br>training set |  |  |
| SCFP_6                                 | -347048986           | C=[*])N[c]1:[cH]:<br>[cH]:[cH]:[cH]:1 | 0.615 | 5 out of 7                    |  |  |
|                                        |                      |                                       |       |                               |  |  |

| SCFP_6      | 814408713   | Br<br>NH-<br>C-<br>N-<br>N-<br>C-<br>C-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.603        | 2 out of 2                    |
|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|
| SCFP_6      | 2097618059  | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.437        | 7 out of 13                   |
|             | Top Fea     | tures for negative of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | contribution | l                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Score        | Carcinogen in<br>training set |
| SCFP_6      | 399659969   | Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.578       | 1 out of 8                    |
| SCFP_6      | -1501735365 | Br<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>0<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | -0.496       | 0 out of 2                    |
| SCFP_6      | -2121589288 | Br<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.496       | 0 out of 2                    |

# Sorafenib



Rotatable Bonds: 6

Acceptors: 4

Donors: 3

# **Model Prediction**

#### Prediction: Non-Carcinogen

Probability: 0.293

Enrichment: 0.878

Bayesian Score: -2.4

Mahalanobis Distance: 17.6

### Mahalanobis Distance p-value: 1.1e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

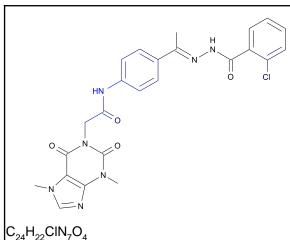
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Rat\_Male\_FDA\_None\_vs\_Carcinogen

### Structural Similar Compounds


| Name               | Glyburide                                                                 | Glimepride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluvastatin                                                               |
|--------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Structure          | HILL CO                                                                   | A Contraction of the second se |                                                                           |
| Actual Endpoint    | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carcinogen                                                                |
| Predicted Endpoint | Non-Carcinogen                                                            | Non-Carcinogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carcinogen                                                                |
| Distance           | 0.593                                                                     | 0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.615                                                                     |
| Reference          | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | US FDA (Centre for Drug<br>Eval.& Res./Off. Testing &<br>Res.) Sept. 1997 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

| Feature Contribution<br>Top features for positive contribution |            |                                               |       |                               |  |  |
|----------------------------------------------------------------|------------|-----------------------------------------------|-------|-------------------------------|--|--|
| Fingerprint                                                    | Bit/Smiles | Feature Structure                             | Score | Carcinogen in<br>training set |  |  |
| SCFP_6                                                         | -347048986 | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 | 0.615 | 5 out of 7                    |  |  |
|                                                                |            | l                                             |       |                               |  |  |

| SCFP_6      | -754059116                             | [*]O[c]1:[cH]:[*]:n:[<br>cH]:[cH]:1              | 0.415  | 1 out of 1                    |  |  |
|-------------|----------------------------------------|--------------------------------------------------|--------|-------------------------------|--|--|
| SCFP_6      | -347281112                             | [*]N[c]:[c]:[c]:[c]:[c]:[c]:[c]:[c]:[c]:[c]:     | 0.273  | 2 out of 4                    |  |  |
|             | Top Features for negative contribution |                                                  |        |                               |  |  |
| Fingerprint | Bit/Smiles                             | Feature Structure                                | Score  | Carcinogen in<br>training set |  |  |
| SCFP_6      | -827073191                             | (*)[CH]:[CH]:[1]                                 | -0.674 | 0 out of 3                    |  |  |
| SCFP_6      | -488587948                             | [*]:[cH]:[cH]:[cH<br>]:1                         | -0.496 | 0 out of 2                    |  |  |
| SCFP_6      | -975241316                             | [*][c]1.{cH]:[cH]:[c]<br>(O[c](:[cH]:[*]):[cH]:1 | -0.496 | 0 out of 2                    |  |  |



Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: Non-Irritant

Probability: 0.0481

Enrichment: 0.0522

Bayesian Score: -6.29

Mahalanobis Distance: 10.7

#### Mahalanobis Distance p-value: 0.0067

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

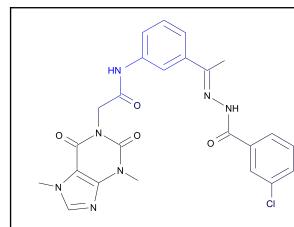
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

### Structural Similar Compounds

| Structural Simila  | Structural Similar Compounds                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Name               | 2-Anthracenesulfonic<br>acid, 1-amino-9,10-<br>dihydro-9,10-dioxo-4-<br>(2,4,6 -trimethylanilino)-,<br>monosodium saltPregna-1,4-diene-3,20-<br>dione, 21-(acetyloxy)-11-<br>hydroxy-6-methyl-17- (1-<br>oxopropoxy)-, (6-alpha,11-<br>beta)- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzenesulfonic acid,<br>2,2'-(4,4'-<br>biphenylylenedivinylene)d<br>i-, disod ium salt                                   |  |  |  |  |
| Structure          | H <sub>2</sub> N <sub>4</sub> , H <sup>4</sup><br>O II<br>O II<br>O II<br>O II<br>O II<br>O II<br>O II<br>O I                                                                                                                                 | Of Contraction of the second s |                                                                                                                           |  |  |  |  |
| Actual Endpoint    | Irritant                                                                                                                                                                                                                                      | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Irritant                                                                                                                  |  |  |  |  |
| Predicted Endpoint | Non-Irritant                                                                                                                                                                                                                                  | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Non-Irritant                                                                                                              |  |  |  |  |
| Distance           | 0.719                                                                                                                                                                                                                                         | 0.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.838                                                                                                                     |  |  |  |  |
| Reference          | 85JCAE "Prehled<br>Prumyslove Toxikologie;<br>Organicke Latky,"<br>Marhold, J., Prague,<br>Czechoslovakia,<br>Avicenum, 1986<br>Volume(issue)/page/year:<br>-,1327,1986                                                                       | YACHDS Yakuri to Chiryo.<br>Pharmacology and<br>Therapeutics. (Raifu<br>Saiensu Shup pan K.K., 2-<br>5-13, Yaesu, Chuo-ku,<br>Tokyo 104, Japan) V.1-<br>1972- Volume(issue)<br>/page/year: 19,3103,1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MVCRB3 MVC-Report.<br>(Stockholm, Sweden)<br>No.1-2, 1972-73.<br>Discontinued. Volu<br>me(issue)/page/year:<br>2,193,1973 |  |  |  |  |

# Model Applicability


Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

- All properties and OPS components are within expected ranges. 1.
- Unknown FCFP 2 feature: 136150461: [\*]:n(:[\*])C 2.

| Top features for positive contribution |            |                   |       |                             |  |  |
|----------------------------------------|------------|-------------------|-------|-----------------------------|--|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score | Irritant in training<br>set |  |  |
|                                        |            |                   | -1    |                             |  |  |
|                                        |            |                   |       |                             |  |  |

| FCFP_12     | -1986158408 |                                                                | 0.0821       | 13 out of 13                |
|-------------|-------------|----------------------------------------------------------------|--------------|-----------------------------|
| FCFP_12     | -1539132615 | [*]n1:[*]:[c]:([*]<br>):[c]:1C(=[*])[*]                        | 0.0795       | 9 out of 9                  |
| FCFP_12     | -1549103449 | [*]NC(=O)[c](:[*]):[*                                          | 0.0734       | 5 out of 5                  |
|             | Top Feat    | tures for negative of                                          | contribution |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                              | Score        | Irritant in training<br>set |
| FCFP_12     | 1175665944  | ( <sup>1</sup> )Cc(=0)N[c](:[cH];[<br>));[cH];[ <sup>1</sup> ] | -1.02        | 2 out of 8                  |
| FCFP_12     | -1838187238 | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[':[cH]:[cH]:1                   | -0.692       | 5 out of 12                 |

| FCFP_12 | -451043714 |                                                       | -0.65 | 0 out of 1 |
|---------|------------|-------------------------------------------------------|-------|------------|
|         |            | [*]CC(=0)N[c]1:[cH]:[<br>cH]:[c]((*)]:[cH]:[c<br>H]:1 |       |            |



 $C_{24}H_{22}CIN_7O_4$ Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: Non-Irritant

Probability: 0.00599

Enrichment: 0.0065

Bayesian Score: -7.3

Mahalanobis Distance: 10.7

#### Mahalanobis Distance p-value: 0.0067

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Structural | Similar  | Compounds |
|------------|----------|-----------|
| Siluciulai | Siiiiiai | Compounds |

| Structural Simila  | Structural Similar Compounds                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Name               | 2-Anthracenesulfonic<br>acid, 1-amino-9,10-<br>dihydro-9,10-dioxo-4-<br>(2,4,6 -trimethylanilino)-,<br>monosodium salt                                                  | Pregna-1,4-diene-3,20-<br>dione, 21-(acetyloxy)-11-<br>hydroxy-6-methyl-17- (1-<br>oxopropoxy)-, (6-alpha,11-<br>beta)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzenesulfonic acid,<br>2,2'-(4,4'-<br>biphenylylenedivinylene)d<br>i-, disod ium salt                                   |  |  |  |  |
| Structure          |                                                                                                                                                                         | of<br>of<br>whether the<br>here to<br>here |                                                                                                                           |  |  |  |  |
| Actual Endpoint    | Irritant                                                                                                                                                                | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Irritant                                                                                                                  |  |  |  |  |
| Predicted Endpoint | Non-Irritant                                                                                                                                                            | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Non-Irritant                                                                                                              |  |  |  |  |
| Distance           | 0.719                                                                                                                                                                   | 0.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.841                                                                                                                     |  |  |  |  |
| Reference          | 85JCAE "Prehled<br>Prumyslove Toxikologie;<br>Organicke Latky,"<br>Marhold, J., Prague,<br>Czechoslovakia,<br>Avicenum, 1986<br>Volume(issue)/page/year:<br>-,1327,1986 | YACHDS Yakuri to Chiryo.<br>Pharmacology and<br>Therapeutics. (Raifu<br>Saiensu Shup pan K.K., 2-<br>5-13, Yaesu, Chuo-ku,<br>Tokyo 104, Japan) V.1-<br>1972- Volume(issue)<br>/page/year: 19,3103,1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MVCRB3 MVC-Report.<br>(Stockholm, Sweden)<br>No.1-2, 1972-73.<br>Discontinued. Volu<br>me(issue)/page/year:<br>2,193,1973 |  |  |  |  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Top features for positive contribution |            |                   |       |                             |  |  |
|----------------------------------------|------------|-------------------|-------|-----------------------------|--|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score | Irritant in training<br>set |  |  |
|                                        |            |                   |       |                             |  |  |
|                                        |            |                   |       |                             |  |  |

| FCFP_12     | -1986158408 | [']N(['])C(=0)N(['])[                                             | 0.0821       | 13 out of 13                |
|-------------|-------------|-------------------------------------------------------------------|--------------|-----------------------------|
| FCFP_12     | -1539132615 | [*]n1:[*]:[*]:[c]([*]<br>):[c]:1C(=[*])[*]                        | 0.0795       | 9 out of 9                  |
| FCFP_12     | -1410049896 | [*]N([*])[c]1:n:[*]:[<br>*]:[c]:1[*]                              | 0.0734       | 5 out of 5                  |
|             | Top Feat    | tures for negative                                                | contribution |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                                 | Score        | Irritant in training<br>set |
| FCFP_12     | 1175665944  | [']CC(=0)N[c](:[cH];[<br>]);[cH];[']                              | -1.02        | 2 out of 8                  |
| FCFP_12     | -1700637232 | [*]C(=[ <sup>N</sup> ))[c]1:[cH]:[<br>cH]:[cH]:[c](CI):[cH<br>]:1 | -0.846       | 1 out of 4                  |

| FCFP_12 | -1838187238 | (*)C(=[*])N[c]1:[cH]:<br>[cH]:[cH]:[cH]:1 | -0.692 | 5 out of 12 |
|---------|-------------|-------------------------------------------|--------|-------------|
|         |             |                                           |        |             |



Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

# **Model Prediction**

Prediction: Non-Irritant

Probability: 0.427

Enrichment: 0.464

Bayesian Score: -4.74

Mahalanobis Distance: 10.7

#### Mahalanobis Distance p-value: 0.00888

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Structural Similar Compounds |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                                      |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Name                         | 2-Anthracenesulfonic<br>acid, 1-amino-9,10-<br>dihydro-9,10-dioxo-4-<br>(2,4,6 -trimethylanilino)-,<br>monosodium salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pregna-1,4-diene-3,20-<br>dione, 21-(acetyloxy)-11-<br>hydroxy-6-methyl-17- (1-<br>oxopropoxy)-, (6-alpha,11-<br>beta)-                                                                                 | Benzenesulfonamide, 4-<br>amino-N-(5,6-dimethoxy-4-<br>pyrimidinyl)- |
| Structure                    | H <sub>2</sub> N <sub>rt</sub><br>- OSI <sup>N</sup><br>tube<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table<br>table | of<br>of<br>of<br>the<br>the<br>the<br>the<br>the<br>the<br>the<br>the<br>the<br>the                                                                                                                    | H <sub>2</sub> N<br>O<br>H                                           |
| Actual Endpoint              | Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Irritant                                                                                                                                                                                                | Irritant                                                             |
| Predicted Endpoint           | Non-Irritant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Irritant                                                                                                                                                                                                | Non-Irritant                                                         |
| Distance                     | 0.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.825                                                                                                                                                                                                   | 0.837                                                                |
| Reference                    | 85JCAE "Prehled<br>Prumyslove Toxikologie;<br>Organicke Latky,"<br>Marhold, J., Prague,<br>Czechoslovakia,<br>Avicenum, 1986<br>Volume(issue)/page/year:<br>-,1327,1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YACHDS Yakuri to Chiryo.<br>Pharmacology and<br>Therapeutics. (Raifu<br>Saiensu Shup pan K.K., 2-<br>5-13, Yaesu, Chuo-ku,<br>Tokyo 104, Japan) V.1-<br>1972- Volume(issue)<br>/page/year: 19,3103,1991 | FCTXAV 14,307,76                                                     |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Feature Co  | ntribution |                       |             |                          |
|-------------|------------|-----------------------|-------------|--------------------------|
|             | Top fe     | atures for positive o | ontribution |                          |
| Fingerprint | Bit/Smiles | Feature Structure     | Score       | Irritant in training set |
|             |            | •                     | -           | ·                        |
|             |            |                       |             |                          |
|             |            |                       |             |                          |

| FCFP_12     | -1986158408 |                                               | 0.0821 | 13 out of 13                |
|-------------|-------------|-----------------------------------------------|--------|-----------------------------|
| FCFP_12     | -124655670  | (*][c](:[*]):[cH]:n:[<br>*]                   | 0.0821 | 13 out of 13                |
| FCFP_12     | -1539132615 | [*]n1:[*]:[c]:[c]([*]<br>):[c]:1C(=[*])[*]    | 0.0795 | 9 out of 9                  |
|             |             | tures for negative of                         |        |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                             | Score  | Irritant in training<br>set |
| FCFP_12     | 1175665944  | (')CC(=0)N[c](:[cH]:[<br>')):[cH]:[']         | -1.02  | 2 out of 8                  |
| FCFP_12     | -1838187238 | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 | -0.692 | 5 out of 12                 |

| FCFP_12 | -451043714 |                                                       | -0.65 | 0 out of 1 |
|---------|------------|-------------------------------------------------------|-------|------------|
|         |            | (*)CC(=0)N[c]1:[cH]:[<br>cH]:[c]((*)]:[cH]:[c<br>H]:1 |       |            |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997 ALogP: 2.118 Rotatable Bonds: 6 Acceptors: 6

Donors: 2

# **Model Prediction**

Prediction: Non-Irritant

Probability: 0.0623

Enrichment: 0.0676

Bayesian Score: -6.15

Mahalanobis Distance: 11.1

#### Mahalanobis Distance p-value: 0.00167

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

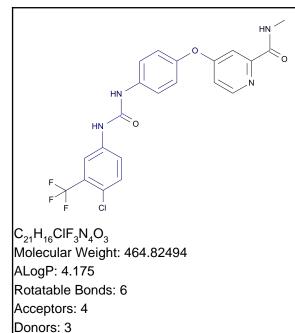
# www.unal.Climilan.Common.unale

| Structural Similar Compounds |                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                         |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                         | 2-Anthracenesulfonic<br>acid, 1-amino-9,10-<br>dihydro-9,10-dioxo-4-<br>(2,4,6 -trimethylanilino)-,<br>monosodium salt                                                  | Benzenesulfonic acid,<br>2,2'-(4,4'-<br>biphenylylenedivinylene)d<br>i-, disod ium salt                                   | Pregna-1,4-diene-3,20-<br>dione, 21-(acetyloxy)-11-<br>hydroxy-6-methyl-17- (1-<br>oxopropoxy)-, (6-alpha,11-<br>beta)-                                                                                 |
| Structure                    | H 2 Num H                                                                                                                                                               |                                                                                                                           | of<br>of<br>of<br>whether<br>of<br>of<br>of<br>of<br>of<br>of<br>of<br>of<br>of<br>of<br>of<br>of<br>of                                                                                                 |
| Actual Endpoint              | Irritant                                                                                                                                                                | Irritant                                                                                                                  | Irritant                                                                                                                                                                                                |
| Predicted Endpoint           | Non-Irritant                                                                                                                                                            | Non-Irritant                                                                                                              | Irritant                                                                                                                                                                                                |
| Distance                     | 0.788                                                                                                                                                                   | 0.840                                                                                                                     | 0.844                                                                                                                                                                                                   |
| Reference                    | 85JCAE "Prehled<br>Prumyslove Toxikologie;<br>Organicke Latky,"<br>Marhold, J., Prague,<br>Czechoslovakia,<br>Avicenum, 1986<br>Volume(issue)/page/year:<br>-,1327,1986 | MVCRB3 MVC-Report.<br>(Stockholm, Sweden)<br>No.1-2, 1972-73.<br>Discontinued. Volu<br>me(issue)/page/year:<br>2,193,1973 | YACHDS Yakuri to Chiryo.<br>Pharmacology and<br>Therapeutics. (Raifu<br>Saiensu Shup pan K.K., 2-<br>5-13, Yaesu, Chuo-ku,<br>Tokyo 104, Japan) V.1-<br>1972- Volume(issue)<br>/page/year: 19,3103,1991 |

# Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

- All properties and OPS components are within expected ranges. 1.
- Unknown FCFP 2 feature: 136150461: [\*]:n(:[\*])C 2.


| Feature Co                             | ntribution |                   |       |                             |
|----------------------------------------|------------|-------------------|-------|-----------------------------|
| Top features for positive contribution |            |                   |       |                             |
| Fingerprint                            | Bit/Smiles | Feature Structure | Score | Irritant in training<br>set |
|                                        |            |                   | -     |                             |
|                                        |            |                   |       |                             |
|                                        |            |                   |       |                             |

| FCFP_12     | -1986158408 | Pr<br>N NH O<br>N NH O<br>N NH O<br>N NH O<br>("IN(("))C(=0)N(("))[<br>"] | 0.0821 | 13 out of 13                |
|-------------|-------------|---------------------------------------------------------------------------|--------|-----------------------------|
| FCFP_12     | -1539132615 | [*]n1 <sup>!</sup> [*]:[*]:[c]:([*]<br>):[c]:1C(=[*])[*]                  | 0.0795 | 9 out of 9                  |
| FCFP_12     | -124685461  | [*]n1:[*]:[*]:n:[cH]:                                                     | 0.0734 | 5 out of 5                  |
|             |             | tures for negative                                                        |        |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                                         | Score  | Irritant in training<br>set |
| FCFP_12     | 1175665944  | Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr<br>Pr                  | -1.02  | 2 out of 8                  |
| FCFP_12     | -1700637232 | [*]C(H]:[c](CI):[cH]:[<br>]:1                                             | -0.846 | 1 out of 4                  |

| FCFP_12 | -1838187238 | Br                                            | -0.692 | 5 out of 12 |
|---------|-------------|-----------------------------------------------|--------|-------------|
|         |             |                                               |        |             |
|         |             |                                               |        |             |
|         |             |                                               |        |             |
|         |             | [*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 |        |             |

# Sorafenib

#### TOPKAT\_Skin\_Irritancy\_None\_vs\_Irritant



#### Model Prediction

Prediction: Non-Irritant

Probability: 0.264

Enrichment: 0.287

Bayesian Score: -5.23

Mahalanobis Distance: 8.27

#### Mahalanobis Distance p-value: 0.791

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

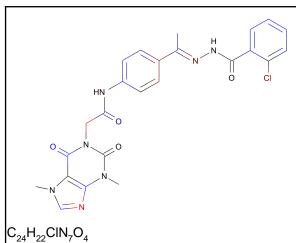
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### Structural Similar Compounds

| Structural Simila  | r Compounds                                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name               | 5-Norbornene-2,3-<br>dicarboxylic acid,<br>1,4,5,6,7,7-hexachloro-                                                                                                     | Benzenesulfonic acid,<br>2,2'-(4,4'-<br>biphenylylenedivinylene)d<br>i-, disod ium salt                                   | Sulfide, bis(4-t-butyl-m-<br>cresyl)-                                                                                                                                                                |
| Structure          | O HCI CI<br>O HCI CI<br>O HCI CI<br>O HCI CI                                                                                                                           |                                                                                                                           | HANN OF HANN OF                                                                                                                                                                                      |
| Actual Endpoint    | Irritant                                                                                                                                                               | Irritant                                                                                                                  | Irritant                                                                                                                                                                                             |
| Predicted Endpoint | Irritant                                                                                                                                                               | Non-Irritant                                                                                                              | Irritant                                                                                                                                                                                             |
| Distance           | 0.844                                                                                                                                                                  | 0.871                                                                                                                     | 0.884                                                                                                                                                                                                |
| Reference          | 85JCAE "Prehled<br>Prumyslove Toxikologie;<br>Organicke Latky,"<br>Marhold, J., Prague,<br>Czechoslovakia,<br>Avicenum, 1986<br>Volume(issue)/page/year:<br>-,581,1986 | MVCRB3 MVC-Report.<br>(Stockholm, Sweden)<br>No.1-2, 1972-73.<br>Discontinued. Volu<br>me(issue)/page/year:<br>2,193,1973 | AMIHBC AMA Archives of<br>Industrial Hygiene and<br>Occupational Medicine.<br>(Chicago, IL) V.2-10,<br>1950-54. For publisher<br>information, see AEHLAU.<br>Volume(issue)/pag e/year:<br>5,311,1952 |

#### Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges. 1.

|             | Top fe     | atures for positive o | ontribution |                             |
|-------------|------------|-----------------------|-------------|-----------------------------|
| Fingerprint | Bit/Smiles | Feature Structure     | Score       | Irritant in training<br>set |
|             |            | •                     | •           | L.                          |
|             |            |                       |             |                             |
|             |            |                       |             |                             |

| FCFP_12     | -124655670  | [*][c](:[*]):[cH]:n:[                                              | 0.0821 | 13 out of 13                |
|-------------|-------------|--------------------------------------------------------------------|--------|-----------------------------|
| FCFP_12     | -1539132615 | [*]n1:[*]:[c]:([*]<br>):[c]:1C(=[*])[*]                            | 0.0795 | 9 out of 9                  |
| FCFP_12     | -1695756380 | FF CI<br>[*]1:[cH]:[cH]:1                                          | 0.0772 | 7 out of 7                  |
|             |             | tures for negative                                                 |        |                             |
| Fingerprint | Bit/Smiles  | Feature Structure                                                  | Score  | Irritant in training<br>set |
| FCFP_12     | -789307649  | [*]<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)<br>(*)        | -1.54  | 0 out of 4                  |
| FCFP_12     | -1838187238 | F <sub>F</sub> CI<br>[*]C(=[*])N[c]1:[cH]:<br>[cH]:[*]:[cH]:[cH]:1 | -0.692 | 5 out of 12                 |

| FCFP_12 | 1294255210 | Ņ                                                                   | -0.486 | 12 out of 22 |
|---------|------------|---------------------------------------------------------------------|--------|--------------|
|         |            |                                                                     |        |              |
|         |            | N                                                                   |        |              |
|         |            | 5- <b>Q</b>                                                         |        |              |
|         |            | F <sup>*</sup> <sub>F</sub> <sup>C</sup> I<br>[*]C(=[*])N[c](:[*]): |        |              |
|         |            | [*]                                                                 |        |              |



Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: 18.3

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 14.6

#### Mahalanobis Distance p-value: 8.91e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### Structural Similar Compounds

| Name                           | Ochratoxin A         | 542            | Salicylazosulfapyridine |
|--------------------------------|----------------------|----------------|-------------------------|
| Structure                      | OH OH CI<br>HO HO CI | AND Enantiomer |                         |
| Actual Endpoint (-log C)       | 4.79932              | 4.79932        | 2.5034                  |
| Predicted Endpoint (-log<br>C) | 3.6353               | 3.6353         | 3.54214                 |
| Distance                       | 0.725                | 0.725          | 0.762                   |
| Reference                      | CPDB                 | CPDB           | CPDB                    |

### Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 4. Unknown ECFP\_2 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 5. Unknown ECFP\_2 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 6. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 7. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]

|           | Top features | for positive contributio | n     |
|-----------|--------------|--------------------------|-------|
| ngerprint | Bit/Smiles   | Feature Structure        | Score |

| ECFP_6      | 655739385    | N NH CI<br>N NH CI<br>N O CI<br>N O CI<br>N NH CI<br>O CI<br>(*]:n:[*] | 0.229  |
|-------------|--------------|------------------------------------------------------------------------|--------|
| ECFP_6      | 1559650422   |                                                                        | 0.203  |
| ECFP_6      | -817402818   |                                                                        | 0.129  |
|             | Top Features | for negative contributior                                              | า      |
| Fingerprint | Bit/Smiles   | Feature Structure                                                      | Score  |
| ECFP_6      | 2106656448   | (*]C(=O)[*]                                                            | -0.275 |
| ECFP_6      | 1996767644   | [*][c](:[*]):[cH]:[cH<br>]:[*]                                         | -0.251 |

| ECFP_6 | 642810091 |                          | -0.247 |
|--------|-----------|--------------------------|--------|
|        |           | ≓⊇``<br>[*][c](:[*]):[*] |        |

 $C_{24}H_{22}CIN_7O_4$ Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: 24.5

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 15.3

#### Mahalanobis Distance p-value: 7.54e-014

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### Structural Similar Compounds

| Name                           | Ochratoxin A | 542                                                                       | Salicylazosulfapyridine                  |
|--------------------------------|--------------|---------------------------------------------------------------------------|------------------------------------------|
| Structure                      | ()           | AND Exantomer<br>$ \begin{array}{c}                                     $ | HN H |
| Actual Endpoint (-log C)       | 4.79932      | 4.79932                                                                   | 2.5034                                   |
| Predicted Endpoint (-log<br>C) | 3.6353       | 3.6353                                                                    | 3.54214                                  |
| Distance                       | 0.734        | 0.734                                                                     | 0.770                                    |
| Reference                      | CPDB         | CPDB                                                                      | CPDB                                     |

#### Model Applicability

- 1. OPS PC20 out of range. Value: 3.7212. Training min, max, SD, explained variance: -4.3384, 3.4394, 1.14, 0.0162.
- 2. Unknown ECFP\_2 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 4. Unknown ECFP\_2 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 5. Unknown ECFP\_2 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 6. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 7. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]

|                       | ures for positive contribution | 11    |
|-----------------------|--------------------------------|-------|
| ingerprint Bit/Smiles | Feature Structure              | Score |

| ECFP_6      | 655739385           | $\bigcirc$                     | 0.229  |
|-------------|---------------------|--------------------------------|--------|
|             |                     |                                |        |
|             |                     |                                |        |
|             |                     |                                |        |
|             |                     | [*]:n:[*]                      |        |
| ECFP_6      | 1559650422          |                                | 0.203  |
|             |                     |                                |        |
|             |                     |                                |        |
|             |                     | [*]C[*]                        |        |
| ECFP_6      | -817402818          |                                | 0.129  |
|             |                     |                                |        |
|             |                     |                                |        |
|             |                     |                                |        |
|             |                     | [*]Cl                          |        |
|             | Top Features for ne | egative contribution           |        |
| Fingerprint |                     | Feature Structure              | Score  |
| ECFP_6      | 2106656448          |                                | -0.275 |
|             |                     |                                |        |
|             |                     | (*]C(=O)[*]                    |        |
| ECFP_6      | 1996767644          |                                | -0.251 |
|             |                     |                                |        |
|             |                     | [*][c](:[*]):[cH]:[cH<br>]:[*] |        |
|             |                     | 1.1.1                          |        |

| ECFP_6 | 642810091 |                          | -0.247 |
|--------|-----------|--------------------------|--------|
|        |           | ~∧∑∼<br>[*][c](:[*]):[*] |        |

 $C_{23}H_{22}N_8O_4$ Molecular Weight: 474.47198

ALogP: 0.219 Rotatable Bonds: 6

Acceptors: 7

Donors: 2

# **Model Prediction**

Prediction: 27

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 13.3

#### Mahalanobis Distance p-value: 1.77e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name                           | Salicylazosulfapyridine                                                                | Azathioprine s | 420     |
|--------------------------------|----------------------------------------------------------------------------------------|----------------|---------|
| Structure                      | HN<br>HN<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO |                |         |
| Actual Endpoint (-log C)       | 2.5034                                                                                 | 4.49253        | 2.78302 |
| Predicted Endpoint (-log<br>C) | 3.54214                                                                                | 4.28607        | 3.31546 |
| Distance                       | 0.738                                                                                  | 0.785          | 0.790   |
| Reference                      | CPDB                                                                                   | CPDB           | CPDB    |

# Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 4. Unknown ECFP\_2 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 5. Unknown ECFP\_2 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 6. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 7. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]

|         |            | s for positive contributio |       |
|---------|------------|----------------------------|-------|
| erprint | Bit/Smiles | Feature Structure          | Score |

| ECFP_6      | 655739385  |                                       | 0.229  |
|-------------|------------|---------------------------------------|--------|
| ECFP_6      | 1559650422 |                                       | 0.203  |
| ECFP_6      | -175146122 | (*]C(=[*])[c](:[cH]:[<br>*]):[cH]:[*] | 0.107  |
|             |            | for negative contribution             | n      |
| Fingerprint | Bit/Smiles | Feature Structure                     | Score  |
| ECFP_6      | 2106656448 | [*]C(=O)[*]                           | -0.275 |
| ECFP_6      | 1996767644 | (*][c](:[*]):[cH]:[cH<br>]:[*]        | -0.251 |

| ECFP_6 | 642810091 |                  | -0.247 |
|--------|-----------|------------------|--------|
|        |           |                  |        |
|        |           |                  |        |
|        |           | [*][c](:[*]):[*] |        |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997 ALogP: 2.118 Rotatable Bonds: 6 Acceptors: 6

# Model Prediction

Prediction: 24

Donors: 2

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 14.3

#### Mahalanobis Distance p-value: 5.61e-011

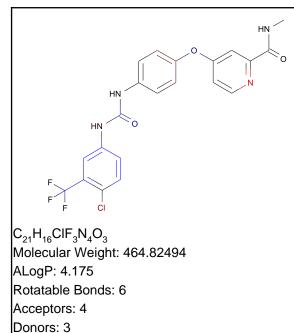
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**

| Name                        | Ochratoxin A | 542           | Salicylazosulfapyridine |
|-----------------------------|--------------|---------------|-------------------------|
| Structure                   |              | AND Exandomer | HN N<br>HN SO<br>HO O   |
| Actual Endpoint (-log C)    | 4.79932      | 4.79932       | 2.5034                  |
| Predicted Endpoint (-log C) | 3.6353       | 3.6353        | 3.54214                 |
| Distance                    | 0.765        | 0.765         | 0.791                   |
| Reference                   | CPDB         | CPDB          | CPDB                    |

### Model Applicability


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 3. Unknown ECFP\_2 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 4. Unknown ECFP\_2 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 5. Unknown ECFP\_2 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 6. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 7. Unknown ECFP\_2 feature: 560380707: [\*]NN=C([\*])[\*]

| -         | -          | for positive contributio | <u>n</u> |
|-----------|------------|--------------------------|----------|
| ngerprint | Bit/Smiles | Feature Structure        | Score    |

| ECFP_6      | 655739385  | Pr<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | 0.229  |
|-------------|------------|---------------------------------------------------------------------|--------|
| ECFP_6      | 1559650422 |                                                                     | 0.203  |
| ECFP_6      | -175146122 | [*]C(=[*])[C](:[cH]:[<br>*]):[cH]:[*]                               | 0.107  |
|             |            | for negative contribution                                           |        |
| Fingerprint | Bit/Smiles | Feature Structure                                                   | Score  |
| ECFP_6      | 2106656448 | [*]C(=O)[*]                                                         | -0.275 |
| ECFP_6      | 1996767644 | [ ]C(=O)[ ]                                                         | -0.251 |

| ECFP_6 | 642810091 | Br -0.247                      |  |
|--------|-----------|--------------------------------|--|
|        |           |                                |  |
|        |           |                                |  |
|        |           |                                |  |
|        |           | < <u>∽</u><br>[*][c](:[*]):[*] |  |

# Sorafenib



# **Model Prediction**

Prediction: 19.2

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 12.4

#### Mahalanobis Distance p-value: 2.94e-006

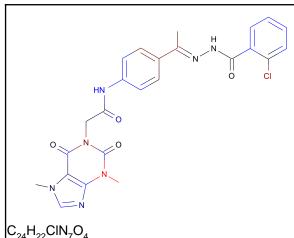
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Carcinogenic\_Potency\_TD50\_Mouse

#### **Structural Similar Compounds**

| Name                        | Ochratoxin A                            | 542                                                                       | 4-Chloro-6-(2,3-xylidino)-<br>2-pyri-mi-dinylthio(N-b-<br>hydroxy-ethyl) acetamide |
|-----------------------------|-----------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Structure                   | () + () + () + () + () + () + () + () + | AND Exantomer<br>$ \begin{array}{c}                                     $ | CI<br>NH<br>NH<br>HO                                                               |
| Actual Endpoint (-log C)    | 4.79932                                 | 4.79932                                                                   | 3.91517                                                                            |
| Predicted Endpoint (-log C) | 3.6353                                  | 3.6353                                                                    | 3.92186                                                                            |
| Distance                    | 0.718                                   | 0.718                                                                     | 0.738                                                                              |
| Reference                   | CPDB                                    | СРДВ                                                                      | CPDB                                                                               |


#### Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 1338334141: [\*]C(=[\*])NC
- 3. Unknown ECFP\_2 feature: 1413420509: [\*]C(=[\*])[c](:n:[\*]):c:[\*]

| 655739385 | $F_{F} = CI$ [*]:n:[*] | 0.229                                                             |
|-----------|------------------------|-------------------------------------------------------------------|
|           | 0007/39300             | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ |

| ECFP_6      | -817402818 | $F_{F} \subset C$ $[*]CI$                                    | 0.129  |
|-------------|------------|--------------------------------------------------------------|--------|
| ECFP_6      | -176455838 | N <sup>N</sup> O<br>FF CI<br>[*]O[C](:[cH]:[*]):[c<br>H]:[*] | 0.0818 |
|             |            | for negative contributio                                     |        |
| Fingerprint | Bit/Smiles | Feature Structure                                            | Score  |
| ECFP_6      | 1996767644 | [*][c](:[*]):[cH]:[cH                                        | -0.251 |
| ECFP_6      | 642810091  | [*][c](:[*]):[*]                                             | -0.247 |
| ECFP_6      | -182236392 |                                                              | -0.232 |



Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

#### **Model Prediction**

Prediction: 11.6

Unit: mg/kg\_body\_weight/day

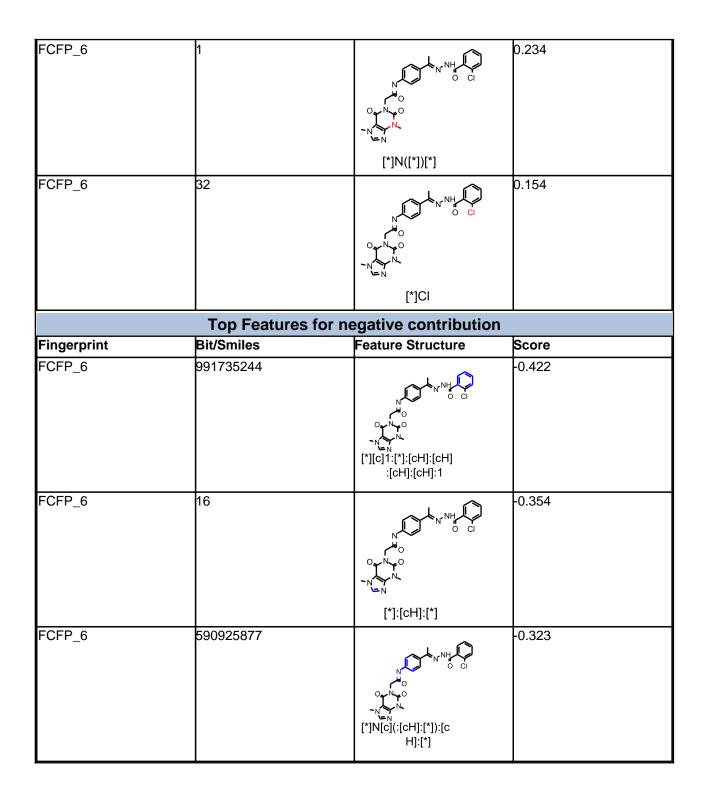
Mahalanobis Distance: 16.1

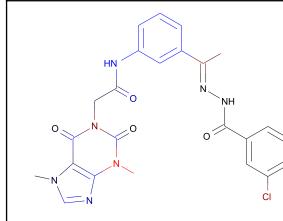
#### Mahalanobis Distance p-value: 1.12e-014

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### Structural Similar Compounds


| Name                           | C.I. direct brown 95 | Salicylazosulfapyridine                                                                | 4-Bis(2-<br>hydroxyethyl)amino-2-(5-<br>nitro-2-thienyl)quinazoline |
|--------------------------------|----------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Structure                      |                      | HN<br>HN<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO |                                                                     |
| Actual Endpoint (-log C)       | 5.31387              | 2.39891                                                                                | 5.05984                                                             |
| Predicted Endpoint (-log<br>C) | 4.30266              | 3.17598                                                                                | 4.23808                                                             |
| Distance                       | 0.745                | 0.747                                                                                  | 0.761                                                               |
| Reference                      | CPDB                 | CPDB                                                                                   | CPDB                                                                |


#### Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

| Top features for positive contribution |            |                   |       |  |
|----------------------------------------|------------|-------------------|-------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score |  |
| FCFP_6                                 | 136627117  |                   | 0.69  |  |
|                                        | I          |                   |       |  |





C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

#### **Model Prediction**

Prediction: 11.1

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 16.4

#### Mahalanobis Distance p-value: 1.12e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Name                        | C.I. direct brown 95 | Salicylazosulfapyridine                 | 4-Bis(2-<br>hydroxyethyl)amino-2-(5-<br>nitro-2-thienyl)quinazolin |
|-----------------------------|----------------------|-----------------------------------------|--------------------------------------------------------------------|
| Structure                   |                      | HN = | HO OH                                                              |
| Actual Endpoint (-log C)    | 5.31387              | 2.39891                                 | 5.05984                                                            |
| Predicted Endpoint (-log C) | 4.30266              | 3.17598                                 | 4.23808                                                            |
| Distance                    | 0.747                | 0.748                                   | 0.762                                                              |
| Reference                   | СРДВ                 | СРДВ                                    | CPDB                                                               |

#### Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

| it/Smiles<br>36627117 | Score |
|-----------------------|-------|
| 36627117              |       |
|                       | 0.69  |
|                       |       |

| FCFP_6                | 1          | [*]N([*])[*]                           | 0.234  |
|-----------------------|------------|----------------------------------------|--------|
| FCFP_6                | 32         | [*]CI                                  | 0.154  |
| <b>F</b> <sup>1</sup> |            | negative contribution                  |        |
| Fingerprint           | Bit/Smiles | Feature Structure                      | Score  |
| FCFP_6                | 991735244  | [*][c]1:[r]:[cH]:[cH]:<br>:[cH]:[cH]:1 | -0.422 |
| FCFP_6                | 16         | [*]:[cH]:[*]                           | -0.354 |
| FCFP_6                | 590925877  | [*]N[c](:[cH]:[*]):[c<br>H]:[*]        | -0.323 |

# 

Molecular Weight: 474.47198 ALogP: 0.219 Rotatable Bonds: 6 Acceptors: 7 Donors: 2

# **Model Prediction**

Prediction: 6.24

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 16.4

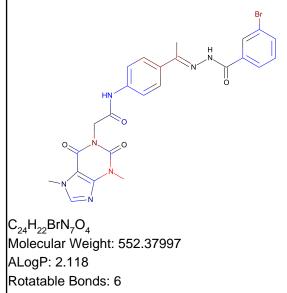
#### Mahalanobis Distance p-value: 1.05e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### Structural Similar Compounds

| Name                           | Salicylazosulfapyridine                | FD & C red no. 2 | 623                                                              |
|--------------------------------|----------------------------------------|------------------|------------------------------------------------------------------|
| Structure                      | HN<br>HN<br>HO<br>HO<br>HO<br>HO<br>HO | NH<br>NH<br>NH   | NH<br>HN M<br>NH<br>HN M<br>HN M<br>HN M<br>HN M<br>HN M<br>HN M |
| Actual Endpoint (-log C)       | 2.39891                                | 2.46661          | 2.39985                                                          |
| Predicted Endpoint (-log<br>C) | 3.17598                                | 3.60201          | 3.4177                                                           |
| Distance                       | 0.738                                  | 0.742            | 0.748                                                            |
| Reference                      | СРОВ                                   | CPDB             | CPDB                                                             |


#### Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC25 out of range. Value: 4.4122. Training min, max, SD, explained variance: -3.5991, 4.3957, 1.055, 0.0107.

| Fingerprint | Bit/Smiles | Feature Structure                        | Score |
|-------------|------------|------------------------------------------|-------|
| FCFP_6      | 136627117  | N, N | 0.69  |

| FCFP_6                | 1          |                                                                                                                              | 0.234                  |
|-----------------------|------------|------------------------------------------------------------------------------------------------------------------------------|------------------------|
| FCFP_6                | 730557100  | <sup>N</sup> ,      | 0.141                  |
|                       |            | for negative contribution                                                                                                    |                        |
| Fingerprint<br>FCFP_6 | Bit/Smiles | Feature Structure                                                                                                            | <b>Score</b><br>-0.354 |
|                       |            | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                  |                        |
| FCFP_6                | 590925877  | [*]N[c](:[cH]:[*]):[c<br>H]:[*]                                                                                              | -0.323                 |
| FCFP_6                | 566058135  | <sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup><br><sup>N</sup> | -0.182                 |



Acceptors: 6

Donors: 2

#### **Model Prediction**

Prediction: 11.3

Unit: mg/kg\_body\_weight/day

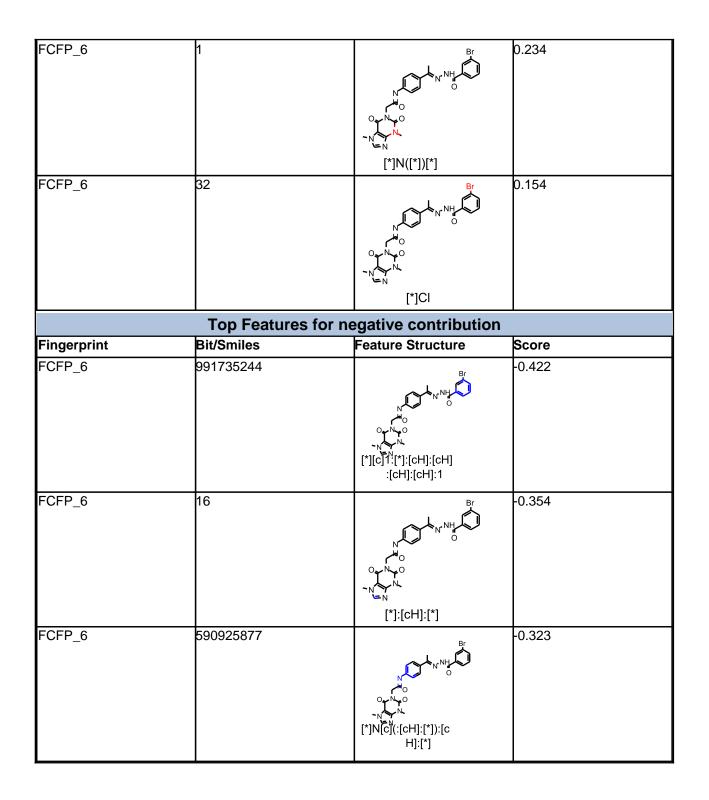
Mahalanobis Distance: 16.4

#### Mahalanobis Distance p-value: 9.63e-016

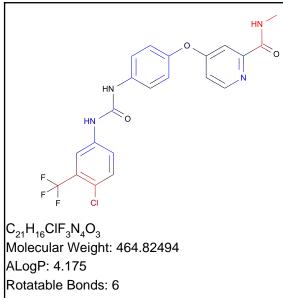
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### **Structural Similar Compounds**


| Structural Similar Compounds   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |              |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|--|
| Name                           | C.I. direct brown 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Salicylazosulfapyridine                                                                | Ochratoxin A |  |
| Structure                      | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ | HN<br>HN<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO | ()           |  |
| Actual Endpoint (-log C)       | 5.31387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.39891                                                                                | 6.47264      |  |
| Predicted Endpoint (-log<br>C) | 4.30266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.17598                                                                                | 5.06501      |  |
| Distance                       | 0.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.766                                                                                  | 0.782        |  |
| Reference                      | CPDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CPDB                                                                                   | CPDB         |  |

#### Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

| Feature Cont                           | ribution   |                                                                                             |       |  |
|----------------------------------------|------------|---------------------------------------------------------------------------------------------|-------|--|
| Top features for positive contribution |            |                                                                                             |       |  |
| Fingerprint                            | Bit/Smiles | Feature Structure                                                                           | Score |  |
| FCFP_6                                 | 136627117  | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | 0.69  |  |
|                                        |            |                                                                                             |       |  |



# Sorafenib



Acceptors: 4

Donors: 3

#### **Model Prediction**

Prediction: 14.2

Unit: mg/kg\_body\_weight/day

Mahalanobis Distance: 20.4

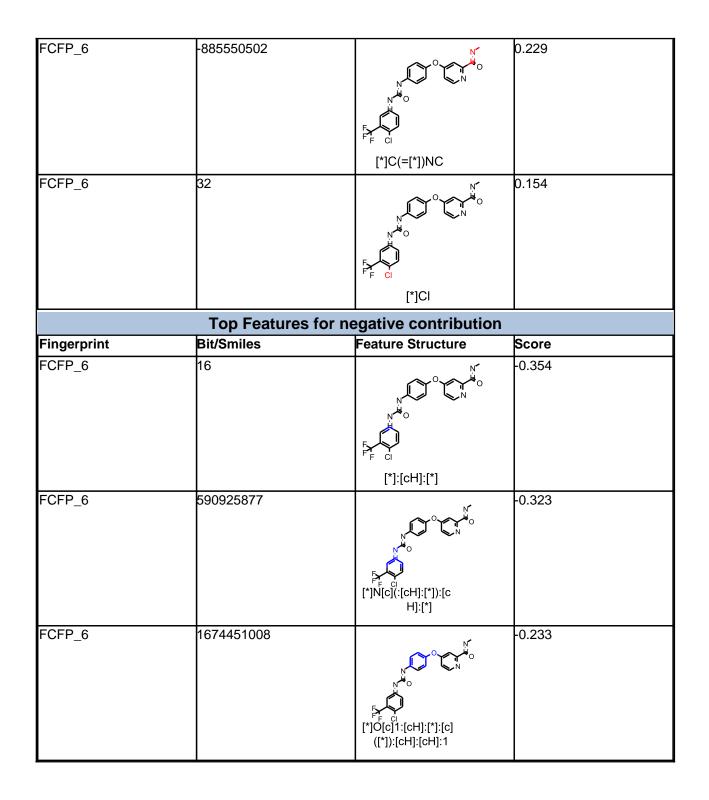
#### Mahalanobis Distance p-value: 9.56e-031

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

#### Structural Similar Compounds

| Name                           | Fluvastatin | 913     | Ochratoxin A |
|--------------------------------|-------------|---------|--------------|
| Structure                      |             |         |              |
| Actual Endpoint (-log C)       | 3.51742     | 3.51742 | 6.47264      |
| Predicted Endpoint (-log<br>C) | 5.41573     | 5.41573 | 5.06501      |
| Distance                       | 0.597       | 0.597   | 0.666        |
| Reference                      | CPDB        | CPDB    | CPDB         |


TOPKAT\_Carcinogenic\_Potency\_TD50\_Rat

#### Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -1029533685: [\*]:[c](:[\*])C(F)(F)F

# 



Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: 0.108

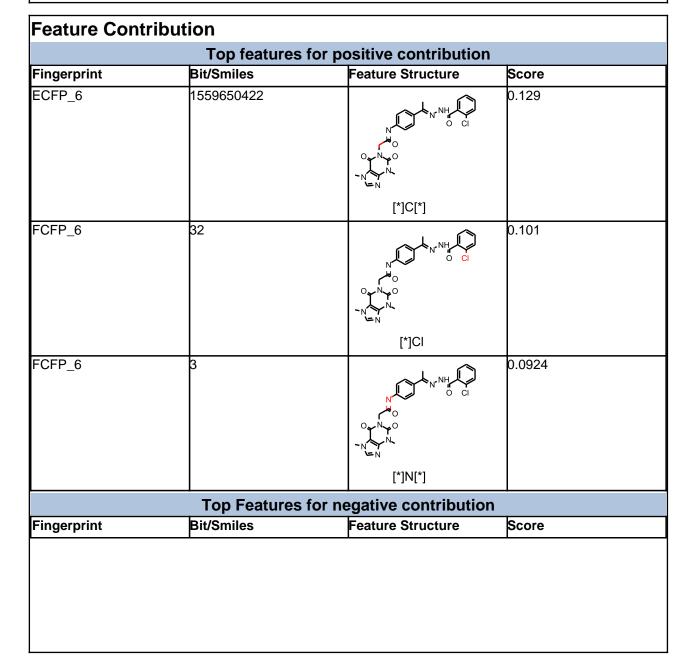
Unit: g/kg\_body\_weight

Mahalanobis Distance: 31.5

#### Mahalanobis Distance p-value: 2.64e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


| Structural Similar Compounds |           |           |                                       |  |  |
|------------------------------|-----------|-----------|---------------------------------------|--|--|
| Name                         | GLIPIZIDE | GLYBURIDE | CHLORSULFURON                         |  |  |
| Structure                    |           |           | N N N N N N N N N N N N N N N N N N N |  |  |

|                                |           | HIN CO    | HN KNY N CI                        |
|--------------------------------|-----------|-----------|------------------------------------|
| Actual Endpoint (-log C)       | 3.94991   | 4.21661   | 4.15566                            |
| Predicted Endpoint (-log<br>C) | 3.95594   | 4.21035   | 3.79771                            |
| Distance                       | 0.650     | 0.693     | 0.747                              |
| Reference                      | NDA-17583 | UPJ-26452 | EPA COVER SHEET<br>0027;880301;(1) |

### Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_6 feature: 672362763: [\*]n(:[\*]):[\*]
- 3. Unknown ECFP\_6 feature: -677309799: [\*][c]1:[\*]:[cH]:n:1
- 4. Unknown ECFP\_6 feature: -708878603: [\*]n1:[\*]:[\*]:n:[cH]:1
- 5. Unknown ECFP\_6 feature: -407983022: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 6. Unknown ECFP\_6 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 7. Unknown ECFP\_6 feature: -509950643: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown ECFP\_6 feature: -813242890: [\*]n1:[\*]:[\*]:[c]([\*]):[c]:1C(=[\*])[\*]
- 9. Unknown ECFP\_6 feature: 1945129186: [\*]N([\*])C(=O)[c](:[\*]):[\*]
- 10. Unknown ECFP\_6 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 11. Unknown ECFP\_6 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 12. Unknown ECFP\_6 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 13. Unknown ECFP\_6 feature: 1731843802: [\*]CC(=O)N[\*]
- 14. Unknown ECFP\_6 feature: -177077903: [\*]N[c](:[cH]:[\*]):[cH]:[\*]
- 15. Unknown ECFP\_6 feature: 866343404: [\*]N([\*])C
- 16. Unknown ECFP\_6 feature: 866450950: [\*]:n(:[\*])C
- 17. Unknown ECFP\_6 feature: -175146122: [\*]C(=[\*])[c](:[cH]:[\*]):[cH]:[\*]
- 18. Unknown ECFP\_6 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 19. Unknown ECFP\_6 feature: 560380707: [\*]NN=C([\*])[\*]

- 20. Unknown ECFP\_6 feature: 544048674: [\*]C(=[\*])NN=[\*]
- 21. Unknown ECFP\_6 feature: 1430169877: [\*]NC(=O)[c](:[\*]):[\*]
- 22. Unknown ECFP\_6 feature: 1997021792: [\*]:[cH]:[cH]:[cH]:[\*]
- 23. Unknown ECFP\_6 feature: 99947387: [\*]:[c](:[\*])Cl



| ECFP_6 | 1337040050 | [*]C(=[*])[c]([*]):[*]  | -0.158 |
|--------|------------|-------------------------|--------|
| FCFP_6 | 991735244  | (*][c]1:[*]:[cH]:[cH]:1 | -0.134 |
| ECFP_6 | 1564392544 | [*][c]1:[cH]:[cH]:1     | -0.133 |

C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

## **Model Prediction**

Prediction: 0.0464

Unit: g/kg\_body\_weight

Mahalanobis Distance: 31.3

#### Mahalanobis Distance p-value: 6.01e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

| Name                           | GLIPIZIDE | GLYBURIDE | CHLORSULFURON                      |
|--------------------------------|-----------|-----------|------------------------------------|
| Structure                      |           | HN CO     | HN N C I                           |
| Actual Endpoint (-log C)       | 3.94991   | 4.21661   | 4.15566                            |
| Predicted Endpoint (-log<br>C) | 3.95594   | 4.21035   | 3.79771                            |
| Distance                       | 0.651     | 0.689     | 0.760                              |
| Reference                      | NDA-17583 | UPJ-26452 | EPA COVER SHEET<br>0027;880301;(1) |

## Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_6 feature: 672362763: [\*]n(:[\*]):[\*]
- 3. Unknown ECFP\_6 feature: -677309799: [\*][c]1:[\*]:[\*]:[cH]:n:1
- 4. Unknown ECFP\_6 feature: -708878603: [\*]n1:[\*]:[\*]:n:[cH]:1
- 5. Unknown ECFP\_6 feature: -407983022: [\*][c]1:[\*]:[cH]:n:1C
- 6. Unknown ECFP\_6 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 7. Unknown ECFP\_6 feature: -509950643: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown ECFP\_6 feature: -813242890: [\*]n1:[\*]:[c]([\*]):[c]:1C(=[\*])[\*]
- 9. Unknown ECFP\_6 feature: 1945129186: [\*]N([\*])C(=O)[c](:[\*]):[\*]
- 10. Unknown ECFP\_6 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 11. Unknown ECFP\_6 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 12. Unknown ECFP\_6 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 13. Unknown ECFP\_6 feature: 1731843802: [\*]CC(=O)N[\*]
- 14. Unknown ECFP\_6 feature: -177077903: [\*]N[c](:[cH]:[\*]):[cH]:[\*]
- 15. Unknown ECFP\_6 feature: 1997021792: [\*]:[cH]:[cH]:[cH]:[cH]:[\*]
- 16. Unknown ECFP\_6 feature: -175146122: [\*]C(=[\*])[c](:[cH]:[\*]):[cH]:[\*]
- 17. Unknown ECFP\_6 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 18. Unknown ECFP\_6 feature: 560380707: [\*]NN=C([\*])[\*]
- 19. Unknown ECFP\_6 feature: 544048674: [\*]C(=[\*])NN=[\*]

- 20. Unknown ECFP\_6 feature: 1430169877: [\*]NC(=O)[c](:[\*]):[\*]
- 21. Unknown ECFP\_6 feature: -176494269: [\*]:[cH]:[c](CI):[cH]:[\*]
- 22. Unknown ECFP\_6 feature: 866343404: [\*]N([\*])C
- 23. Unknown ECFP\_6 feature: 866450950: [\*]:n(:[\*])C
- 24. Unknown ECFP\_6 feature: 99947387: [\*]:[c](:[\*])Cl

| Top features ' | for positive contribution                                                        | 1                                                                                                                                                                                                                                                                         |
|----------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit/Smiles     | Feature Structure                                                                | Score                                                                                                                                                                                                                                                                     |
| 1559650422     |                                                                                  | 0.129                                                                                                                                                                                                                                                                     |
|                | [*]C[*]                                                                          |                                                                                                                                                                                                                                                                           |
| 32             |                                                                                  | 0.101                                                                                                                                                                                                                                                                     |
|                | [*]Cl                                                                            |                                                                                                                                                                                                                                                                           |
| 3              |                                                                                  | 0.0924                                                                                                                                                                                                                                                                    |
|                |                                                                                  | n                                                                                                                                                                                                                                                                         |
| Bit/Smiles     | Feature Structure                                                                | Score                                                                                                                                                                                                                                                                     |
|                | Bit/Smiles           1559650422           32           32           Top Features | Bit/Smiles       Feature Structure         1559650422 $\downarrow \downarrow $ |

| FCFP_6 | 991735244  | [*][c]1:[*]:[cH]:[cH]:<br>:[cH]:[cH]:1 | -0.134 |
|--------|------------|----------------------------------------|--------|
|        | 2106656448 | [*]C(=O)[*]                            | -0.11  |
| FCFP_6 | 1          | [*]N([*])[*]                           | -0.102 |

# TOPKAT\_Chronic\_LOAEL

 $C_{23}H_{22}N_8O_4$ Molecular Weight: 474.47198
ALogP: 0.219

Rotatable Bonds: 6

Acceptors: 7

Donors: 2

## **Model Prediction**

Prediction: 0.0616

Unit: g/kg\_body\_weight

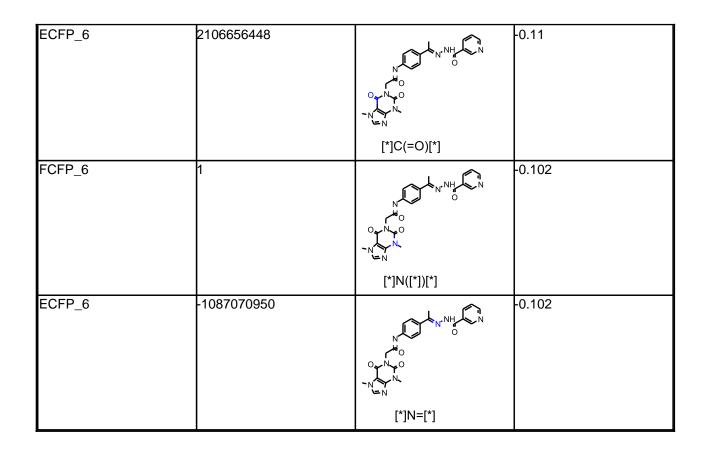
Mahalanobis Distance: 32.6

## Mahalanobis Distance p-value: 2.26e-029

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Name                           | GLIPIZIDE | ALLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHLORSULFURON                      |
|--------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Structure                      |           | HN CO<br>HN CO | HN N C C                           |
| Actual Endpoint (-log C)       | 3.94991   | 3.1834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.15566                            |
| Predicted Endpoint (-log<br>C) | 3.95594   | 3.59541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.79771                            |
| Distance                       | 0.663     | 0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.762                              |
| Reference                      | NDA-17583 | EPA COVER SHEET<br>0288;891101;(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA COVER SHEET<br>0027;880301;(1) |

# Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_6 feature: 672362763: [\*]n(:[\*]):[\*]
- 3. Unknown ECFP\_6 feature: -677309799: [\*][c]1:[\*]:[cH]:n:1
- 4. Unknown ECFP\_6 feature: -708878603: [\*]n1:[\*]:[\*]:n:[cH]:1
- 5. Unknown ECFP\_6 feature: -407983022: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 6. Unknown ECFP\_6 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 7. Unknown ECFP\_6 feature: -509950643: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown ECFP\_6 feature: -813242890: [\*]n1:[\*]:[c]([\*]):[c]:1C(=[\*])[\*]
- 9. Unknown ECFP\_6 feature: 1945129186: [\*]N([\*])C(=O)[c](:[\*]):[\*]
- 10. Unknown ECFP\_6 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 11. Unknown ECFP\_6 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 12. Unknown ECFP\_6 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 13. Unknown ECFP\_6 feature: 1731843802: [\*]CC(=O)N[\*]
- 14. Unknown ECFP\_6 feature: -177077903: [\*]N[c](:[cH]:[\*]):[cH]:[\*]
- 15. Unknown ECFP\_6 feature: 866343404: [\*]N([\*])C
- 16. Unknown ECFP\_6 feature: 866450950: [\*]:n(:[\*])C
- 17. Unknown ECFP\_6 feature: -175146122: [\*]C(=[\*])[c](:[cH]:[\*]):[cH]:[\*]
- 18. Unknown ECFP\_6 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 19. Unknown ECFP\_6 feature: 560380707: [\*]NN=C([\*])[\*]

- Unknown ECFP\_6 feature: 544048674: [\*]C(=[\*])NN=[\*] 20.
- Unknown ECFP\_6 feature: 1430169877: [\*]NC(=O)[c](:[\*]):[\*] 21.
- 22. Unknown ECFP\_6 feature: -709633021: [\*][c](:[\*]):[cH]:n:[\*]
- 23. Unknown ECFP\_6 feature: -677055651: [\*]:[cH]:n:[cH]:[\*] 24. Unknown ECFP\_6 feature: 1996163143: [\*]:[cH]:[cH]:n:[\*]
- 25.
- Unknown ECFP\_6 feature: 1997021792: [\*]:[cH]:[cH]:[cH]:[\*]

| Top features for positive contribution |              |                          |        |  |
|----------------------------------------|--------------|--------------------------|--------|--|
| Fingerprint                            | Bit/Smiles   | Feature Structure        | Score  |  |
| ECFP_6                                 | 1559650422   |                          | 0.129  |  |
|                                        |              | [*]C[*]                  |        |  |
| FCFP_6                                 | 3            |                          | 0.0924 |  |
| ECFP_6                                 | 2099970318   |                          | 0.0766 |  |
|                                        | Top Features | for negative contributio | n      |  |
| Fingerprint                            | Bit/Smiles   | Feature Structure        | Score  |  |



 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997
ALogP: 2.118
Rotatable Bonds: 6
Acceptors: 6

## **Model Prediction**

Prediction: 0.0458

Donors: 2

Unit: g/kg\_body\_weight

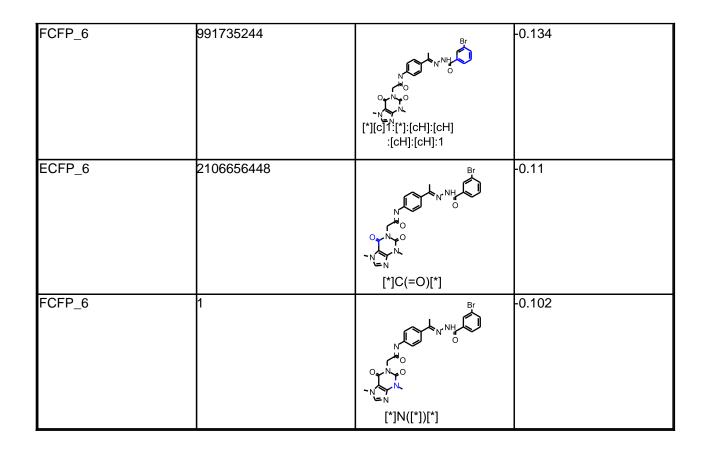
Mahalanobis Distance: 31.3

## Mahalanobis Distance p-value: 5.34e-027

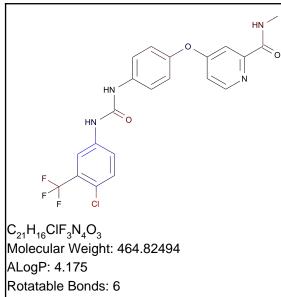
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Structural Similar Compounds   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |  |
|--------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Name                           | GLIPIZIDE | GLYBURIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHLORSULFURON                      |  |
| Structure                      |           | HN CO<br>HN CO | HN N N O                           |  |
| Actual Endpoint (-log C)       | 3.94991   | 4.21661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.15566                            |  |
| Predicted Endpoint (-log<br>C) | 3.95594   | 4.21035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.79771                            |  |
| Distance                       | 0.675     | 0.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.798                              |  |
| Reference                      | NDA-17583 | UPJ-26452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA COVER SHEET<br>0027;880301;(1) |  |

# Model Applicability


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_6 feature: 672362763: [\*]n(:[\*]):[\*]
- 3. Unknown ECFP\_6 feature: -302078100: [\*]Br
- 4. Unknown ECFP\_6 feature: -677309799: [\*][c]1:[\*]:[cH]:n:1
- 5. Unknown ECFP\_6 feature: -708878603: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown ECFP\_6 feature: -407983022: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown ECFP\_6 feature: -960717516: [\*]C(=[\*])N(C)[c](:[\*]):[\*]
- 8. Unknown ECFP\_6 feature: -509950643: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 9. Unknown ECFP\_6 feature: -813242890: [\*]n1:[\*]:[\*]:[c]([\*]):[c]:1C(=[\*])[\*]
- 10. Unknown ECFP\_6 feature: 1945129186: [\*]N([\*])C(=O)[c](:[\*]):[\*]
- 11. Unknown ECFP\_6 feature: -661097313: [\*]CN(C(=[\*])[\*])C(=[\*])[\*]
- 12. Unknown ECFP\_6 feature: 1135573248: [\*]N([\*])C(=O)N([\*])[\*]
- 13. Unknown ECFP\_6 feature: -37698365: [\*]N([\*])CC(=[\*])[\*]
- 14. Unknown ECFP\_6 feature: 1731843802: [\*]CC(=O)N[\*]
- 15. Unknown ECFP\_6 feature: -177077903: [\*]N[c](:[cH]:[\*]):[cH]:[\*]
- 16. Unknown ECFP\_6 feature: 866343404: [\*]N([\*])C
- 17. Unknown ECFP\_6 feature: 866450950: [\*]:n(:[\*])C
- 18. Unknown ECFP\_6 feature: -175146122: [\*]C(=[\*])[c](:[cH]:[\*]):[cH]:[\*]
- 19. Unknown ECFP\_6 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]

- 20. Unknown ECFP\_6 feature: 560380707: [\*]NN=C([\*])[\*]
- 21. Unknown ECFP\_6 feature: 544048674: [\*]C(=[\*])NN=[\*]
- 22. Unknown ECFP\_6 feature: 1430169877: [\*]NC(=O)[c](:[\*]):[\*]
- 23. Unknown ECFP\_6 feature: 1997021792: [\*]:[cH]:[cH]:[cH]:[\*]
- 24. Unknown ECFP\_6 feature: -177935549: [\*]:[cH]:[c](Br):[cH]:[\*]
- 25. Unknown ECFP\_6 feature: 459826767: [\*]:[c](:[\*])Br

| Feature Contr | ibution      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|               | Top features | for positive contributior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | า      |
| Fingerprint   | Bit/Smiles   | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Score  |
| ECFP_6        | 1559650422   | Pr<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→<br>NH→                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.129  |
| FCFP_6        | 32           | Provide the second seco | 0.101  |
| FCFP_6        | 3            | (*)N[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0924 |
|               | Top Features | for negative contributio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n      |
| Fingerprint   | Bit/Smiles   | Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Score  |



# Sorafenib



Acceptors: 4

Donors: 3

## **Model Prediction**

Prediction: 0.00483

Unit: g/kg\_body\_weight

Mahalanobis Distance: 30

## Mahalanobis Distance p-value: 1.21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

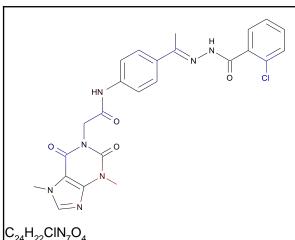
## Structural Similar Compounds

| Name                           | GLYBURIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D & C RED 9      | SODIUM ACIFLUORFEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure                      | HI CO<br>HI CO | MANY NW CI       | F The state of the |
| Actual Endpoint (-log C)       | 4.21661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.87715          | 4.16036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Predicted Endpoint (-log<br>C) | 4.21035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.6546           | 4.65915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Distance                       | 0.636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.722            | 0.736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reference                      | UPJ-26452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NTP REPORT # 225 | EPA COVER SHEET<br>0192;891101;(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_6 feature: -1046436026: [\*]F
- 3. Unknown ECFP\_6 feature: 99947387: [\*]:[c](:[\*])Cl
- 4. Unknown ECFP\_6 feature: 226796801: [\*]C([\*])([\*])F
- 5. Unknown ECFP\_6 feature: 1305253718: [\*]:[c](:[\*])O[c](:[\*]):[\*]
- 6. Unknown ECFP\_6 feature: -677309799: [\*][c]1:[\*]:[cH]:n:1
- 7. Unknown ECFP\_6 feature: 1338334141: [\*]C(=[\*])NC
- 8. Unknown ECFP\_6 feature: -177077903: [\*]N[c](:[cH]:[\*]):[cH]:[\*]
- 9. Unknown ECFP\_6 feature: 1336678434: [\*][c](:[\*]):[c](:[cH]:[\*])C([\*])([\*])([\*])
- 10. Unknown ECFP\_6 feature: -649580166: [\*]NC(=O)N[\*]
- 11. Unknown ECFP\_6 feature: -1952889961: [\*]:[c](:[\*])C(F)(F)F
- 12. Unknown ECFP\_6 feature: 1413420509: [\*]C(=[\*])[c](:[cH]:[\*]):n:[\*]
- 13. Unknown ECFP\_6 feature: 1996163143: [\*]:[cH]:[cH]:n:[\*]
- 14. Unknown ECFP\_6 feature: 1430169877: [\*]NC(=O)[c](:[\*]):[\*]
- 15. Unknown ECFP\_6 feature: 864287155: [\*]NC


## Feature Contribution

## Top features for positive contribution

# TOPKAT\_Chronic\_LOAEL

| 6455838            | $[^*]Cl$                                                                                                                                                                   | 0.106<br>0.101<br>0.0924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | N <sup>N</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                                                                            | 0.0924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | F CI<br>[*]N[*]                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| op Features for ne | gative contribution                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /Smiles            | Feature Structure                                                                                                                                                          | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | $F_{F} = \begin{bmatrix} 1 \\ C \\ C \end{bmatrix} N([*])[*]$                                                                                                              | -0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                                                                                                            | Smiles       Feature Structure $V = V_{N}^{N}$ |

| ECFP_6 | -1236483485 | $[^{*}]C(=[^{*}])N[c](:[^{*}]):$      | -0.0747 |
|--------|-------------|---------------------------------------|---------|
| FCFP_6 | 203677720   | [*]C(=[*])[c](:[cH]:[<br>*]):[cH]:[*] | -0.0713 |



ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

## **Model Prediction**

Prediction: 0.0382

Unit: g/kg\_body\_weight

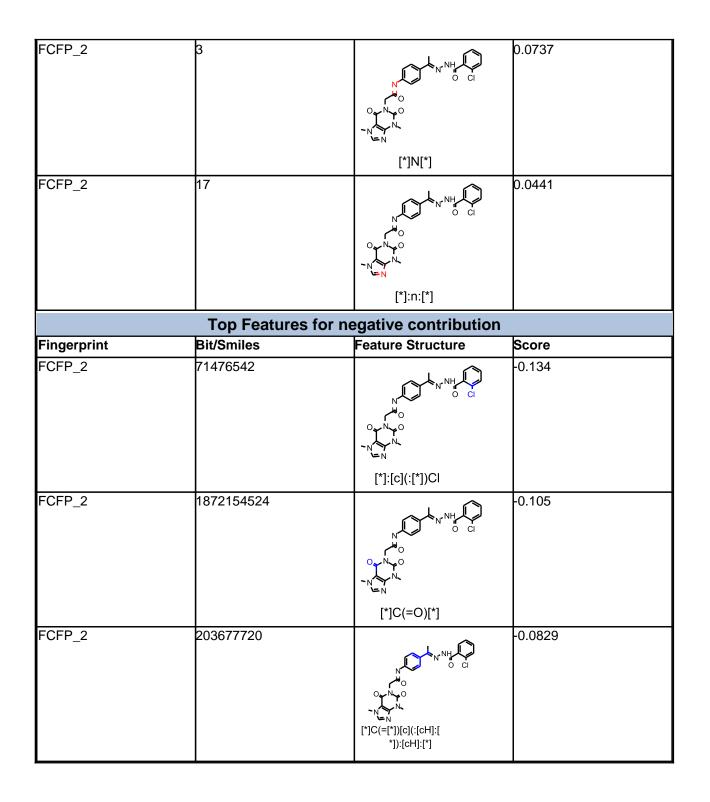
Mahalanobis Distance: 10.8

## Mahalanobis Distance p-value: 2.21e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Structural Similar Compounds   |                             |                                  |                    |  |
|--------------------------------|-----------------------------|----------------------------------|--------------------|--|
| Name                           | SALICYLAZOSULFAPYRI<br>DINE | FUROSEMIDE                       | C.I.PIGMENT RED 23 |  |
| Structure                      | HN BO HOH                   | HO<br>H<br>H<br>H<br>H<br>C<br>I |                    |  |
| Actual Endpoint (-log C)       | 3.375                       | 4.04236                          | 2.30052            |  |
| Predicted Endpoint (-log<br>C) | 2.80292                     | 2.8614                           | 3.55333            |  |
| Distance                       | 0.726                       | 0.729                            | 0.896              |  |
| Reference                      | NCI/NTP TR-457              | NCI/NTP TR-356                   | NCI/NTP TR-411     |  |

## Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 4. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Top features for positive contribution |            |                                                                                             |       |  |
|----------------------------------------|------------|---------------------------------------------------------------------------------------------|-------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure                                                                           | Score |  |
| FCFP_2                                 | 136627117  | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | 0.173 |  |
|                                        | 1          |                                                                                             | 1     |  |



C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

## **Model Prediction**

Prediction: 0.0382

Unit: g/kg\_body\_weight

Mahalanobis Distance: 10.8

## Mahalanobis Distance p-value: 2.21e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## **Structural Similar Compounds**

| Structural Simila              | ar compounds                |                                                           |                    |
|--------------------------------|-----------------------------|-----------------------------------------------------------|--------------------|
| Name                           | SALICYLAZOSULFAPYRI<br>DINE | FUROSEMIDE                                                | C.I.PIGMENT RED 23 |
| Structure                      | HN JO<br>HN JO<br>O OH      | HO<br>H<br>H<br>H<br>H<br>H<br>H<br>C<br>I<br>O<br>S<br>O |                    |
| Actual Endpoint (-log C)       | 3.375                       | 4.04236                                                   | 2.30052            |
| Predicted Endpoint (-log<br>C) | 2.80292                     | 2.8614                                                    | 3.55333            |
| Distance                       | 0.726                       | 0.729                                                     | 0.896              |
| Reference                      | NCI/NTP TR-457              | NCI/NTP TR-356                                            | NCI/NTP TR-411     |

## Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 4. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Top features for positive contribution |            |                   |       |  |
|----------------------------------------|------------|-------------------|-------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score |  |
| FCFP_2                                 | 136627117  |                   | 0.173 |  |
|                                        |            |                   |       |  |

| FCFP_2      | 3                                | [*]N[*]                                                                                                                                               | 0.0737  |
|-------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| FCFP_2      | 17                               | , , , , , , , , , , , , , , , , , , ,                                                                                                                 | 0.0441  |
| Fingerprint | Top Features for n<br>Bit/Smiles | egative contribution<br>Feature Structure                                                                                                             | Score   |
| FCFP_2      | 71476542                         | [*]:[c](:[*])CI                                                                                                                                       | -0.134  |
| FCFP_2      | 1872154524                       | <sup>N</sup> → | -0.105  |
| FCFP_2      | 203677720                        | [*]C(=[*])[c](:[cH]:[<br>*]):[cH]:[*]                                                                                                                 | -0.0829 |

# $C_{23}H_{22}N_8O_4$ Molecular Weight: 474.47198

ALogP: 0.219

Rotatable Bonds: 6 Acceptors: 7

Donors: 2

# **Model Prediction**

Prediction: 0.0285

Unit: g/kg\_body\_weight

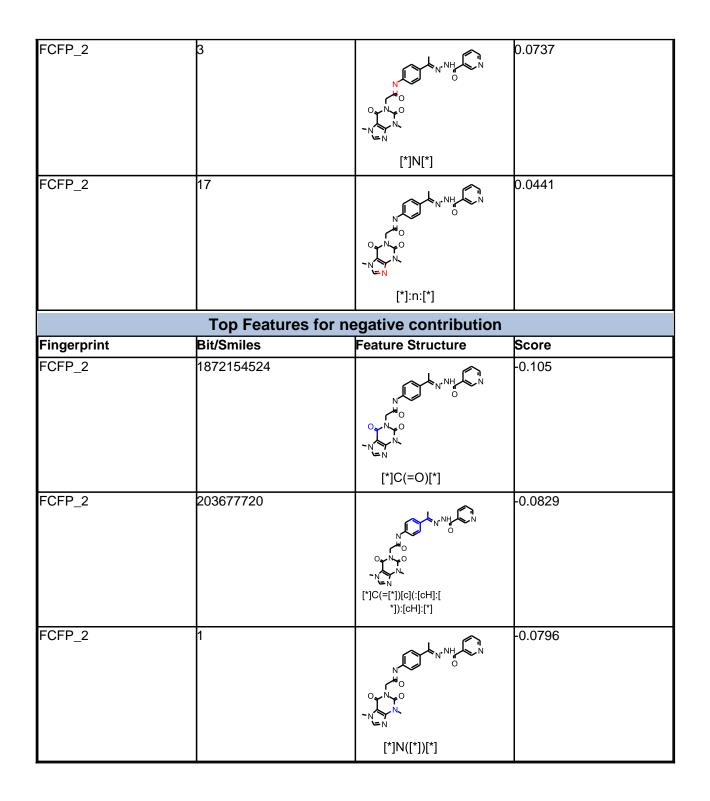
Mahalanobis Distance: 10.4

## Mahalanobis Distance p-value: 9.89e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Name                           | SALICYLAZOSULFAPYRI<br>DINE                        | FUROSEMIDE                | TRIAMTERENE                                              |
|--------------------------------|----------------------------------------------------|---------------------------|----------------------------------------------------------|
| Structure                      | HN JO<br>NV <sup>N</sup> N <sup>th</sup> U<br>O OH | HO O<br>HU NH2<br>CI OF O | H <sub>2</sub> N <sub>th</sub> N<br>N<br>NH <sub>2</sub> |
| Actual Endpoint (-log C)       | 3.375                                              | 4.04236                   | 4.00564                                                  |
| Predicted Endpoint (-log<br>C) | 2.80292                                            | 2.8614                    | 3.1992                                                   |
| Distance                       | 0.725                                              | 0.745                     | 0.931                                                    |
| Reference                      | NCI/NTP TR-457                                     | NCI/NTP TR-356            | NCI/NTP TR-420                                           |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[cH]:n:1C
- 4. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Top features for positive contribution |            |                   |       |  |
|----------------------------------------|------------|-------------------|-------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score |  |
| FCFP_2                                 | 136627117  |                   | 0.173 |  |
|                                        |            | 1                 |       |  |



 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997
ALogP: 2.118
Rotatable Bonds: 6
Acceptors: 6

## **Model Prediction**

Prediction: 0.0248

Donors: 2

Unit: g/kg\_body\_weight

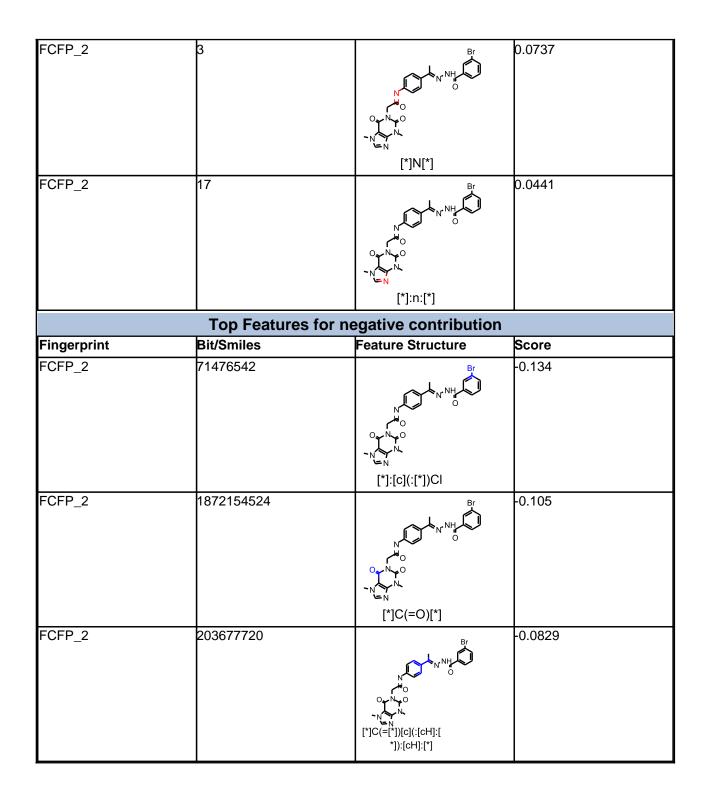
Mahalanobis Distance: 11.2

## Mahalanobis Distance p-value: 4.39e-007

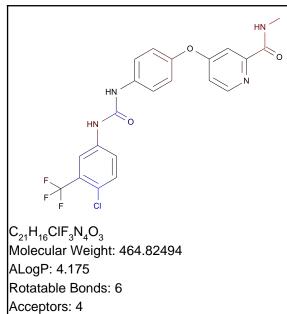
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Structural Simila           |                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|-----------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                        | SALICYLAZOSULFAPYRI<br>DINE | FUROSEMIDE                            | C.I.PIGMENT RED 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Structure                   | HN JO<br>HN JO<br>O CH      | HO<br>H<br>H<br>H<br>H<br>H<br>H<br>C | Production of the second secon |
| Actual Endpoint (-log C)    | 3.375                       | 4.04236                               | 2.30052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Predicted Endpoint (-log C) | 2.80292                     | 2.8614                                | 3.55333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Distance                    | 0.767                       | 0.784                                 | 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reference                   | NCI/NTP TR-457              | NCI/NTP TR-356                        | NCI/NTP TR-411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 3. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[cH]:n:1C
- 4. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Fingerprint | Bit/Smiles | Feature Structure                                                  | Score |
|-------------|------------|--------------------------------------------------------------------|-------|
| CFP_2       | 136627117  | C<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | 0.173 |



# Sorafenib



Donors: 3

## **Model Prediction**

Prediction: 0.0885

Unit: g/kg\_body\_weight

Mahalanobis Distance: 12.4

## Mahalanobis Distance p-value: 1.76e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Name                           | FUROSEMIDE                | PHENOLPHTHALEIN    | DISPERSE YELLOW 3 |
|--------------------------------|---------------------------|--------------------|-------------------|
| Structure                      | HO O<br>HU NH2<br>CI OFSO | O OH<br>O OH<br>HO | OH NH             |
| Actual Endpoint (-log C)       | 4.04236                   | 2.20184            | 2.77703           |
| Predicted Endpoint (-log<br>C) | 2.8614                    | 2.8857             | 2.80195           |
| Distance                       | 0.741                     | 0.780              | 0.799             |
| Reference                      | NCI/NTP TR-356            | NCI/NTP TR-465     | NCI/NTP TR-222    |

**TOPKAT Rat Maximum Tolerated Dose Feed** 

## **Model Applicability**

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

# 

| FCFP_2<br>FCFP_2 | 3<br>332760439 | $ \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ | 0.0737  |
|------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| FUFF_2           |                | [*]O[c](:[cH]:[*]):[cH]:[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| Fingerprint      | Bit/Smiles     | for negative contributior<br>Feature Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Score   |
| FCFP_2           | 71476542       | $F_{F} \subset [*]:[c](:[*])CI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.134  |
| FCFP_2           | 1872154524     | [*]C(=O)[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.105  |
| FCFP_2           | 203677720      | [*]C(=[*])[c](:[cH]:[<br>*]):[cH]:[*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0829 |



Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

## **Model Prediction**

Prediction: 0.0156

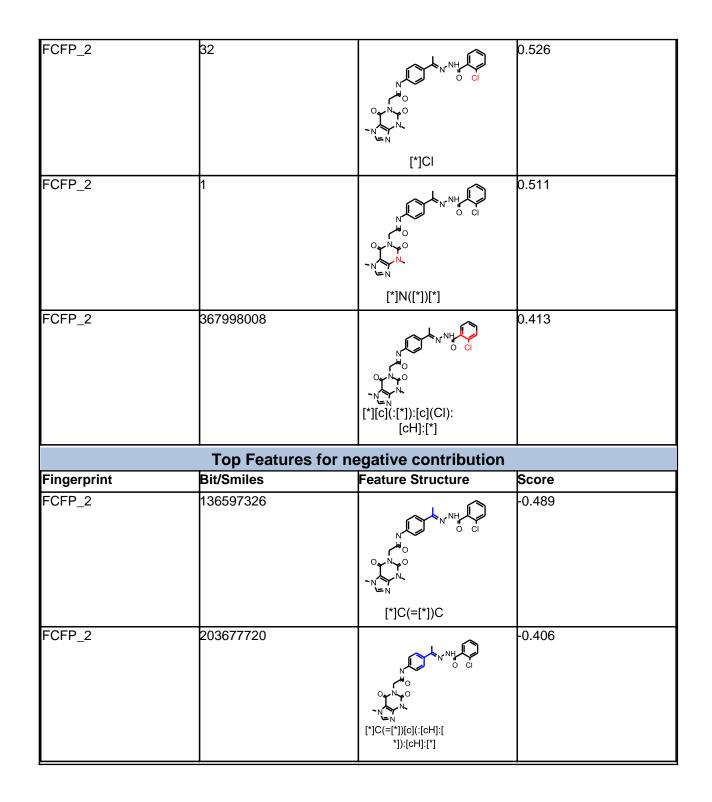
Unit: g/kg\_body\_weight

Mahalanobis Distance: 12.5

#### Mahalanobis Distance p-value: 1.47e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


## Structural Similar Compounds

| Structural Simila              | ar compounds                  |                                                          |                |
|--------------------------------|-------------------------------|----------------------------------------------------------|----------------|
| Name                           | OCHRATOXIN                    | SULFISOOXAZOLE                                           | PENICILLIN VK  |
| Structure                      | HONNH<br>HONNH<br>HONNH<br>CI | H <sub>2</sub> N<br>O<br>O<br>S<br>N <sup>4</sup> H<br>H |                |
| Actual Endpoint (-log C)       | 6.28396                       | 2.82494                                                  | 2.54455        |
| Predicted Endpoint (-log<br>C) | 5.12358                       | 3.0705                                                   | 3.9702         |
| Distance                       | 0.777                         | 1.004                                                    | 1.010          |
| Reference                      | NCI/NTP TR-358                | NCI/NTP TR-138                                           | NCI/NTP TR-336 |

## Model Applicability

- 1. Molecular\_Weight out of range. Value: 507.93. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num\_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -4.6919. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.1347. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_2 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_2 feature: -1986158408: [\*]N([\*])C(=O)N([\*])[\*]
- 9. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 10. Unknown FCFP\_2 feature: -1549192822: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 11. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]
- 12. Unknown FCFP\_2 feature: -885520711: [\*]C(=[\*])NN=[\*]

| Feature Cont | ribution     |                           |       |  |
|--------------|--------------|---------------------------|-------|--|
|              | Top features | for positive contribution | n     |  |
| Fingerprint  | Bit/Smiles   | Feature Structure         | Score |  |



| FCFP_2 | 1872154524 |             | -0.307 |
|--------|------------|-------------|--------|
|        |            | [*]C(=O)[*] |        |

C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

## **Model Prediction**

Prediction: 0.0156

Unit: g/kg\_body\_weight

Mahalanobis Distance: 12.5

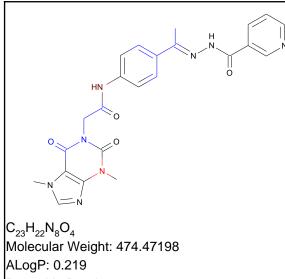
#### Mahalanobis Distance p-value: 1.47e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Structural Sinniar Compounds   |                               |                                                          |                |
|--------------------------------|-------------------------------|----------------------------------------------------------|----------------|
| Name                           | OCHRATOXIN                    | SULFISOOXAZOLE                                           | PENICILLIN VK  |
| Structure                      | HONNH<br>HONNH<br>HONNH<br>CI | H <sub>2</sub> N<br>O<br>O<br>S<br>N <sup>4</sup> H<br>H |                |
| Actual Endpoint (-log C)       | 6.28396                       | 2.82494                                                  | 2.54455        |
| Predicted Endpoint (-log<br>C) | 5.12358                       | 3.0705                                                   | 3.9702         |
| Distance                       | 0.777                         | 1.004                                                    | 1.010          |
| Reference                      | NCI/NTP TR-358                | NCI/NTP TR-138                                           | NCI/NTP TR-336 |


## Model Applicability

- 1. Molecular\_Weight out of range. Value: 507.93. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num\_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -4.6919. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.1347. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_2 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_2 feature: -1986158408: [\*]N([\*])C(=O)N([\*])[\*]
- 9. Unknown FCFP\_2 feature: -1549192822: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 10. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]
- 11. Unknown FCFP\_2 feature: -885520711: [\*]C(=[\*])NN=[\*]
- 12. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C

| Feature Contribution                   |            |                   |       |  |
|----------------------------------------|------------|-------------------|-------|--|
| Top features for positive contribution |            |                   |       |  |
| Fingerprint                            | Bit/Smiles | Feature Structure | Score |  |

| FCFP_2      | 32           |                                       | 0.526  |
|-------------|--------------|---------------------------------------|--------|
| FCFP_2      | 1            | [*]N([*])[*]                          | 0.511  |
| FCFP_2      | 367998008    | [*][c](:[*]):[c](CI):<br>[cH]:[*]     | 0.413  |
|             | Top Features | for negative contribution             | n      |
| Fingerprint | Bit/Smiles   | Feature Structure                     | Score  |
| FCFP_2      | 136597326    | [*]C(=[*])C                           | -0.489 |
| FCFP_2      | 203677720    | [*]C(=[*])[c](:[cH]:[<br>*]):[cH]:[*] | -0.406 |

| FCFP_2 | 1872154524 |                       | -0.307 |
|--------|------------|-----------------------|--------|
|        |            | (≝N CI<br>[*]C(=O)[*] |        |



Rotatable Bonds: 6

Acceptors: 7

Donors: 2

## **Model Prediction**

Prediction: 0.113

Unit: g/kg\_body\_weight

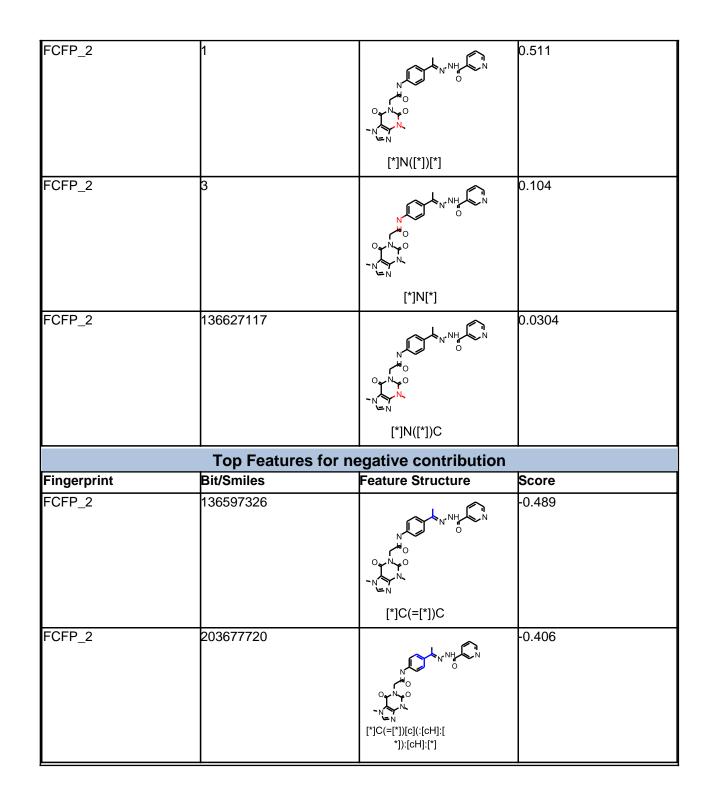
Mahalanobis Distance: 13.2

#### Mahalanobis Distance p-value: 1.68e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Structural Similar Compounds   |                |                |                |
|--------------------------------|----------------|----------------|----------------|
| Name                           | OCHRATOXIN     | PENICILLIN VK  | SULFISOOXAZOLE |
| Structure                      | HOW HOW HOW    |                |                |
| Actual Endpoint (-log C)       | 6.28396        | 2.54455        | 2.82494        |
| Predicted Endpoint (-log<br>C) | 5.12358        | 3.9702         | 3.0705         |
| Distance                       | 0.916          | 0.985          | 1.002          |
| Reference                      | NCI/NTP TR-358 | NCI/NTP TR-336 | NCI/NTP TR-138 |

## Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular\_Weight out of range. Value: 474.47. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num\_H\_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num\_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. Molecular\_PolarSurfaceArea out of range. Value: 141.88. Training min, max, mean, SD: 0, 138.03, 28.978, 32.1.
- 5. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_2 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_2 feature: -1986158408: [\*]N([\*])C(=O)N([\*])[\*]
- 9. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 10. Unknown FCFP\_2 feature: -1549192822: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 11. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]
- 12. Unknown FCFP\_2 feature: -885520711: [\*]C(=[\*])NN=[\*]

| Top features for positive contribution |            |                   |       |  |
|----------------------------------------|------------|-------------------|-------|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score |  |
|                                        | -          |                   |       |  |



| FCFP_2 | 1872154524 |                    | -0.307 |
|--------|------------|--------------------|--------|
|        |            | ∾=√<br>[*]C(=O)[*] |        |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997
ALogP: 2.118
Rotatable Bonds: 6
Acceptors: 6
Donors: 2

# **Model Prediction**

Prediction: 0.0151

Unit: g/kg\_body\_weight

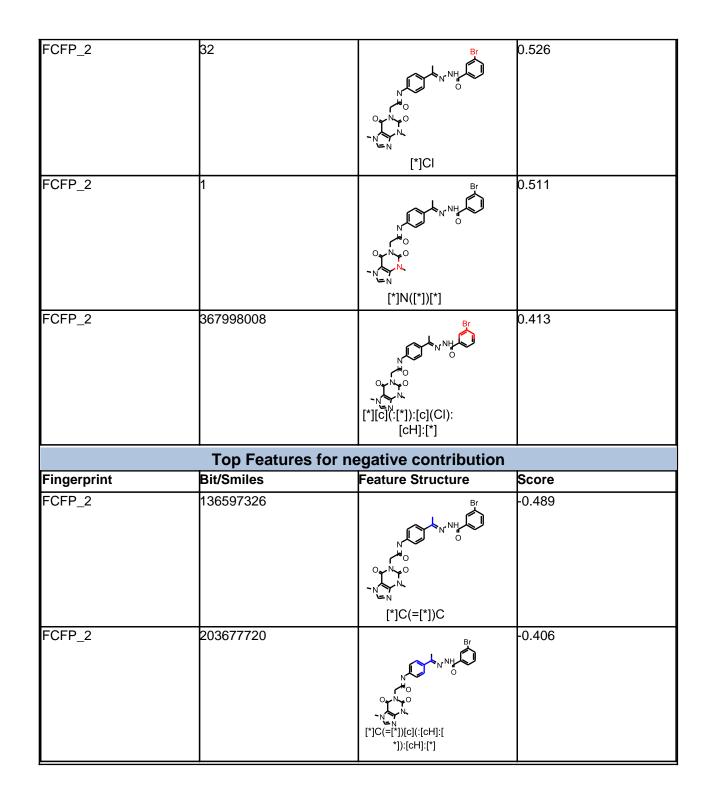
Mahalanobis Distance: 12.9

### Mahalanobis Distance p-value: 5.05e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

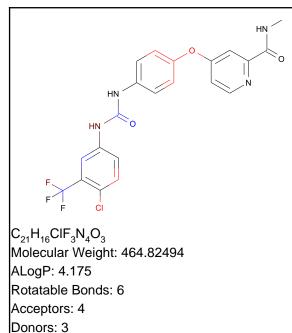
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds


| Structural Sinnial Compounds   |                |                |                |  |
|--------------------------------|----------------|----------------|----------------|--|
| Name                           | OCHRATOXIN     | PENICILLIN VK  | SULFISOOXAZOLE |  |
| Structure                      | OH OH OH OH    |                |                |  |
| Actual Endpoint (-log C)       | 6.28396        | 2.54455        | 2.82494        |  |
| Predicted Endpoint (-log<br>C) | 5.12358        | 3.9702         | 3.0705         |  |
| Distance                       | 0.828          | 1.065          | 1.079          |  |
| Reference                      | NCI/NTP TR-358 | NCI/NTP TR-336 | NCI/NTP TR-138 |  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. Molecular\_Weight out of range. Value: 552.38. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num\_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -4.7836. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.1984. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP\_2 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_2 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_2 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_2 feature: -1986158408: [\*]N([\*])C(=O)N([\*])[\*]
- 9. Unknown FCFP\_2 feature: 136150461: [\*]:n(:[\*])C
- 10. Unknown FCFP\_2 feature: -1549192822: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 11. Unknown FCFP\_2 feature: 581019816: [\*]NN=C([\*])[\*]
- 12. Unknown FCFP\_2 feature: -885520711: [\*]C(=[\*])NN=[\*]

| Feature Contribution                           |  |  |  |  |  |
|------------------------------------------------|--|--|--|--|--|
| Top features for positive contribution         |  |  |  |  |  |
| Fingerprint Bit/Smiles Feature Structure Score |  |  |  |  |  |



| FCFP_2 | 1872154524 | Br -0.307      |  |
|--------|------------|----------------|--|
|        |            |                |  |
|        |            | منزم<br>محمد م |  |
|        |            |                |  |
|        |            | [*]C(=O)[*]    |  |

# Sorafenib



# **Model Prediction**

Prediction: 0.000918

Unit: g/kg\_body\_weight

Mahalanobis Distance: 12.2

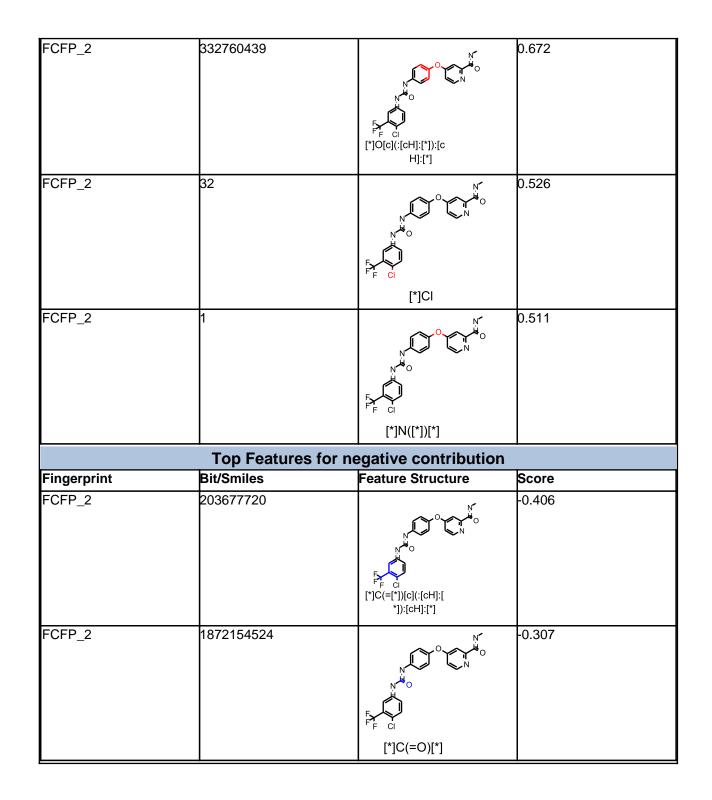
### Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

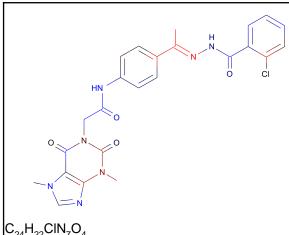
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

# TOPKAT\_Rat\_Maximum\_Tolerated\_Dose\_Gavage

## Structural Similar Compounds


| Name                           | OCHRATOXIN                               | SULFISOOXAZOLE                                    | PENICILLIN VK  |
|--------------------------------|------------------------------------------|---------------------------------------------------|----------------|
| Structure                      | OH O | H <sub>2</sub> N<br>O<br>S<br>N <sup>N</sup><br>H |                |
| Actual Endpoint (-log C)       | 6.28396                                  | 2.82494                                           | 2.54455        |
| Predicted Endpoint (-log<br>C) | 5.12358                                  | 3.0705                                            | 3.9702         |
| Distance                       | 0.758                                    | 0.997                                             | 1.159          |
| Reference                      | NCI/NTP TR-358                           | NCI/NTP TR-138                                    | NCI/NTP TR-336 |

## Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular\_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num\_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP\_2 feature: 1499521844: [\*]NC(=O)N[\*]
- 6. Unknown FCFP\_2 feature: -1029533685: [\*]:[c](:[\*])C(F)(F)F
- 7. Unknown FCFP\_2 feature: 136686699: [\*]NC

| Top features for positive contribution |            |                   |       |  |
|----------------------------------------|------------|-------------------|-------|--|
| ingerprint                             | Bit/Smiles | Feature Structure | Score |  |
|                                        | L          |                   | 1     |  |
|                                        |            |                   |       |  |
|                                        |            |                   |       |  |
|                                        |            |                   |       |  |



| FCFP_2 | 0 | N             | -0.29 |
|--------|---|---------------|-------|
|        |   |               |       |
|        |   | NHO           |       |
|        |   | 5 Q           |       |
|        |   | FF CI         |       |
|        |   | [*]C(=[*])[*] |       |



ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: 1.58

Unit: g/kg\_body\_weight

Mahalanobis Distance: 24.3

### Mahalanobis Distance p-value: 5.05e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## **Structural Similar Compounds**

| Name                           | PRASOZIN .HCI (HCI<br>STRIPPED)                | ACEMETACIN        | OCHRATOXIN A    |
|--------------------------------|------------------------------------------------|-------------------|-----------------|
| Structure                      | H <sub>2</sub> N <sup>-</sup> H <sub>0</sub> - | OC OH             | OH OH HONNY CI  |
| Actual Endpoint (-log C)       | 2.294                                          | 4.235             | 4.305           |
| Predicted Endpoint (-log<br>C) | 3.00765                                        | 3.39415           | 3.03558         |
| Distance                       | 0.722                                          | 0.731             | 0.748           |
| Reference                      | NIIRDN 6;688;82                                | ARZNAD 30;1398;80 | FCTXAV 6;479;68 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown FCFP\_6 feature: 16: [\*]:[cH]:[\*]
- 4. Unknown FCFP\_6 feature: 1747237384: [\*][c]1:[\*]:[cH]:n:1
- 5. Unknown FCFP\_6 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_6 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_6 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_6 feature: 136150461: [\*]:n(:[\*])C
- 9. Unknown FCFP\_6 feature: 1618154665: [\*][c](:[\*]):[cH]:[cH]:[\*]
- 10. Unknown FCFP\_6 feature: 581019816: [\*]NN=C([\*])[\*]
- 11. Unknown FCFP\_6 feature: -885520711: [\*]C(=[\*])NN=[\*]
- 12. Unknown FCFP\_6 feature: 71476542: [\*]:[c](:[\*])Cl

| Top features for positive contribution |                                             |  |  |  |  |  |  |
|----------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| Fingerprint                            | gerprint Bit/Smiles Feature Structure Score |  |  |  |  |  |  |
|                                        |                                             |  |  |  |  |  |  |
|                                        |                                             |  |  |  |  |  |  |

| ECFP_6      | 642810091    | (*][C](:[*]):[*]                               | 0.281  |
|-------------|--------------|------------------------------------------------|--------|
| ECFP_6      | -1897341097  |                                                | 0.216  |
| ECFP_6      | 99947387     | (*]:[c](:[*])CI                                | 0.181  |
|             | Top Features | for negative contributior                      | n      |
| Fingerprint | Bit/Smiles   | Feature Structure                              | Score  |
| ECFP_6      | 2106656448   | N 0<br>N 0<br>N 0<br>N 0<br>N 0<br>(*]C(=O)[*] | -0.352 |
| ECFP_6      | -817402818   |                                                | -0.263 |

| 655739385 |                | -0.239 |
|-----------|----------------|--------|
|           |                |        |
|           | O HO<br>O N LO |        |
|           |                |        |
|           |                |        |
|           | 655739385      |        |

C<sub>24</sub>H<sub>22</sub>CIN<sub>7</sub>O<sub>4</sub> Molecular Weight: 507.92898 ALogP: 2.034 Rotatable Bonds: 6 Acceptors: 6 Donors: 2

# **Model Prediction**

Prediction: 1.31

Unit: g/kg\_body\_weight

Mahalanobis Distance: 24.3

### Mahalanobis Distance p-value: 5.05e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## **Structural Similar Compounds**

| Name                           | PRASOZIN .HCI (HCI<br>STRIPPED)              | ACEMETACIN        | PIRETANIDE                       |
|--------------------------------|----------------------------------------------|-------------------|----------------------------------|
| Structure                      | H <sub>2</sub> N <sup>M</sup> H <sub>0</sub> | OC OH             | O OH<br>NH <sup>2</sup><br>O SOO |
| Actual Endpoint (-log C)       | 2.294                                        | 4.235             | 1.811                            |
| Predicted Endpoint (-log<br>C) | 3.00765                                      | 3.39415           | 1.83976                          |
| Distance                       | 0.721                                        | 0.729             | 0.751                            |
| Reference                      | NIIRDN 6;688;82                              | ARZNAD 30;1398;80 | DRFUD4 2;393;77                  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown FCFP\_6 feature: 16: [\*]:[cH]:[\*]
- 4. Unknown FCFP\_6 feature: 1747237384: [\*][c]1:[\*]:[cH]:n:1
- 5. Unknown FCFP\_6 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_6 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_6 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_6 feature: 1618154665: [\*][c](:[\*]):[cH]:[cH]:[\*]
- 9. Unknown FCFP\_6 feature: 581019816: [\*]NN=C([\*])[\*]
- 10. Unknown FCFP\_6 feature: -885520711: [\*]C(=[\*])NN=[\*]
- 11. Unknown FCFP\_6 feature: 136150461: [\*]:n(:[\*])C
- 12. Unknown FCFP\_6 feature: 71476542: [\*]:[c](:[\*])Cl

# Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

| ECFP_6      | 642810091    |                                                                                                                                                       | 0.281  |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ECFP_6      | -1897341097  |                                                                                                                                                       | 0.216  |
| ECFP_6      | 577592657    |                                                                                                                                                       | 0.194  |
|             |              | [*][c](CI):[cH]:1                                                                                                                                     |        |
|             | Top Features | for negative contribution                                                                                                                             | n      |
| Fingerprint | Bit/Smiles   | Feature Structure                                                                                                                                     | Score  |
| ECFP_6      | 2106656448   | <sup>N</sup> → | -0.352 |
| ECFP_6      | -817402818   | [*]CI                                                                                                                                                 | -0.263 |

| ECFP_6 | 655739385 |                | -0.239 |
|--------|-----------|----------------|--------|
|        |           | ⊂<br>[*]:n:[*] |        |

 $C_{23}H_{22}N_8O_4$ Molecular Weight: 474.47198

ALogP: 0.219 Rotatable Bonds: 6

Acceptors: 7

Donors: 2

# **Model Prediction**

Prediction: 0.768

Unit: g/kg\_body\_weight

Mahalanobis Distance: 24.2

### Mahalanobis Distance p-value: 1.31e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## **Structural Similar Compounds**

| Name                           | PRASOZIN .HCI (HCI<br>STRIPPED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AZOSEMIDE                                           | PIRETANIDE      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|
| Structure                      | H <sub>2</sub> N <sup>-</sup><br>H <sub>2</sub> | HN N<br>HN N<br>HN N<br>H<br>N<br>N<br>H<br>Ci OSSO |                 |
| Actual Endpoint (-log C)       | 2.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.163                                               | 1.811           |
| Predicted Endpoint (-log<br>C) | 3.00765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.21052                                             | 1.83976         |
| Distance                       | 0.756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.763                                               | 0.792           |
| Reference                      | NIIRDN 6;688;82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IYKEDH 18;666;87                                    | DRFUD4 2;393;77 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown FCFP\_6 feature: 16: [\*]:[cH]:[\*]
- 4. Unknown FCFP\_6 feature: 1747237384: [\*][c]1:[\*]:[cH]:n:1
- 5. Unknown FCFP\_6 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_6 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_6 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_6 feature: 136150461: [\*]:n(:[\*])C
- 9. Unknown FCFP\_6 feature: 1618154665: [\*][c](:[\*]):[cH]:[cH]:[\*]
- 10. Unknown FCFP\_6 feature: 581019816: [\*]NN=C([\*])[\*]
- 11. Unknown FCFP\_6 feature: -885520711: [\*]C(=[\*])NN=[\*]

|             | Top features | for positive contributio | n     |  |
|-------------|--------------|--------------------------|-------|--|
| Fingerprint | Bit/Smiles   | Feature Structure        | Score |  |
|             |              |                          | •     |  |
|             |              |                          |       |  |
|             |              |                          |       |  |

| ECFP_6      | 642810091    | [*][c](:[*]):[*]                | 0.281  |
|-------------|--------------|---------------------------------|--------|
| ECFP_6      | -1897341097  |                                 | 0.216  |
| FCFP_6      | -1549163031  | [*]N([*])C(=O)[c](:[*<br>]):[*] | 0.171  |
|             | Top Features | for negative contributio        | n      |
| Fingerprint | Bit/Smiles   | Feature Structure               | Score  |
| ECFP_6      | 2106656448   | [*]C(=O)[*]                     | -0.352 |
| ECFP_6      | 655739385    | (*]:n:[*]                       | -0.239 |

| FCFP_6 | 566058135 |               | -0.216 |
|--------|-----------|---------------|--------|
|        |           |               |        |
|        |           | [*]CC(=O)N[*] |        |

 $C_{24}H_{22}BrN_7O_4$ Molecular Weight: 552.37997 ALogP: 2.118 Rotatable Bonds: 6

Acceptors: 6

### Donors: 2

## **Model Prediction**

Prediction: 1.78

Unit: g/kg\_body\_weight

Mahalanobis Distance: 25

### Mahalanobis Distance p-value: 5.19e-031

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

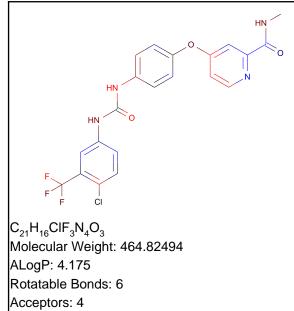
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## **Structural Similar Compounds**

| Name                           | ACEMETACIN        | PRASOZIN .HCI (HCI<br>STRIPPED) | OCHRATOXIN A     |
|--------------------------------|-------------------|---------------------------------|------------------|
| Structure                      | OF OH             | H <sub>2</sub> N <sup>+</sup>   | OH OH HOW OF OUT |
| Actual Endpoint (-log C)       | 4.235             | 2.294                           | 4.305            |
| Predicted Endpoint (-log<br>C) | 3.39415           | 3.00765                         | 3.03558          |
| Distance                       | 0.774             | 0.777                           | 0.802            |
| Reference                      | ARZNAD 30;1398;80 | NIIRDN 6;688;82                 | FCTXAV 6;479;68  |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. OPS PC61 out of range. Value: 4.9641. Training min, max, SD, explained variance: -4.2722, 4.4724, 0.9936, 0.0036.
- 2. Unknown ECFP\_2 feature: 128986386: [\*]\N=C(/C)\[c](:[\*]):[\*]
- 3. Unknown FCFP\_6 feature: 16: [\*]:[cH]:[\*]
- 4. Unknown FCFP\_6 feature: 1747237384: [\*][c]1:[\*]:[\*]:[cH]:n:1
- 5. Unknown FCFP\_6 feature: -124685461: [\*]n1:[\*]:[\*]:n:[cH]:1
- 6. Unknown FCFP\_6 feature: -306856457: [\*][c]1:[\*]:[\*]:[cH]:n:1C
- 7. Unknown FCFP\_6 feature: -1410049896: [\*]N([\*])[c]1:n:[\*]:[\*]:[c]:1[\*]
- 8. Unknown FCFP\_6 feature: 136150461: [\*]:n(:[\*])C
- 9. Unknown FCFP\_6 feature: 1618154665: [\*][c](:[\*]):[cH]:[cH]:[\*]
- 10. Unknown FCFP\_6 feature: 581019816: [\*]NN=C([\*])[\*]
- 11. Unknown FCFP\_6 feature: -885520711: [\*]C(=[\*])NN=[\*]
- 12. Unknown FCFP\_6 feature: 71476542: [\*]:[c](:[\*])Cl

|             | Top features | for positive contribution | n     |
|-------------|--------------|---------------------------|-------|
| Fingerprint | Bit/Smiles   | Feature Structure         | Score |
|             |              |                           |       |

| ECFP_6      | 642810091    | Pr<br>NNH<br>NNH<br>NNH<br>NNH<br>NNH<br>NNH<br>NNH<br>NN                                   | 0.281  |
|-------------|--------------|---------------------------------------------------------------------------------------------|--------|
| ECFP_6      | -1897341097  |                                                                                             | 0.216  |
| FCFP_6      | -1549163031  | Pr<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                         | 0.171  |
|             | Top Features | for negative contributior                                                                   | า      |
| Fingerprint | Bit/Smiles   | Feature Structure                                                                           | Score  |
| ECFP_6      | 2106656448   | Pr<br>N NH<br>N NH<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N         | -0.352 |
| ECFP_6      | 655739385    | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | -0.239 |

| FCFP_6 | 566058135 | Br -0.216     |  |
|--------|-----------|---------------|--|
|        |           | N NH NH       |  |
|        |           |               |  |
|        |           |               |  |
|        |           | [*]CC(=O)N[*] |  |

# Sorafenib



### Donors: 3

# **Model Prediction**

Prediction: 0.823

Unit: g/kg\_body\_weight

Mahalanobis Distance: 21

### Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

## Structural Similar Compounds

| Name                           | FLUBENDAZOLE   | PHOSPHORAMIDOTHIOIC<br>ACID; ACETIMIDOYL-;<br>O;O-bis-(p-<br>CHLOROPHENYL)ESTER | BEZAFIBRATE       |
|--------------------------------|----------------|---------------------------------------------------------------------------------|-------------------|
| Structure                      |                |                                                                                 |                   |
| Actual Endpoint (-log C)       | 2.088          | 5.006                                                                           | 1.946             |
| Predicted Endpoint (-log<br>C) | 2.69288        | 3.23989                                                                         | 2.54395           |
| Distance                       | 0.697          | 0.703                                                                           | 0.721             |
| Reference                      | YRTMA6 9;11;78 | FMCHA2 -;C149;89                                                                | ARZNAD 30;2023;80 |

# Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP\_6 feature: 16: [\*]:[cH]:[\*]
- 3. Unknown FCFP\_6 feature: 71476542: [\*]:[c](:[\*])Cl
- 4. Unknown FCFP\_6 feature: 1747237384: [\*][c]1:[\*]:[cH]:n:1
- 5. Unknown FCFP\_6 feature: 1618154665: [\*][c](:[\*]):[cH]:[cH]:[\*]
- 6. Unknown FCFP\_6 feature: 136686699: [\*]NC

| Feature Contribution |
|----------------------|
|----------------------|

| Top features for positive contribution |            |                   |       |  |  |  |
|----------------------------------------|------------|-------------------|-------|--|--|--|
| Fingerprint                            | Bit/Smiles | Feature Structure | Score |  |  |  |
|                                        | ļ.         | 1                 |       |  |  |  |
|                                        |            |                   |       |  |  |  |
|                                        |            |                   |       |  |  |  |
|                                        |            |                   |       |  |  |  |
|                                        |            |                   |       |  |  |  |

| FCFP_6      | 71953198     | PF CI<br>[*]C([*])([*])F                     | 0.392  |
|-------------|--------------|----------------------------------------------|--------|
| ECFP_6      | -1046436026  |                                              | 0.349  |
| ECFP_6      | 642810091    | [*][c](:[*]):[*]                             | 0.281  |
|             | Top Features | for negative contributior                    | n      |
| Fingerprint | Bit/Smiles   | Feature Structure                            | Score  |
| ECFP_6      | 226796801    | N <sup>N</sup> O<br>FFFCI<br>[*]C([*])([*])F | -0.32  |
| ECFP_6      | -817402818   | [*]CI                                        | -0.263 |

| ECFP_6 | -176455838 | Ņ                     | -0.257 |
|--------|------------|-----------------------|--------|
|        |            |                       |        |
|        |            | N <sup>N</sup> O<br>L |        |
|        |            | l s ↓                 |        |
|        |            | '                     |        |
|        |            | H]:[*]                |        |