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Fig. S1 HCR of marker genes for oyster larva scRNA-seq dataset. HCR expression of 
cluster markers shown in figure 2 with and without DAPI in a larger format. Scale bar is 
50μm.
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Fig. S2 Quality assessment of initial shallow sequencing of oyster trochophore scRNA 
libraries. A) Violin Plots showing gene number per cell (nFeature_RNA), UMI per cell 
(nCount_RNA) and percentage of mitochondrial genes (percent_mito) per cell in each sample 
(Cg1, Cg2, Cg3 and Cg4). Cg2 and Cg3 are technical replicates from the same dissociation. 
Sample Cg1 (used for downstream analysis) presents more overall cells, higher genes and 
UMIs and lower mitochondrial gene content. B) UMAP of integrated samples Cg1, Cg2, Cg3 
and Cg4 coloured by cell clusters C) UMAP of integrated samples Cg1, Cg2, Cg3 and Cg4 
coloured by sample of origin shows Cg1 cells are present in all clusters. 
  



 4 

 

 
Fig. S3. Oyster trochophore larva cell type families. A) UMAP coloured by cell type 
family and B) Cell type tree showing bootstrap support >90. Cell type tree showing 
relationship between clusters calculated as Euclidean distance; 
bootstrap values represent % of time that clade was recovered (10000 repeats). We recover 6 
cell type families: ciliary cells, neurons, myocytes, shell field cells, proliferative cells and 
haemocytes. The oyster immune system starts developing at the trochophore stage (70) and 
we identified four clusters expressing haemocyte related genes including thymosin-beta, 
flotillin-2 and the TF tal-1 (71–73). ISH for haemocyte cluster markers (irx3, lhx2-1 and 
tktl2-3; Fig. 2B and 2C) show expression in two patches on either side of the developing gut, 
which appear to be connected anteriorly. We also identified four clusters that express 
proliferative markers such as mago-nashi 2 (mgn2), sumo3, pcna and CBX1 that play a role in 
stem cell proliferation (74–77). ISH for markers of these clusters (a1cf-1 and unchar-10915) 
showed expression in the region of the developing gut. This is in line with the previous 
observation that, at the trochophore stage, the gut is still developing (31). 
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Fig. S4. Details of ciliary band markers in the oyster trochophore larva. A) Dotplot of 
top 20 marker genes for ciliary clusters and TFs in yellow. Dotplots show expression of 
genes (x axis) in each cell cluster (y axis) of the C. gigas scRNAseq, blue dots indicate 
average expression, size of dots indicate percentage of cells expressing the gene. Notice how 
cluster Cilia-1 shares all marker with other ciliary band clusters, Cilia-2 has unique markers, 
Cilia-3 share most markers with Cilia-4 but Cilia-4 present a subset shared with other 
clusters. B) Maximum projection of HCR for gene marker Crocc (Cilia-3 and Cilia-4) and 
Unchar-13033 (Cilia-2) and C) substacks of details show that Cilia-3 and Cilia-4 are 
prototrochal cells while Cilia-2 contains cells from the telotroch and a few cells posterior to 
the prototroch. Scale bars are 25 μm. 
 
 

 
Fig. S5. Neuronal markers and neuropeptide precursors expression in the trochophore 
oyster larva. Dotplots show expression of genes (x axis) in each cell cluster (y axis) of the C. 
gigas scRNAseq, blue dots indicate average expression, size of dots indicate percentage of 
cells expressing the gene. Genes shown here general neuronal markers (G.M), TFs specific to 
neuronal clusters, neuropeptide precursors and top 20 apical and posterior neuronal markers. 
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Fig. S6. Expression of TFs in the Oyster larva scRNA. Different myocytes clusters express 
different subsets of TFs. Dotplots show expression of genes (y axis) in each cell cluster (x 
axis) of the oyster scRNAseq, blue dots indicate average expression, size of dots indicate 
percentage of cells expressing the gene. Genes on the y axis are all TFs found in the oyster 
larva that are markers for a cluster. 
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Fig. S7. Expression of myocyte markers and “eye master regulators” in the Pax6+ 
cluster of the oyster larva scRNA. Dotplots show expression of genes (x axis) in each cell 
cluster (y axis) of the oyster scRNAseq, blue dots indicate average expression, size of dots 
indicate percentage of cells expressing the gene. 
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Fig. S8. Gene age analyses in different cell types of the flatworm larva. A) Transcriptome 
age indeces (TAI) for different cell types, smaller TAI values correspond to “older” gene age. 
Gene age is inferred using a phylostratigraphy approach, then transcriptomic age index is 
calculated on the log transformed gene average expression per cluster. B) Heatmap showing 
enrichment test −log10(P value) of enrichment test of for phylostratum of marker genes 
phylostrata per cell type in the flatworm. Enrichment was computed using a hypergeometric 
test applied to the number of marker genes in each cluster per phylostrata compared to the 
global set of expressed genes. 
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Fig. S9. Details of flatworm larva HCR from figure 4. HCR expression of cluster markers 
shown in figure 4 with and without DAPI in a larger format. A: apical view, P: posterior 
view, V: ventral view, D: dorsal view, L: lateral view with mouth on the left. Scale bars are 
50 μm. 
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Fig. S10 Quality assessment of initial shallow sequencing of the flatworm Müller’s larva 
scRNA libraries. A) Violin Plots showing gene number per cell (nFeature_RNA), UMI per 
cell (nCount_RNA) and percentage of mitochondrial genes (percent_mito) per cell in each 
sample (Pc1, Pc2, Pc3 and Pc4). Sample Pc3 and Pc4 (technical replicates used for 
downstream analysis) present more cells, higher genes and UMIs and lower mitochondrial 
gene content. Pc1 and Pc2 are technical replicates of each other from the same dissociation. 
B) UMAP of integrated samples Pc1, Pc2, Pc3 and Pc4 coloured by cell clusters C) UMAP 
of integrated samples Pc1, Pc2, Pc3 and Pc4 coloured by sample of origin shows that cells 
from Pc3 and Pc4 libraries are present in all clusters. 
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Fig. S11. Flatworm Müller’s larva cell type families. A) UMAP coloured by cell type 
family and B) Cell type tree showing bootstrap support >90. Cell type tree showing 
relationship between clusters calculated as Euclidean distance; 
bootstrap values represent % of time that clade was recovered (10000 repeats). We recover 
approximately 7 cell type families: ciliated cells, neurons, myocytes, secretory cells, 
proliferative cells, digestive cells and pancreatic-like cells. 
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Fig. S12. Neuronal markers and neuropeptide precursors expression in the flatworm 
Müller’s larva. Dotplots show expression of genes (x axis) in each cell cluster (y axis) of the 
P. crozieri scRNAseq, blue dots indicate average expression, size of dots indicate percentage 
of cells expressing the gene. Genes shown here general neuronal markers (G.M), TFs specific 
to neuronal clusters and neuropeptide precursors. 
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Fig. S13. SAMap alignment between S. mediterranea adult and P.crozieri larvae show 
similarities between neoblast, cathepsin cells, gut cells, myocytes, neurons and ciliated 
cells. S. mediterranea scRNAseq used here is from (13). SAMap alignment scores are defined 
as the average number of mutual nearest cross-species neighbors of each cell relative to the 
maximum possible number of neighbors (13). We find a match (SAMap alignment score >0.2) 
between putative P.crozieri neoblast cells and the known planarian neoblasts, suggesting that 
these are indeed neoblasts cells. We also found matches between muscle cells, several gut 
clusters, cathepsin cells, protonephridia, and several neuronal clusters. We found that ciliary 
band clusters of the Müller’s larva match the epidermis, protonephridia, and pharynx clusters 
of the adult planarian worms (all of which are ciliated). However, adult planarian pharynx cells 
did not match with those of the larval polyclad. 
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Fig. S14. Ciliary genes co-expressed between Oyster (left) and Flatworm (right) larvae 
generated with SAMap. SAMap calculates genes that are co-expressed between each aligned 
pair of cell types. Here we show the expression of co-expressed genes between the oyster (left) 
and the flatworm (right) ciliary clusters. Dotplots show expression of genes (y axis) in each 
cell cluster (x axis), blue dots indicate average expression, size of dots indicate percentage of 
cells expressing the gene. Notice how co-expressed ciliary band genes are not marking other 
ciliated cells in the flatworm larva such as protonephridia or pharyngeal cells. 
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Fig. S15. Expression of homologous TFs in ciliary bands of the oyster (left) and flatworm 
(right). Dotplots show expression of genes (y axis) in each cell cluster (x axis) of the oyster 
scRNAseq (left) and flatworm (right), blue dots indicate average expression, size of dots 
indicate percentage of cells expressing the gene. Genes on the y axis are TFs expressed in the 
ciliary bands of both animals. 
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Fig. S16. Spiralian specific genes show expression in ciliary band of larvae but not adult 
nor juveniles. A-B) Expression of spiralian specific genes from a study by Wu and 
colleagues (23) in the A) oyster and B) flatworm larva ciliary band clusters. Dotplots show 
expression of genes (x axis) in each cell cluster (y axis), blue dots indicate average 
expression, size of dots indicate percentage of cells expressing the gene. Since four of these 
genes are expressed in ciliary bands of both larvae, we named them prototrochin, 
ciliarybandin, trochophorin and mullerin. C) Spiralian specific genes show very weak 
expression in planarian adult cells of S.mediterranea (49) but D) are expressed at larval 
stages in the annelid O. fusiformis (50). 
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Fig. S17. Co-expressed genes between the apical neurons of the oyster (left) and the MIP+ 
neurons of the flatworm (right). SAMap calculates genes that are co-expressed between each 
aligned pair of cell types. Here we show the expression of genes co-expressed between the 
oyster apical neurons (left) and the flatworm MIP+ cells (right). Dotplots show expression of 
genes (x axis) in each cell cluster (y axis), blue dots indicate average expression, size of dots 
indicate percentage of cells expressing the gene. 
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Fig. S18 Ciliary genes co-expressed between Oyster and Sea Urchin larva generated with 
SAMap. SAMap calculates genes that are co-expressed between each aligned pair of cell types. 
Here we show the expression of genes co-expressed between the oyster (left) and the sea urchin 
(right) ciliary clusters. Dotplots show expression of genes (y axis) in each cell cluster (x axis), 
blue dots indicate average expression, size of dots indicate percentage of cells expressing the 
gene. 
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Table S1. Presence (navy) and absence (white) of a set of Neuropeptides in 
Lophotrochozoa. The original data for brachiopods, nemertans, P. dumerilii and phoronids is 
from (70). Fasta files containing the sequence of all NP precursors for C.gigas and P.crozieri 
are present in supplementary materials on zenodo. 
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