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Figure S1: Kaplan-Meier comparative analysis of SNN, AMIL, and MMF. Related to Figure 2. Kaplan-
Meier comparative analysis of SNN, AMIL, and MMF of patient stratification of low- and high-risk patients 
across all 14 cancer types. low- and high-risks are defined by the median 50% percentile of risk predictions. 
Logrank test was used to test for statistical significance in survival distributions between low- and high-risk 
patients (with * marked if P-Value < 0.05). For all model types and cancer types, out-of-sample risk predictions 
in the validation folds were pooled to show overall survival distribution on the entire cohort.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S2: Quantitative performance, local model explanation, and global interpretability pooled anal-
yses of PORPOISE on BLCA. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps,
ROIs, ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom)
cases. In BLCA (n=358), high attention for low-risk cases (n=90) tends to focus on aggregates of lymphocytes,
thick tumor papillae, and muscularis, while in high-risk cases (n=93), high attention focuses on sheet-like and
solid tumor growth, muscularis, and areas of necrosis. B. Local gene attributions for the corresponding low-
risk (top) and high-risk (bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only
(center, ”AMIL”) and multimodal fusion (right, ”MMF”), showing improved patient stratification over AMIL
and long-surviving patients in SNN. D. Global gene attributions across patient cohorts according to unimodal
interpretability (left, ”SNN”), and multimodal interpretability (right, ”MMF”). E. High attention patches from
low-risk (top) and high-risk (bottom) cases with corresponding cell labels. F. Quantification of cell types in
high attention patches for all cases of BLCA with high-risk in red and low-risk in blue, showing high tumor
cell abundance in both risk groups, with increased stromal cell presence in high-risk groups.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S3: Quantitative performance, local model explanation, and global interpretability analyses of
PORPOISE on BRCA. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps, ROIs, ROI
heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom) cases. In
BRCA (n=730), high attention for low-risk cases (n=22) tends to focus on collagenous stroma and aggregates
of lymphocytes, while in high-risk cases (n=223), high attention focuses on areas of tumor cells with increased
mitotic activity, nuclear pleomorphism, and necrosis. B. Local gene attributions for the corresponding low-
risk (top) and high-risk (bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only
(center, ”AMIL”) and multimodal fusion (right, ”MMF”), showing improved patient stratification over AMIL
and long-surviving patients in SNN. D. Global gene attributions across patient cohorts according to unimodal
interpretability (left, ”SNN”), and multimodal interpretability (right, ”MMF”). E. High attention patches from
low-risk (top) and high-risk (bottom) cases with corresponding cell labels. F. Quantification of cell types
in high attention patches for each disease overall, showing decreased tumor cell abundance and increased
lymphocyte and TIL presence in low-risk groups.



í0.50 í0.25 0.00 0.25 0.50

DNAH5 (MUT)
CSMD1 (CNV)

ZNF385D (MUT)
NELL2 (MUT)
MBD6 (MUT)

PXDNL (MUT)
OPCML (MUT)
PTPRT (MUT)
FLRT2 (MUT)

COL14A1 (MUT)
SEC16A (MUT)

DCLK1 (MUT)
EPHA7 (MUT)
PIK3CA (MUT)
SOX11 (MUT)

MUT|CNV

í0.50 í0.25 0.00 0.25 0.50

ULK4 (RNA)
BSG (RNA)

SETD2 (RNA)
TBCK (RNA)
INSL3 (RNA)
TGFA (RNA)

VEGFA (RNA)
PRKD3 (RNA)

TDGF1P3 (RNA)
TDGF1 (RNA)

MAP4K2 (RNA)
NEK4 (RNA)
CLK3 (RNA)

STK25 (RNA)
PALB2 (RNA)

RNA

í0.50 í0.25 0.00 0.25 0.50

MAP2K4 (MUT)
DMBT1 (MUT)
MUC16 (MUT)

MAGEC3 (MUT)
ATR (MUT)

KCNB2 (MUT)
DCLK1 (MUT)
MGAM (MUT)
MBD6 (MUT)

COL14A1 (MUT)
PIK3CA (MUT)

ADAMTS2 (MUT)
SOX9 (MUT)

EPHA7 (MUT)
SOX11 (MUT)

MUT|CNV

í0.50 í0.25 0.00 0.25 0.50

STC2 (RNA)
EIF4A2 (RNA)
LRRK1 (RNA)
STK25 (RNA)

EPHA10 (RNA)
PALB2 (RNA)

BSG (RNA)
TGFA (RNA)

MAP4K2 (RNA)
DAPK2 (RNA)

ICOS (RNA)
TLK1 (RNA)
CLK3 (RNA)

VEGFA (RNA)
NEK4 (RNA)

RNA

Tumor Cells Lymphocytes Stromal Cells Necrosis Epithelial Cells TILs

0.0

0.2

0.4

0.6

0.8

1.0

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S4: Quantitative performance, local model explanation, and global interpretability analyses of
PORPOISE on COADREAD. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps,
ROIs, ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom)
cases. In COADREAD (n=338), high attention for low-risk cases (n=74) tends to focus on muscularis, solid
tumor growth and small nests of tumor cells, while in high-risk cases (n=80), high attention focuses on tumor
cells invading the submucosa into the musclaris. B. Local gene attributions for the corresponding low-risk
(top) and high-risk (bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only
(center, ”AMIL”) and multimodal fusion (right, ”MMF”), showing improved patient stratification over AMIL
and long-surviving patients in SNN. D. Global gene attributions across patient cohorts according to unimodal
interpretability (left, ”SNN”), and multimodal interpretability (right, ”MMF”). E. High attention patches from
low-risk (top) and high-risk (bottom) cases with corresponding cell labels. F. Quantification of cell types in
high attention patches for each disease overall, showing similar admixtures of tumor cells, lymphocytes, and
stromal cells across both risk groups.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Cell Quantification
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Figure S5: Quantitative performance, local model explanation, and global interpretability pooled anal-
yses of PORPOISE on HNSC. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps,
ROIs, ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom)
cases. In HNSC (n=413), high attention for low-risk cases (n=96) tends to focus on regions with increased tu-
mor infiltrating lymphocytes, while in high-risk cases (n=103), high attention areas corresponded with regions
with central necrosis. For both high and low-risk cases, the low attention regions focused on mainly back-
ground stroma. B. Local gene attributions for the corresponding low-risk (top) and high-risk (bottom) cases.
C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only (center, ”AMIL”) and multimodal fusion
(right, ”MMF”), with statistically significant patient stratification between low- and high-risk groups across all
models. D. Global gene attributions across patient cohorts according to unimodal interpretability (left, ”SNN”),
and multimodal interpretability (right, ”MMF”). E. High attention patches from low-risk (top) and high-risk
(bottom) cases with corresponding cell labels. F. Quantification of cell types in high attention patches for each
disease overall, showing increased tumor cell presence in the high-risk group, with increased lymphocyte and
TIL presence in the low-risk group.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S6: Quantitative performance, local model explanation, and global interpretability pooled analy-
ses of PORPOISE on LIHC. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps, ROIs,
ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom) cases.
In LIHC (n=332), high attention for low-risk cases (n=85) tends to focus on dense regions of lymphocytes,
while in high-risk cases (n=84), high attention focuses on areas with high tumor-grade morphology, such as
increased nuclear pleomorphism. B. Local gene attributions for the corresponding low-risk (top) and high-risk
(bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only (center, ”AMIL”) and
multimodal fusion (right, ”MMF”), showing poor stratification with SNN and better stratification in AMIL and
MMF. D. Global gene attributions across patient cohorts according to unimodal interpretability (left, ”SNN”),
and multimodal interpretability (right, ”MMF”). E. High attention patches from low-risk (top) and high-risk
(bottom) cases with corresponding cell labels. F. Quantification of cell types in high attention patches for each
disease overall, showing increased tumor cell presence in high-risk patients and increased lymphocyte and TIL
presence in low-risk patients.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

TCGA-

TCGA-

TCGA-97-7552

TCGA-93-8067

  -0.5               0              0.5-0.5                0               0.5

150µm

150µm

3mm

3mm 50µm

     -0.5                0               0.5

      -5.0               0               5.0 

C
el

l F
ra

ct
io

n

P-Value: 2.48e-01 P-Value: 1.14e-01 P-Value: 1.78e-02 (*)

Integrated Gradient AttributionTime (Years)Time (Years) Integrated Gradient Attribution

Lo
w

 R
is

k
H

ig
h 

R
is

k

Time (Years)

C
el

l F
ra

ct
io

n

Cell Identity

G
en

es

Tumor Cells Lymphocytes Stromal Cells Dead Cells Epithelial Cells

High Risk
Low Risk

Lo
ca

l I
nt

er
pr

et
ab

ili
ty

G
lo

ba
l I

nt
er

pr
et

ab
ili

ty

 R
el

at
iv

e 
Fe

at
ur

e 
Va

lu
e

High

Low

 R
el

at
iv

e 
Fe

at
ur

e 
Va

lu
e

High

Low

Lu
ng

 A
de

no
ca

rc
in

om
a 

(L
U

A
D

)

AMIL MMF SNN MMFSNN

High Risk
Low Risk

A

DC

E

B

F

Molecular ExplanationROI ROI HeatmapWhole Slide Image Attention Heatmap
1.0

0.0

A
tte

nt
io

n 
W

ei
gh

t
Cell Quantification

í0.50 í0.25 0.00 0.25 0.50

PLXNA2 (MUT)
COL12A1 (MUT)

CDH8 (MUT)
NAV3 (MUT)
XIST (MUT)

KRAS (MUT)
EPHA3 (MUT)

RAS (MUT)
ADAM19 (MUT)
MUC5B (MUT)
SOGA2 (MUT)

N7SKP226 (CNV)
ZNF521 (MUT)

COL22A1 (MUT)
PVT1 (CNV)

MUT|CNV

í0.50 í0.25 0.00 0.25 0.50

RPS6KA1 (RNA)
EXT1 (RNA)

MLLT10 (RNA)
MERTK (RNA)
STK33 (RNA)

RPS6KL1 (RNA)
CD7 (RNA)

PRKCA (RNA)
STK32A (RNA)

CSNK1A1L (RNA)
EIF2AK3 (RNA)

CCR2 (RNA)
CD109 (RNA)

TNFSF14 (RNA)
NBN (RNA)

RNA

í0.50 í0.25 0.00 0.25 0.50

ZNF536 (MUT)
ADAM19 (MUT)

LINC00609 (CNV)
ZNF831 (MUT)

PKHD1L1 (MUT)
MYC (CNV)

COL22A1 (MUT)
FLG (MUT)

VCAN (MUT)
SI (MUT)

DNAH17 (MUT)
ZNF521 (MUT)

PVT1 (CNV)
MUC5B (MUT)

TMEM75 (CNV)

MUT|CNV

í0.50 í0.25 0.00 0.25 0.50

CSNK1A1L (RNA)
RPS6KL1 (RNA)

EXT1 (RNA)
PDYN (RNA)
PATZ1 (RNA)

MAP3K7 (RNA)
RPS6KA1 (RNA)

NBN (RNA)
BMP1 (RNA)
ITGA1 (RNA)

CD7 (RNA)
NFKB2 (RNA)

TNFSF14 (RNA)
PRKCA (RNA)
CD109 (RNA)

RNA

 R
el

at
iv

e 
Fe

at
ur

e 
Va

lu
e

High

Low

G
en

es
G

en
es

1.0

0.0

A
tte

nt
io

n 
W

ei
gh

t

C

N

C

Fig. S7: Quantitative performance, local model explanation, and global interpretability analyses of
PORPOISE on LUAD. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps, ROIs,
ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom) cases.
In LUAD (n=431), high attention for low-risk cases (n=105) tends to focus on regions with dense inflamma-
tory infiltrate, predominantly comprised of lymphocytes, and regions of mucin deposition, while in high-risk
cases (n=89), high attention focuses on tumor cells with increased nuclear pleomorphism, areas of necrosis,
and tumor-associated dense fibrous stroma. B. Local gene attributions for the corresponding low-risk (top)
and high-risk (bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only (center,
”AMIL”) and multimodal fusion (right, ”MMF”), showing poor stratification with SNN and better stratification
in AMIL and MMF D. Global gene attributions across patient cohorts according to unimodal interpretability
(left, ”SNN”), and multimodal interpretability (right, ”MMF”). E. High attention patches from low-risk (top)
and high-risk (bottom) cases with corresponding cell labels. F. Quantification of cell types in high attention
patches for each disease overall, showing increased lymphocyte and TIL presence in low-risk patients.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S8: Quantitative performance, local model explanation, and global interpretability pooled analy-
ses of PORPOISE on LUSC. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps, ROIs,
ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom) cases.
In LUSC (n=441), high attention for low-risk cases (n=97) tends to focus on regions with dense inflammatory
infiltrate, predominantly comprised of lymphocytes (presumed TILs), while in high-risk cases (n=103), high
attention focuses on regions of central necrosis within tumor nests. B. Local gene attributions for the corre-
sponding low-risk (top) and high-risk (bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”),
histology-only (center, ”AMIL”) and multimodal fusion (right, ”MMF”), showing improved patient stratifica-
tion over AMIL and late-stage patients in SNN. D. Global gene attributions across patient cohorts according
to unimodal interpretability (left, ”SNN”), and multimodal interpretability (right, ”MMF”). E. High attention
patches from low-risk (top) and high-risk (bottom) cases with corresponding cell labels. F. Quantification of
cell types in high attention patches for each disease overall, showing increased lymphocyte and TIL presence
in low-risk patients.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:

l(�, X) = �
X

i�U
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�Xi� � log
X

j�Ri

eXj�
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� ,
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�eXi�

P
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S9: Quantitative performance, local model explanation, and global interpretability pooled anal-
yses of PORPOISE on SKCM. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps,
ROIs, ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom)
cases. In SKCM (n=222), high attention regions for low-risk cases (n=29) focused on tumor-infiltrating lym-
phocytes, while the high attention regions for high-risk cases (n=55) paid more attention to ulcerated regions
and regions of densely packed tumor cells. For both high and low-risk cases, the low attention regions focused
mainly on background blood. B. Local gene attributions for the corresponding low-risk (top) and high-risk
(bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only (center, ”AMIL”) and
multimodal fusion (right, ”MMF”), showing better patient stratification in AMIL and SNN. D. Global gene
attributions across patient cohorts according to unimodal interpretability (left, ”SNN”), and multimodal inter-
pretability (right, ”MMF”). E. High attention patches from low-risk (top) and high-risk (bottom) cases with
corresponding cell labels. F. Quantification of cell types in high attention patches for each disease overall,
showing increased tumor cell and necrosis presence in the high-risk group, with increased lymphocyte and TIL
presence in the low-risk group.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and

Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S10: Quantitative performance, local model explanation, and global interpretability pooled anal-
yses of PORPOISE on STAD. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps,
ROIs, ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom)
cases. In STAD (n=347), high attention for low-risk cases (n=53) tends to focus on dense regions of tumor, lym-
phocytes, and muscularis, while in high-risk cases (n=78), high attention focuses on dense regions of tumor and
lymphocytes. B. Local gene attributions for the corresponding low-risk (top) and high-risk (bottom) cases. C.
Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only (center, ”AMIL”) and multimodal fusion
(right, ”MMF”), showing better patient stratification in AMIL and SNN. D. Global gene attributions across
patient cohorts according to unimodal interpretability (left, ”SNN”), and multimodal interpretability (right,
”MMF”). E. High attention patches from low-risk (top) and high-risk (bottom) cases with corresponding cell
labels. F. Quantification of cell types in high attention patches for each disease overall, showing increased
lymphocyte and TIL presence in the low-risk group.
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Cox partial likelihood to train the weights of the network to transform molecular features into explanatory factors
that explain survival. The likelihood and its derivative for back propagation can be written as:
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Where Xi are the inputs to the output layer, � are the Cox model parameters, U is the set of uncensored
samples and Ri is the set of at-risk samples with survival times Yj � Yi.

To build a strong unimodal representation that models intratumoral heterogeneity in histopathology tissue,
we would learn a hierarchical attention network and would process and embed an entire whole-slide image.
Hierarchical attention networks first found success in the natural language processing community in achieving
state-of-the-art performance on large document classification, and have since become a framework for processing
data that have low signal-to-noise ratio. To apply hierarchical attention networks towards whole-slide images in
histopathology, we would load the data as a grid of 256 ⇥ 256 patches. After learning an embedding for each
tissue patch, we would subsequently learn an attention distribution over the patch-level embeddings in the grid,
which would weigh relevant regions in the whole-slide image more heavily in building the grid-level embedding.
This grid-level embedding would capture important histological features for glioblastoma such as microvascular
patterns and high cellular activity, as well as the degree of heterogeneity of normal and proliferative tumor tissue.
The hierarchical attention network would be supervised with the same Cox partial likelihood task as described in
previous section on survival analysis using only molecular profile data.

Following building these two unimodal representations, to learn a multimodal representation, we would calcu-
late the outer matrix product of the molecular and histopathological image features (hg and hp) to build the full
space of possible interactions between features of these subspaces:

hm = hl ⌦ hv

where ⌦ is an outer product of the two representations. This would create a joint multimodal tensor called
hm for -omic and histology modalities. In this tensor, every neuron in the -omic representation is multiplied by
every neuron in histology representation, thus creating a new representation containing the joint information of
both subspaces. Following the computation of this joint representation, a final survival network would be learned
with these multimodal tensors as input.

Risk Management I: It is possible that learning hierarchical attention networks for whole-slide images would
be computationally intractable, as images can be as large as 10000 ⇥ 10000 at the highest magnification in the
TCGA-glioblastoma dataset. One risk management would be to work with smaller downsamples of the in the
image pyramid, which would have less spatial resolution of proliferative tissue. Another risk management would
be to work with a single annotated region-of-interest for each whole-slide image, which would be done by a
trained pathologist. The results of integrating histopathological regions-of-interest with molecular features have
shown equivocal results, which however, might have also resulted because of lack of proper fusion strategies
implemented.

Risk Management II: It is possible that a multimodal representation would not improve upon a unimodal
representation of molecular features in predicting survival outcomes. Areas in which multimodal deep networks
can be tuned for better results include: 1) adjust early vs. late fusion, and 2) choice of fusion operation. First,
in training multimodal networks with image data as input, there is ambiguity in the community on when to fuse -
i.e., learning deep feature representations of images for late fusion might not demonstrate good results, and that
learning less abstract features would work better. Second, other choices for fusion can be explored in addition
to outer product multiplication, such as gated attention fusion. Similar to how our construction of hierarchical
attention networks would learn to attend towards relevant regions in the whole-slide image, an attention mech-
anism over the two extracted unimodal representations would learn to attend towards relevant neurons that are
significant factors for survival analysis. A final strategy would be construction of residual connections between
the penultimate layers of the unimodal networks with the penultimate layer of the multimodal network. Creating a
residual connection would allow the information of the unimodal representation to flow towards the final layer and
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Figure S11: Quantitative performance, local model explanation, and global interpretability pooled anal-
yses of PORPOISE on UCEC. Related to Figure 3, 4, 5, and 6. A. WSIs, associated attention heatmaps,
ROIs, ROI heatmaps, and selected high attention patches from example low-risk (top) and high-risk (bottom)
cases. In UCEC (n=460), high attention for low-risk cases (n-104) tends to focus on background myometrium,
while in high-risk cases (n=125), high attention focuses on tumor regions, especially those with increased nu-
clear pleomorphism and atypia. B. Local gene attributions for the corresponding low-risk (top) and high-risk
(bottom) cases. C. Kaplan–Meier curves for omics-only (left, ”SNN”), histology-only (center, ”AMIL”) and
multimodal fusion (right, ”MMF”), showing improved patient stratification over AMIL and late-stage patients
in SNN. D. Global gene attributions across patient cohorts according to unimodal interpretability (left, ”SNN”),
and multimodal interpretability (right, ”MMF”). E. High attention patches from low-risk (top) and high-risk
(bottom) cases with corresponding cell labels. F. Quantification of cell types in high attention patches for each
disease overall, showing increased tumor cell presence in high-risk patients and increased stromal cell presence
in low-risk patients.
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Figure S12: Exemplars of attention shift from unimodal to multimodal interpretability in WSIs. Related 
to Figure 2. Using PORPOISE, we investigated and examined how feature importance in high attention 
regions shifts when comparing AMIL (trained with histology-only) vs. MMF (histology conditioned with 
molecular profiles). In the assessment of each cancer type, ”ROI 1” corresponds to a region where attention 
decreased from AMIL to MMF, and ”ROI 2” corresponds to a region where attention increased from AMIL to 
MMF. A. In BRCA, attention shifted away from dense areas of tumor to both tumor and stromal regions in 
MMF. B. In KIRC, both stroma and tumor regions with classic ”chicken-wire” vasculature are present in high 
attention regions in AMIL, whereas MMF attends to only stroma and completely segments out the tumor 
regions. C. In SKCM, both AMIL and MMF were able to localize tumor regions, with MMF being able to 
identify clear tumor-stroma boundaries. D. In UCEC, attention shifted towards dense tumor regions and away 
from stroma in MMF.
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Table S1. TCGA Pan-Cancer Demographic Characteristics. Related to Figure 1 and 2.
Cancer No. Cases Age Gender M/F White/Black/Other/NA Grade 1/2/3/4/NA Censorship

BLCA 373 68.0 ± 10.6 277/96 297/20/42/0/14 20/0/0/351/2 0.547
BRCA 730 57.4 ± 13.3 10/720 490/138/43/1/62 NA 0.860
COADREAD 339 64.9 ± 13.0 180/159 247/56/12/1/27 NA 0.761
HNSC 416 61.2 ± 11.9 307/109 353/42/8/2/13 53/247/100/4/12 0.526
KIRC 345 60.1 ± 12.0 219/126 283/50/7/0/6 11/146/135/46/7 0.733
KIRP 259 61.5 ± 12.1 189/70 183/58/6/1/12 NA 0.846
LGG 479 43.4 ± 13.4 268/211 453/21/7/1/10 0/229/249/0/1 0.766
LIHC 333 59.3 ± 13.2 223/110 165/13/149/0/8 44/160/112/12/5 0.655
LUAD 453 65.2 ± 10.0 208/245 344/51/7/1/52 NA 0.651
LUSC 450 67.2 ± 8.6 336/114 315/27/9/0/99 NA 0.573
PAAD 166 64.5 ± 11.0 91/75 146/6/11/0/4 26/91/45/2/2 0.458
SKCM 230 59.5 ± 15.6 140/90 220/1/9/0/6 NA 0.613
STAD 348 65.3 ± 10.5 227/121 211/10/80/1/46 8/123/209/0/8 0.601
UCEC 480 63.9 ± 11.1 0/480 326/96/19/11/29 94/113/265/8 0.844

Table S2. c-Index Model Performances on Survival Prediction across 14 Cancer Types with Logrank 
Test Significance for Patient Stratification. Related to Figure 2.

Study SNN P-Value MIL P-Value MMF P-Value

BLCA 0.595 (0.535-0.637) 2.35e-03 0.542 (0.486-0.580) 2.14e-01 0.631 (0.572-0.671) 2.30e-03
BRCA 0.586 (0.525-0.643) 2.19e-01 0.560 (0.489-0.615) 2.70e-01 0.628 (0.571-0.680) 3.99e-03
COADREAD 0.580 (0.496-0.654) 7.60e-02 0.546 (0.466-0.617) 2.44e-01 0.640 (0.562-0.705) 2.61e-02
HNSC 0.516 (0.478-0.572) 5.10e-01 0.564 (0.507-0.592) 3.15e-01 0.573 (0.525-0.617) 6.82e-02
KIRC 0.633 (0.567-0.697) 2.99e-02 0.567 (0.508-0.650) 5.98e-02 0.659 (0.589-0.709) 4.38e-06
KIRP 0.779 (0.678-0.857) 2.27e-03 0.539 (0.408-0.625) 5.86e-01 0.816 (0.705-0.880) 3.83e-04
LGG 0.792 (0.738-0.841) 5.68e-10 0.668 (0.614-0.734) 1.82e-04 0.808 (0.745-0.844) 7.09e-12
LIHC 0.594 (0.534-0.656) 1.27e-01 0.618 (0.563-0.684) 2.51e-04 0.622 (0.559-0.681) 7.36e-02
LUAD 0.554 (0.493-0.613) 2.48e-01 0.548 (0.489-0.597) 1.14e-01 0.600 (0.548-0.657) 1.78e-02
LUSC 0.522 (0.476-0.572) 2.17e-01 0.561 (0.500-0.597) 2.76e-02 0.538 (0.472-0.575) 5.99e-02
PAAD 0.593 (0.507-0.656) 5.59e-02 0.580 (0.485-0.613) 2.30e-01 0.653 (0.571-0.696) 1.69e-03
SKCM 0.644 (0.568-0.691) 1.37e-02 0.607 (0.509-0.661) 7.35e-03 0.651 (0.581-0.710) 1.74e-03
STAD 0.513 (0.453-0.560) 7.00e-01 0.556 (0.494-0.598) 9.13e-02 0.563 (0.496-0.607) 1.04e-01
UCEC 0.580 (0.484-0.621) 1.49e-01 0.638 (0.563-0.701) 2.66e-03 0.634 (0.527-0.667) 2.33e-02

Overall 0.606 - 0.578 - 0.644 -




