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I. THE 2D MAZE

A. Construction of the maze

The maze is first drawn as a pixel map, as shown in Fig. S1a. Maze pixels are labeled

as a horizontal wall, a vertical wall, or as both horizontal and vertical walls thus creating a

corner.

The walls of the maze generate repulsive forces acting on the Langevin particle. Consider

for instance the vertical wall in Fig. S1b with wall thickness 2dw. The distance d is defined

as the distance from the Langevin particle to the center of the wall. When d is large, beyond

a cutoff value D, the particle experiences no interaction with the wall. When the particle

approaches the wall and d < D, the wall exerts a repulsive force on the particle. On top

of a wall when d < dw, the Langevin particle has a constant potential energy and does not

experience any force either. The force Fwall(d) scales as a Gaussian function and continuously

approaches 0 at d = dw. For dw < d ≤ D, the force is given by

Fwall(d) =
a

c2
(d− dw)e

−d2/(2c2), (1)

while the force exerted by the wall is 0 elsewhere. The parameter c is a measure for the

steepness of the wall’s slope, and a is a measure for the height of the wall. The value of

the cutoff distance D should be taken large enough such that the force becomes negligible

at d = D. In Fig. S1a, black pixels represent very high walls with a = 500, while the red

pixels represent a lower wall with a = 25. The steepness parameter was set to c = δ, the

wall thickness to 2dw = δ, and the cutoff value D = 4δ, where δ = 1/59 is the pixel width

in the maze design with 59× 59 pixels covering an area of 1 by 1.

When the particle is within the cutoff D of two or more walls, the particle only feels the

superposition of the closest horizontal and closest vertical wall. Consequently, the potential

energy function remains continuous and continuously differentiable in the vicinity of corners,

which are characterized as both a vertical and horizontal wall.

In our implementation of the maze potential, the cutoff D is exploited to reduce the CPU-

time of the energy and force calculation. Assume the the Langevin particle is positioned

at (xp, yp). First, the discrete pixel indices (ip, jp) of the particle are determined. Then,

the detection area is set to a square grid of (2nD + 1) × (2nD + 1) pixels centered around

the particle’s pixel (ip, jp), with nD = D/δ = 4 in this paper. Only the walls in these
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(2nD + 1)2 pixels are examined to determine the interaction with the particle, which keeps

the simulation time-efficient even for large mazes.

The Langevin particle dynamics were integrated with the PyRETIS internal engine. In

a Lennard-Jones type of unit system, based on argon1, the following parameters were used:

particle mass m = 1, temperature T = 0.07, friction coefficient γ = 25, and integration

timestep ∆t = 0.01. The interfaces are placed at λA = 0.2, 0.325, 0.55, 0.69, 0.75, and

0.90 = λb.

For completeness, we report the two other factors in Eq. 7 of the main text to be ξ = 0.48

(±1.3%) and τref,[0−′]/∆z = 4.86 (±0.7%).

The simulation input files, together with the maze potential code, can be found on github:

WouterWV/pathsampling toymodels.
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FIG. S1: (a) Pixel map (59 by 59 pixels) used to construct the maze potential in an area of

1 by 1. The red pixels form a lower energetic barrier in the upper channel, while the black

pixels are high walls that are nearly impenetrable. (b) Wall potential corresponding to

force in Eq. 1. Particles within a distance D of the wall center feel a force exerted by the

wall. The top of the wall (distance < dw) is a flat potential. (c) Heat-map of the potential

of a vertical wall. A horizontal force is felt in the upper area (area 1). A particle (red)

with distance d from the wall center is drawn. A radial force is felt in the lower area (area

2). The magnitude of the force in area 2 is determined by the distance d′ to the ‘wall

center edge’. Particles do not feel a force beyond the cutoff D.
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B. 2D histograms of (RE)PPTIS path ensembles

FIG. S2: Visualization of the different path types in each ensemble, for the PPTIS 1

simulation. For each path type, and for each ensemble, the phasepoints of all the

trajectories were histogrammed and visualized using a heatmap. The rows from top to

bottom correspond with ensembles [1±], [2±], [3±] and [4±], and the columns left to right

correspond with path types RMR, LMR, LML and RML. The dashed vertical lines in each

plot represent the interfaces (λ−1, λA, . . . , λB)
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FIG. S3: Same as Fig. S2, for the PPTIS 2 simulation.
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FIG. S4: Same as Fig. S2, for the REPPTIS 1 simulation.
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FIG. S5: Same as Fig. S2, for the REPPTIS 2 simulation. An extra row is included for

REPPTIS 2, due to the extra interface λ2.5. The rows from top to bottom correspond with

ensembles [1±], [2±], [2.5±], [3±] and [4±], and the columns left to right correspond with

path types RMR, LMR, LML and RML.

.
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II. IBUPROFEN PERMEATION

A. Reconstructing the free energy 2D surface of ibuprofen

The two-dimensional free energy profile Ftrue(z, θ) of ibuprofen in a DOPC bilayer is

reported by Jambeck et al. in Fig. 2a of Ref. 2, as obtained from all-atom molecular dynamics

simulations. The authors also report one-dimensional slices of the profile as a function of z

for the cis and trans configurations, and the free energy profile as a function of θ in water

and hexadecane. Tracing these profiles and approximating them with analytical functions

allowed us to reconstruct a free energy profile F (z, θ) resembling their Ftrue(z, θ) profile. We

will now provide the details how this was done.

One-dimensional slices F cis
true(z) ≡ Ftrue(z, θ = 0) and F trans

true ≡ Ftrue(z, θ = π) are provided

in Fig. 2b of Ref. 2. First, these profiles were extracted from the figure using in-house code,

which resulted in 716 equidistant sample points SM = {zi, F s
i }i=1...716 ranging from 0 to

3.5 nm, with sample spacing ∆zs = 3.5 nm/715. Next, two artificial extensions of the grid

were added to the left and the right of this interval. To the left, 50 artificial sample points

SL = {z1 − i∆zs, F
s
1 }i=50...1 were added, such that oscillations introduced by the polynomial

fit (Runge’s phenomenom) are suppressed near z ≈ 0. The same was done on the right,

where 50 artificial sample points SR = {z716 + i∆zs, F
s
716}i=1...50 were added. Hereafter,

a polynomial fit of order 15 was performed to S = SL ∪ SM ∪ SR. This resulted in the

reconstructed profiles F cis(z) ≡ F (z, θ = 0) and F trans(z) ≡ F (z, |θ| = π), which are shown

in Fig. S6a. The regions of the artificial extensions to the left and right are never used in the

simulations, as only the domain z ∈ [0, 3.4 nm] is sampled in the PyRETIS path ensembles.

The free energy profiles of ibuprofen in water (Fwater
true (θ)) and in n-hexane (F n-hexane

true (θ))

are provided in Fig. S1 of Ref. 2. These profiles were extracted from the figure using in-

house code, resulting in 713 equidistant sample points, with sample spacing ∆θs = (2π)/712.

A Fourier reconstruction of order 11 was used to reconstruct the profiles from the sample

points. As the profile is periodic in θ with period 2π, no Gibbs phenomenom occurs, and no

artificial extensions were required. This resulted in the reconstructed profiles F (z = 0, θ)

and F (z = 3.5 nm, θ), which are shown in Fig. S6b.

The free energy profile F (z, θ) used in our simulations is defined as a linear combination
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of the reconstructed one-dimensional profiles

F (z, θ) = F cis(z)
π − θ

π
+ F trans(z)

θ

π
+ Fwater(θ)

z

3.5 nm
+ F n-hexane(θ)

3.5 nm− z

3.5 nm
, (2)

for z ∈ [0, 3.4 nm] and θ ∈ [0, π]. Symmetry operations are used to obtain F (z, θ) for

z ∈ [−3.4 nm, 0] and θ ̸∈ [0, π].

The force vector is given by
(
∂F
∂z
, ∂F
∂θ

)
. As the reconstructed profiles consist of either

polynomials or trigonometric functions, the gradient of Eq. 2 could be computed analytically.

For the water phase region, the reconstruction is ideal, i.e. the original profile describes

ibuprofen in water, and in the reconstructed profile it is also positioned in the water phase.

For the bilayer interior region, the reconstruction might not be ideal, as n-hexane is pos-

sibly a better descriptor of the lipid tail regions |z| ≈ 1, rather than the midplane region

z = 0. Nevertheless, the reconstructed profile F more than suffices for the purpose of our

simulations.
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FIG. S6: Reconstructed profiles. For the z-dependent profiles on the left, only the region

within the dashed lines is used for the RE(PP)TIS simulations.
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B. Langevin dynamics for ibuprofen

The z and θ coordinates of ibuprofen were modeled as two 1D Langevin particles in the

PyRETIS code with each their own ‘mass’. This mass figures in the kinetic energy term

and in the friction term in the Langevin equation. For z, which describes the center-of-

mass motion of ibuprofen through the membrane, the associated mass is the total mass of

the ibuprofen. For θ, the associated mass is the moment of inertia of the OH bond about

the dihedral angle axis, which is the CO bond. In practice, this moment of inertia can be

roughly estimated as mHd
2
OH, with mH equal to hydrogen mass, and d2OH the average OH

bond length. Coriolis effects were neglected, which is acceptable given the friction. Using

one 2D Langevin particle would not have worked well here, as PyRETIS assigns one mass

to one particle. The mass of ibuprofen, which determines the resistance to the center-of-

mass (COM) displacement along z, differs greatly from the inertial moment determining the

resistance to rotational displacement along θ, and these masses cannot be approximated by

a single value.

The temperature was taken to match the temperature of Ref. 2. A typical friction value

of γ = 50 ps−1 was used in the Langevin dynamics which is assumed to be appropriate for

aqueous solution.3 The same friction value was used for z as for θ. GROMACS units (time

in ps, length in nm, mass in u, temperature in K) were used to set the Langevin parameters

for ibuprofen. The following parameters were used: integration timestep ∆t = 0.02 ps,

temperature T = 303K, friction coefficient γ = 50/ps, mass of particle one (z-displacement)

mCOM = 206.31 u, and mass of particle two (θ-displacement) mangle = 0.0093 u.

The simulation input files, together with the ibuprofen potential code, can be found on

github: WouterWV/pathsampling toymodels.

C. RE(PP)TIS simulations of ibuprofen

The order parameter λ is the z coordinate. Six simulations were run with PyRETIS:

1. RETIS entrance

2. RETIS internal barrier

3. REPPTIS internal barrier

4. RETIS escape
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5. REPPTIS escape

6. REPPTIS full transit

Modeling the full transit is not possible with RETIS because of the two stable states in the

leaflet, where trajectories would get trapped. Modeling the entrance was only done with

RETIS, because this simulation only needs 3 interfaces and it does not suffer from long

trapped paths; hence a REPPTIS simulation would not be that useful.

In practice, two runs were done for each of the six simulations: the simulations were

started both from the cis and trans configuration of ibuprofen. It was verified that all

simulations exhibited conformational changes between the trans and cis conformations, and

that these changes occurred in all ensembles. This implies that the two runs are effectively

modeling the same system. Therefore, in the reporting of the results, the data of the two

runs were combined.

The interfaces used in each of the simulations are given in Tab. S1. REPPTIS uses more

interfaces, as both the ‘rising’ and ‘falling’ edges of the free energy barrier require interfaces

that are separated by ∼ 2kBT . RETIS only requires interfaces on the ‘rising’ edge (and

one in stable state B). REPPTIS paths are, however, considerably shorter. The λA and

λB interfaces are matched in RETIS and REPPTIS. For simulation 6, the symmetry of

the free energy profile around z = 0 was used to (almost) cut the simulation domain in

half. Indeed, the interfaces are given by [−3 nm, . . . , 0, λb, λc], where the 2 extra interfaces

λb and λc were added such that the [i±] with z = 0 as middle interface was also sampled.

The local crossing probabilities in the [i±] ensembles for z > 0 can be copied from their

symmetric counterpart ensembles in z < 0. For run 1, [7±] is the PPTIS ensemble with

[λL, λM , λR] = [−0.384 nm, 0, 0.384 nm]. The local crossing probabilities of [(i + N)±] are

given by their symmetric counterpart values in [(i − N)±]. For example, p±[6±] ≡ p∓[8∓] and

p=[5±] ≡ p‡[9±].

Denote N i
j as the amount of RE(PP)TIS cycles for run i of simulation j. Then N1

1 =

91600, N2
1 = 100000, N1

2 = 24982, N2
2 = 21950, N1

3 = 43101, N2
3 = 45236, N1

4 = 31231,

N2
4 = 28966, N1

5 = 100001, N2
5 = 74430, N1

6 = 16506, and N2
6 = 17355.

The crossing probabilities P (λi|λA) for simulations 2, 3, 4 and 5 are given in Fig. S7.

REPPTIS and RETIS give statistically identical results.

The crossing probabilities P (λi|λA) for simulation 6 are given in Fig. S8. The crossing
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FIG. S7: Crossing probabilities for the internal barrier (top) and the escape (bottom),

studied in simulations 2, 3, 4, and 5. The data of the individual runs (that have a different

initial path) are shown. Error bars are standard errors from block averaging.

probability to reach the second leaflet is approximately half the crossing probability to

reach the first leaflet. Indeed, when ibuprofen is located in the first leaflet, the probability

of escaping to the water phase is approximately equal to the probability of overcoming the

internal energy barrier towards the second leaflet. This is a direct consequence of the similar

magnitudes of the free energy barriers of both (rare) transitions.
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sim. description
interfaces [λA, λ1, . . . , λB] (in nm)

run 1 (initial path cis) run 2 (initial path trans)

1†∗ RETIS entrance [-3, -2.059, -1.885] [-3, -2.4, -2.15]

2 RETIS int. barr.
[-1.1, -0.9, -0.75, -0.55,

-0.35, 1.2]

[-1.1, -0.9, -0.75, -0.55,

-0.35, 1.2]

3 REPPTIS int. barr.

[-1.1, -0.85, -0.69, -0.54,

-0.35, 0, 0.35, 0.54, 0.69,

0.85, 1.2]

[-1.1, -0.8, -0.585, -0.449,

-0.349, -0.261, -0.171, 0,

0.171, 0.261,0.349, 0.449,

0.585, 0.8, 1.2]

4 RETIS escape [1.5, 1.75, 1.9, 2.1, 3] [1.5, 1.75, 1.9, 2.1, 3]

5 REPPTIS escape [1.5, 1.74, 1.91, 2.1, 3]
[1.5, 1.66, 1.83, 1.98, 2.15,

2.4, 3]

6∗ REPPTIS full transit

[-3, -2.059, -1.885, -1.29,

-0.885, -0.717, -0.384, 0,

0.384, 0.717]

[-3, -2.4, -2.15, -1.98,

-1.83, -1.66, -1.25, -0.8,

-0.585, -0.449, -0.349,

-0.261, -0.171, 0, 0.171,

0.261]

TABLE S1: Interfaces used in the different RE(PP)TIS simulations. The same λA and λB

interfaces are used in simulations for RETIS as for REPPTIS. This is to ensure that the

comparison of the Pint values from RETIS and REPPTIS make sense. Wirefencing was

used for simulations 2 and 4.

∗: simulations 1 and 6 use a λ−1 = −3.4 nm interface, while the other simulations use no

λ−1 interface.

†: Simulation 1 uses a flat free energy region in the water phases, which was implemented

by imposing F (z, θ) = F (3 nm, θ), ∀|z| > 3 nm. This is done to obtain a better estimate for

τref,[0−′] and ξ. The crossing probabilities of the other simulations do not depend on F in

the water phase.
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FIG. S8: The REPPTIS crossing probabilities PA(λi|λA) of the full membrane transit of

ibuprofen, for the first (blue) and second (orange) runs. Due to cis-trans transitions, the

dihedral angle configuration of the initial path has no effect on the end results. Error bars

are standard errors from block averaging.
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D. Markov model for permeation

As RETIS cannot be used for the full transit, the crossing probability of the full tran-

sition Ptrans can be approximated using a Markov model. The Markov model consists of 4

states, which are vizualized in Fig. S9. State A and D are the left and right water phases,

respectively. State B and C are the free energy minima in the first and second leaflets,

respectively. Let PXY denote the probability of going from state X to a neighbouring state

Y . Let P ( C
A | B ) denote the probability of reaching C for the first time, given that you

are in B, and without passing through A. Similarly, let P (D
A | C ) denote the probability of

reaching D for the first time, given that you are in C, and without passing through A. The

full transit probability Ptrans is then approximated by

Ptrans = PABP ( C
A | B )P (D

A | C ) . (3)

P ( C
A | B ) is simply given by PBC , while P (D

A | C ) is found using a recursive relation

P (D
A | C ) = PCBP ( C

A | B )P (D
A | C ) + PCD.

Substituting PBC for P ( C
A | B ), gives

P (D
A | C ) =

PCD

1− PCBPBC

. (4)

Plugging these expressions into Eq. 3, the transit probability is given by

Ptransit =
PABPBCPCD

1− PCBPBC

. (5)

The relation between the transition probabilities PXY and the characteristic crossing

probabilities is now described. The entrance probability directly gives PAB = PDC = Pentr,

where the first equality holds due to symmetry. The transition probabilities PBA and PBC =

1− PBA are given by the relative ratios of the corresponding rates
PBA =

kBA

kBA + kBC

=
kesc

kesc + kint
,

PBC =
kBC

kBA + kBC

=
kint

kesc + kint
.

Due to symmetry, PBC = PCB and PCD = PBA. Plugging the values of the transition

probabilities into Eq. 3, the final expression for the transit probability is obtained

Ptrans =
Pentrkint

kesc + 2kint
. (6)
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The rates kesc and kint are found by multiplying the crossing probabilities Pesc and Pint with

their respective fluxes fesc and fint kint = fintPint,

kesc = fescPesc.

This final step is not required, as the rate – together with the flux and crossing probability

– are part of the RETIS output.
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FIG. S9: The 4 states of the Markov model (left) and the transition probabilities between

those states (right).
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