

Expanded View Figures

Figure EV1.

Figure EV1. Data supporting the AlphaFold2-Multimer pairwise matrix screen for protein-protein interactions in the 53BP1-RIF1-shieldin-CST pathway.

- A Schematic of predictions that meet the cutoff scores of pDockQ > 0.23, interface PAE < 15 Å, and four or more repeated predictions. Nodes are proteins and fragments used for each prediction. Junction nodes are fragments spanning \pm 200 residues from where large proteins are divided and are only shown if interactions meeting the score cutoffs are present (e.g., TP53BP1_1-2). Edges link the two chains used for each prediction. Edge thickness and color correspond to the number of predictions (out of five for each pair) meeting the score cutoffs. *Self-association of TP53BP1_3 is shown despite not meeting the \geq 4 consistent model cutoff due to previous experimental results corroborating the predicted interaction.
- B Comparison of REV7 dimer structures determined from X-ray crystallography (Left, PDB ID: 6WWA) and from AlphaFold2 prediction (right).
- C Superimposition of predicted heterodimeric structures between REV7 and RIF1 fragments 3 and 4 and 53BP1 fragments 1 and 2. See also Appendix Fig S1.
- D PAE plots of the predicted 53BP1 (fragment 1; 1–600) and RIF1 (fragment 1; 1–570), ranked by predicted template model (pTM) scores.
- E Close-ups of two PAE plots from (D), with the 53BP1 regions of high PAE confidence labeled.
- F Predicted structures of the 53BP1-RIF1 interface. Top, phosphate groups modeled onto two serines of 53BP1 whose phosphorylation is known to be essential for interaction with RIF1. Bottom, surface representation of RIF1 colored by hydrophobicity.
- G Superimposition of the 53BP1-RIF1 interface from two different predicted models.
- H ConSurf sequence conservation analysis of the indicated 53BP1 regions. Residues important for the predicted secondary RIF1-53BP1 interface (53BP1 residues 440– 462) or 53BP1 oligomerization (53BP1 residues 1,237–1,286) are underlined in red.
- I ConSurf sequence conservation analysis of the indicated RIF1 regions. Residues important for the predicted RIF1 oligomerization (RIF1 residues 2,435–2,464) or the predicted secondary RIF1-53BP1 interface (RIF1 residues 79–169) are underlined in red.
- Predicted structure of the RIF1 dimerization interface, one monomer is shown with surface representation colored by hydrophobicity.
- K Superimposition of the RIF1 oligomerization domain and the experimentally-determined structure (translucent) of the corresponding region in *S. cerevisiae* Rif1 (PDB ID: 4B|S).
- L ConSurf sequence conservation analysis of the indicated SHLD2 region. Residues comprising the alpha helix predicted to bind SHLD2 OB-A and OB-B are underlined in red.

Figure EV2. Data supporting the SHLD3 C terminus as necessary and sufficient for RIF1 binding and recruitment to sites of DNA damage.

- A Top-ranking model of RIF1 (1–615) and SHLD3 (131–250) colored by pLDDT score.
- B Five AF2-predicted models of RIF1 (1–615) and SHLD3 (131–250) superimposed, aligned by the SHLD3 chain.
- C Top-ranking AF2 model of RIF1 (1–615) and SHLD3 (131–250), highlighting residues associated with SHLD3 DNA binding and RIF1 53BP1 phosphopeptide binding.
- D Scatter plot of interface PAE vs pDockQ scores of AF2-predicted models between RIF1 (1–615) with the indicated paralogues of the SHLD3 eIF4E-like domain. Cutoff scores of 15 Å and 0.23 PAE and pDockQ scores are shown as dotted lines. Models meeting the cutoff are represented as black points and those that do not are represented as gray points.
- E Immunoblot of whole cell extracts of U2OS 2-6-3 cells transfected with plasmids encoding the indicated eGFP-tagged SHLD3. Lysates were probed for eGFP and tubulin (loading control). IB—immunoblot. EV—empty vector.
- F Representative micrographs of the LacR/LacO assay using mCherry-LacR as bait to evaluate chromatin recruitment of eGFP-tagged SHLD3 variants as a control for the experiments using mCherry-LacR-RIF1^N in Fig 2E and F.
- G Quantification of F. GFP intensities are presented as a ratio between the average fluorescence intensity within the mCherry-labeled LacR focus and the average nuclear intensity. Bars represent mean (*n* = 140, 138, 131, 133 for eGFP, eGFP-SHLD3, eGFP-SHLD3^N, eGFP-SHLD3^C from three biologically independent experiments).
- H Representative micrographs of control experiments for the LacR-Fokl assay in Fig 2H and I to evaluate DNA-damage recruitment of eGFP-tagged SHLD3 variants. LacR-Fokl expression was not induced, and no mCherry-LacR-Fokl or eGFP-SHLD3 foci were detected.
- Representative micrographs of the LacR-Fokl assay to evaluate DNA-damage induction after mCherry-LacR-Fokl expression. U2OS 2-6-3 cells were transfected with plasmids encoding eGFP-SHLD3 and treated with 4-hydroxytamoxifen and Shield-1 peptide to induce mCherry-LacR-Fokl expression. The cells were then analyzed for γ-H2AX focus formation colocalizing with mCherry-LacR-Fokl as a proxy for DNA double-strand break formation through immunofluorescence (top). Colocalization of mCherry-LacR-Fokl focus with endogenous RIF1 was also assessed (bottom).
- J Quantification of I. Immunofluorescence intensities are presented as a ratio between the average fluorescence intensity within the mCherry-labeled LacR focus and the average nuclear intensity. Bars represent mean (*n* = 95, 88, 90, 94 for γ-H2AX eGFP, γ-H2AX eGFP-SHLD3, RIF1 eGFP, RIF1 eGFP-SHLD3 from two biologically independent experiments).

Source data are available online for this figure.

Figure EV2.

Figure EV3. Data supporting the polar interactions that are essential for SHLD3-RIF1 binding.

- A Immunoblot of whole cell extracts of U2OS 2-6-3 cells transfected with plasmids encoding the indicated eGFP-tagged SHLD3^C (residues 126–250) variants. Lysates were probed for eGFP and tubulin (loading control). IB—immunoblot. EV—empty vector. WT—wild-type.
- B Representative micrographs of the LacR/LacO assay using mCherry-LacR-RIF1^N as bait to evaluate chromatin recruitment of eGFP-tagged SHLD3^C alanine substitution variants shown in Fig 3C. SHLD3^C: residues 126–250. RIF1^N: residues 1–967.
- C Representative micrographs of the LacR-Fokl assay to evaluate DNA-damage recruitment of eGFP-tagged SHLD3^C alanine substitution variants after induction of LacR-Fokl expression shown in Fig 3D. SHLD3^C: residues 126–250.
- D Representative micrographs of the LacR-Fokl assay to evaluate DNA-damage recruitment of endogenous RIF1 after induction of LacR-Fokl expression in the presence of exogenously expressed eGFP-tagged SHLD3^C alanine substitution variants. SHLD3^C: residues 126–250.
- E Quantification of D. RIF1 immunofluorescence intensities are presented as a ratio between the average fluorescence intensity within the mCherry-labeled LacR focus and the average nuclear intensity. Bars represent mean values (*n* = 99, 92, 88, 97, 90, 92, 100 for EV, WT, S131A, W132A, R166A, N201A, D216A from two biologically independent experiments).
- F Immunoblot of whole cell extracts of U2OS 2-6-3 cells transfected with plasmids encoding the indicated eGFP-tagged SHLD3^C (residues 126–250) variants. Lysates were probed for eGFP and tubulin (loading control).
- G Representative micrographs of the LacR/LacO assay using mCherry-LacR-RIF1^N as bait to evaluate chromatin recruitment of eGFP-tagged SHLD3 H242A/K243A. H Quantification of G. GFP intensities are presented as a ratio between the average fluorescence intensity within the mCherry-labeled LacR-RIF1^N focus and the
- average nuclear intensity. Bars represent mean values (n = 127, 129, 136 for EV, WT, H242A/K243A from three biologically independent experiments). Analysis was performed using the Kruskal–Wallis test followed by Dunn's multiple comparisons against empty vector control. ****P < 0.0001.
- I Immunoblot of whole cell extracts of RPE SHLD3-KO cells stably transduced with lentivirus encoding the indicated 3xFLAG-tagged SHLD3 alanine substitution variants. Lysates were probed for FLAG and tubulin (loading control). IB—immunoblot.
- J Immunoblot of whole cell extracts of complemented RPE SHLD3-KO cells shown in (I) that were transfected with plasmid encoding eGFP-SHLD2. Lysates were probed for eGFP and tubulin (loading control).

Source data are available online for this figure.

Figure EV4.

◀

Figure EV4. Data supporting the extreme N terminus of RIF1 binding SHLD3 through polar residues.

- A Immunoblot of whole cell extracts of U2OS 2-6-3 cells transfected with plasmids encoding the indicated mCherry-LacR-fused RIF1 truncations. Lysates were probed for mCherry and tubulin (loading control). IB: immunoblot, EV: empty vector. *: nonspecific band.
- B Representative micrographs (of three biologically independent experiments) of the LacR/LacO assay using the indicated mCherry-LacR-fused RIF1 variants to evaluate their ability to recruit eGFP-SHLD3 to chromatin shown in Fig 5A.
- C Immunoblot of whole cell extracts of U2OS 2-6-3 cells transfected with plasmids encoding the indicated mCherry-LacR-fused RIF1^N (residues 1–967) alanine variants. Lysates were probed for mCherry and tubulin (loading control). *: nonspecific band.
- D Representative micrographs (of three biologically independent experiments) of the LacR/LacO assay using the indicated mCherry-LacR-fused RIF1^N variants to evaluate their ability to recruit eGFP-SHLD3 to chromatin shown in Fig 5B. WT: wild-type.
- E Immunoblot of whole cell extracts of U2OS 2-6-3 cells transfected with plasmids encoding the indicated mCherry-LacR-RIF1^N and eGFP-SHLD3^C variants. Lysates were probed for mCherry, eGFP, and tubulin (loading control). *: nonspecific band.
- F Representative micrographs of the LacR/LacO assay using the indicated mCherry-LacR-RIF1^N and eGFP-SHLD3^C variants to evaluate their colocalization at LacO arrays shown in Fig 5D.
- G Sanger sequencing chromatograms of PCR products amplified from U2OS 2-6-3 cells with and without subjecting it to base editing to introduce endogenous D28N mutations. A single clone was isolated that contained the desired mutation (D28N-15). Red boxes highlight induced mutations. The first heterozygous G > A mutation is silent. The second homozygous G > A mutation results in the desired D28N substitution.
- H Immunoblot of whole cell extracts of U2OS 2-6-3 cells with or without base editing to introduce endogenous D28N mutation. Lysates were probed for RIF1 and tubulin (loading control).

Source data are available online for this figure.

Figure EV5.

Figure EV5. Data supporting the importance of SHLD3-RIF1 binding for shieldin activity.

- A Representative flow cytometry density plots measuring IgA expression in unstimulated and stimulated CH12F3 wild-type or ShId3^{-/-} cells. Values shown are %IgA⁺ cells. FSC: forward scatter. WT—wild-type.
- B Quantification of class switch recombination data shown in (A). Bars represent mean \pm s.d., n = 3 biologically independent experiments. Analysis was performed using the Welch's two-tailed *t*-test. ***P = 0.0002.
- C Immunoblot of whole cell extracts of CH12F3 Shld3^{-/-} cells stably transduced with lentivirus encoding the indicated FLAG-tagged SHLD3 alanine substitution variants. Lysates were probed for FLAG and tubulin (loading control). IB—immunoblot. EV—empty vector.
- D Representative flow cytometry density plots measuring IgA expression in unstimulated CH12F3 wild-type or *Shld3^{-/-}* cells stably transduced with lentivirus encoding FLAG-tagged SHLD3 alanine substitution variants. Control experiment for Fig 6B. Values shown are %IgA⁺ cells.
- E Quantification of class switch recombination data shown in (D). Bars represent mean \pm s.d., n = 3 biologically independent experiments. Analysis was performed using the Dunnett's multiple comparisons test compared against Shld3^{-/-} cells complemented with wild-type SHLD3. **P < 0.01, $n^{s}P > 0.05$.
- F Immunoblot of whole cell extracts of RPE *BRCA1-KO SHLD3-KO* cells stably transduced with lentivirus encoding the indicated FLAG-tagged SHLD3 alanine substitution variants. Lysates were probed for FLAG and tubulin (loading control).

Source data are available online for this figure.