
 

 
 

Figure S1. Relationship of Baron and its two noisy variants with the true Segerstolpe-H 
signature. For each reference signature (“Baron” and its two variants – “NL-1” and “NL-6”, 

representing the lowest and highest levels of added noise respectively), each gene’s expression 

value in that signature is shown on the y-axis and its expression in the true signature (Segerstolpe-

H) is shown on the x-axis; both are in log scale. As the noise increases the signatures are less 



similar to the true signature. For acinar and ductal cell types, noise is not added to the Baron 

signature, so the noisy signature (NL-1, NL-6) relationship with the true signature is the same as 

that of the Baron signature. 

  



 
 

Figure S2. Quality of cell type proportion inference using Baron signature in deconvolving 
pseudo-bulk samples from Segerstolpe-H. The estimated and true proportions for each of 100 

pseudo-bulk samples are compared, for all cell types and all methods (BEDwARS, CIBERSORT, 

CIBERSORTx, FARDEEP, BayesPrism). BEDwARS estimations match the true values better 



than the other methods for all cell types. BayesPrism and CIBERSORT(x) underestimates the 

acinar proportions by a factor of 2 even though the estimated and true proportions are highly 

correlated. There is a severe underestimation of ductal proportions by all methods except 

BEDwARS and BayesPrism.  
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Figure S3. Performance evaluation, by RMSE and MAE criteria, of methods for estimation 
of cell type proportions by deconvolving pancreatic pseudo-bulk profiles. Shown are MAE 

(mean absolute error) (A, C, E) and RMSE (root mean squared error) (B, D, F) between estimated 

and true proportions, averaged over the cell types, for all five methods – BEDwARS, BayesPrism, 

FARDEEP, CIBERSORT, CIBERSORTx– tested by us. RMSE and MAE are computed between 

the inferred and true cell type proportions of 100 pseudo-bulk samples derived from Segerstolpe-

H (A, B), Segerstolpe-T2D (C, D), and Enge-H (E, F) data sets. Evaluations are shown with the 

Baron reference signature as well as its noisy variants (NL-1, NL-2, … NL-6). BEDwARS has the 

least RMSE and MAE in Baron group and all noise levels except for the largest two noise levels 

in (E, F). Evaluations are also shown for the hypothetical case where the true underlying signature 

was available during deconvolution (“True” category in each panel), though this is not a common 

situation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

  

  

  

 
 

Figure S4. Correlation between reference and true signature at different noise levels, for 
three pancreatin data sets (A,B,C) and one brain data set (D). Each panel corresponds to a 

cell type, showing median Pearson correlation coefficient (PCC) between log-transformed 

reference and true signatures of that cell type, at varying noise levels. In each panel, the first 

category (“Baron” for A-C and “IP” for D) represents the reference signature without added noise 

and the remaining categories (“NL-X”) represent noisy versions of this signature, with higher 

values of “X” indicating greater added noise. As the noise level increases, the noisy reference 

and true signatures become more dissimilar. To avoid large deviations, the signatures of cell types 

acinar and ductal are not perturbed when creating noisy reference signatures for Segerstolpe-H 

(A) and Segerstolpe-T2D (B) data sets. For the same reason, ductal signature is not perturbed in 

the Enge-H (C) data set.  
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Figure S5. Cell type level comparison of BEDwARS and BayesPrism for the task of 
proportion estimation by deconvolution of Segerstolpe-H pseudo-bulk samples. Different 

panels correspond to different reference signatures used during deconvolution -- the Baron 

signature and its noisy variants NL-1, NL-2, … NL-6, as well as the true signature. Performance 

is measured by the Pearson Correlation Coefficient (PCC) between estimated and true 

proportions of a cell type, across the 100 pseudo-bulk samples. For evaluations with noisy 

signatures, the average over 11 noisy signatures at the same noise level is shown. The 

performance gap between BEDwARS and BayesPrism is large at higher noise levels for most of 

the cell types. The performance gap is small for lower noise levels NL-1,2,3 and Baron signature. 

The performance gap is absent when the true signature is used.  
 



 

 
 
Figure S6. Relationship of Baron and its two noisy variants with the true Segerstolpe-T2D 
signature.  For each reference signature (“Baron” and its two variants – “NL-1” and “NL-6”, 

representing the lowest and highest levels of added noise respectively), each gene’s expression 

value in that signature is shown on the y-axis and its expression in the true signature (Segerstolpe-



T2D) is shown on the x-axis; both are in log scale. As the noise increases the signatures are less 

similar to the true signature. For acinar and ductal cell types, noise is not added to the Baron 

signature, so the noisy signature (NL-1, NL-6) relationship with the true signature is the same as 

that of the Baron signature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure S7. Cell type level comparison of BEDwARS and BayesPrism for the task of 
proportion estimation by deconvolution of Segerstolpe-T2D pseudo-bulk samples. 
Different panels correspond to different reference signatures used during deconvolution -- the 

Baron signature and its noisy variants NL-1, NL-2, … NL-6, as well as the true signature. 

Performance is measured by the Pearson Correlation Coefficient (PCC) between estimated and 

true proportions of a cell type, across the 100 pseudo-bulk samples. For evaluations with noisy 

signatures, the average over 11 noisy signatures at the same noise level is shown. The 

performance gap between BEDwARS and CIBERSORTx is large at higher noise levels for most 

of the cell types. The performance gap is small for lower noise levels NL-1,2,3 and Baron 

signature. The performance gap is absent when the true signature is used.  



 

 
 

Figure S8. Quality of cell type proportion inference using Baron signature in deconvolving 
pseudo-bulk samples from Segerstolpe-T2D. The estimated and true proportions for each of 

100 pseudo-bulk samples are compared, for all cell types and all methods (BEDwARS, 



CIBERSORT, CIBERSORTx, FARDEEP, BayesPrism). BEDwARS estimations match the true 

values better than the other methods for all cell types. CIBERSORT(x) overestimates proportions 

of alpha, gamma, and delta cell types and underestimate acinar and ductal proportions. 

BayesPrism overestimates delta and ductal cell types and underestimates alpha, beta and acinar 

proportions. FARDEEP also frequently overestimates the small proportions and severely 

underestimates proportions of acinar and ductal cell types. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 



Figure S9. Relationship of Baron and its two noisy variants with the true Enge-H signature. 
For each reference signature (“Baron” and its two variants – “NL-1” and “NL-6”, representing the 

lowest and highest levels of added noise respectively), each gene’s expression value in that 

signature is shown on the y-axis and its expression in the true signature (Enge-H) is shown on 

the x-axis; both are in log scale. As the noise increases the signatures are less similar to the true 

signature. For ductal cell type, noise is not added to the Baron signature, so the noisy signature 

(NL-1, NL-6) relationship with the true signature is the same as that of the Baron signature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure S10. Quality of cell type proportion inference using Baron signature in 
deconvolving pseudo-bulk samples from Enge-H. The estimated and true proportions for each 

of 100 pseudo-bulk samples are compared, for all cell types and all methods (BEDwARS, 

CIBERSORT, CIBERSORTx, FARDEEP, BayesPrism). BEDwARS estimations match the true 

values better than the other methods for all cell types except delta for which BayesPrism has 

better estimations. All methods except BEDwARS and BayesPrism show a severe overestimation 

of zero-valued alpha proportions. CIBERSORT(x) underestimates delta proportions by 2 folds 

and BayesPrism has a severe overestimation of zero-valued delta proportions. FARDEEP 



significantly overestimates the zero-valued delta proportions and underestimates the highest 

delta proportions by 2 folds.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 
Figure S11. Cell type level comparison of BEDwARS and BayesPrism for the task of 
proportion estimation by deconvolution of Enge-H pseudo-bulk samples. Different panels 

correspond to different reference signatures used during deconvolution -- the Baron signature 

and its noisy variants NL-1, NL-2, … NL-6, as well as the true signature. Performance is measured 

by the Pearson Correlation Coefficient (PCC) between estimated and true proportions of a cell 

type, across the 100 pseudo-bulk samples. For evaluations with noisy signatures, the average 

over 11 noisy signatures at the same noise level is shown. The performance gap between 

BEDwARS and BayesPrism is large at higher noise levels NL-4,5,6 for most of the cell types. The 

performance gap is small in the case of the Baron signature, and absent when the true signature 

is used.  

 



 
 
Figure S12. Cell type level comparison of BEDwARS and RODEO/Bayesprism for the task 
of signature estimation by deconvolution of Segerstolpe-H pseudo-bulk samples. Different 

panels correspond to different reference signatures used during deconvolution -- the Baron 

signature and its noisy variants NL-1, NL-2, … NL-6. Performance is measured by the Pearson 

Correlation Coefficient (PCC) between estimated and true signatures of a cell type. For 

evaluations with noisy signatures, the average over 11 noisy signatures at the same noise level 

is shown. BEDwARS performance is notably better than RODEO provided with BayesPrism 

estimates of proportions at higher noise levels NL-4,5,6 except for the delta cell type at noise 

levels NL-4 and NL-5. BEDwARS is better for ductal cell type in the case of the Baron signature.  

 
 



 
 
Figure S13. Cell type level comparison of BEDwARS and RODEO/BayesPrism for the task 
of signature estimation by deconvolution of Segerstolpe-T2D pseudo-bulk samples. 
Different panels correspond to different reference signatures used during deconvolution -- the 

Baron signature and its noisy variants NL-1, NL-2, … NL-6. Performance is measured by the 

Pearson Correlation Coefficient (PCC) between estimated and true signatures of a cell type. For 

evaluations with noisy signatures, the average over 11 noisy signatures at the same noise level 

is shown. BEDwARS performance is notably better than RODEO provided with BayesPrism 

estimates of proportions at higher noise levels and cell types except for gamma, delta (NL-4) and 

acinar (NL-6). BEDwARS is better for ductal cell type in the case of the Baron signature.  

 
 



 
 
Figure S14. Cell type level comparison of BEDwARS and RODEO/BayesPrism for the task 
of signature estimation by deconvolution of Enge-H pseudo-bulk samples. Different panels 

correspond to different reference signatures used during deconvolution -- the Baron signature 

and its noisy variants NL-1, NL-2, … NL-6. Performance is measured by the Pearson Correlation 

Coefficient (PCC) between estimated and true signatures of a cell type. For evaluations with noisy 

signatures, the average over 11 noisy signatures at the same noise level is shown. BEDwARS is 

similar to or better than RODEO provided with BayesPrism-estimated proportions at all noise 

levels. When the Baron signature is used (without added noise) both methods perform equally 

well. 

 

 



 

 

 

 

 

 
 

Figure S15. Performance evaluation, by RMSE criterion, of methods for estimating cell type 
signatures by deconvolving bulk transcriptomic profiles with a given reference signature. 

A
   

B
   

C
   

D
   

E
   



Shown is the RMSE between estimated and true gene expression values, averaged over the cell 

types, for all five methods tested by us. Four of the methods utilize RODEO after estimating cell 

type proportions using a deconvolution method – BEDwARS, BayesPrism, FARDEEP, 

CIBERSORT or CIBERSORTx – these are named following the template “RODEO/M” where M 

is the method used for cell type proportion estimation. The sixth method evaluated is BEDwARS, 

since BEDwARS simultaneously estimates signatures as well as proportions. RMSE is computed 

between the inferred and true cell type signatures for the task of deconvolving 100 pseudo-bulk 

samples generated from Segerstolpe-H (A), Segerstolpe-T2D (B), Enge (C), and Darmanis (D, 
E) datasets. In A, B BEDwARS (RODEO/BEDwARS) has the least RMSE for Baron signature 

without added noise and higher noise levels NL-4,5,6. For lower noise levels, BEDwARS 

(RODEO/BEDwARS) is similar to RODEO/BayesPrism in (B). BEDwARS (RODEO/BEDwARS) 

has the least RMSE at all noise levels in C. In the deconvolution of brain transcriptomic profiles, 

RODEO/BEDwARS and RODEO/BayesPrism have similar average RMSE which is less than 

other methods using IP and its noisy versions (D). RODEO/BEDwARS has the least RMSE for 

NG signature (E). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S16. Relationship of IP and its two noisy variants with the true Darmanis signature.  
For each reference signature (“IP” and its two variants – “NL-1” and “NL-6”, representing the 

lowest and highest levels of added noise respectively), each gene’s expression value in that 

signature is shown on the y-axis and its expression in the true signature (Darmanis) is shown on 

the x-axis; both are in log scale. As the noise increases the signatures are less similar to the true 

signature. IP signature is highly diverged from the Darmanis signature. 
 
 



 

 
 
 

 
 
Figure S17. Performance evaluation, by RMSE and MAE criteria, of methods for estimation 
of cell type proportions by deconvolving pancreatic and brain transcriptomic/pseudo-bulk 
profiles. Shown are MAE (mean absolute error) (A, C) and RMSE (root mean squared error) (B, 
D) between estimated and true proportions, averaged over the cell types, for all five methods – 

BEDwARS, BayesPrism, FARDEEP, CIBERSORT, CIBERSORTx – tested by us. RMSE and 

MAE are computed between the inferred and true cell type proportions of 100 pseudo-bulk 

samples derived from Darmanis dataset. Evaluations are shown with the IP reference signature 

as well as its noisy variants (NL-1, NL-2, … NL-6). BEDwARS and BayesPrism have similar 

RMSE for IP and noise levels NL-3, NL-5 and NL-6. Evaluations are also shown for the 

hypothetical case where the true underlying signature was available during deconvolution (“True” 

category in each panel), though this is not a common situation (A, B). Similarly, BEDwARS has 
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the best performance by a large margin in both criteria using NG signature as the reference 

signature and it is close to other methods using CA and MM (C, D). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 
 
Figure S18.  Cell type level comparison of BEDwARS and BayesPrism for the task of 
proportion estimation by deconvolution of Darmanis pseudo-bulk samples. Different panels 

correspond to different reference signatures used during deconvolution -- the IP signature and its 

noisy variants NL-1, NL-2, … NL-6, as well as the true signature. Performance is measured by 

the Pearson Correlation Coefficient (PCC) between estimated and true proportions of a cell type, 

across the 100 pseudo-bulk samples. For evaluations with noisy signatures, the average over 11 

noisy signatures at the same noise level is shown. BEDwARS and BayesPrism are similar in all 

the cases.  
 
 
 
 



 
 
Figure S19. Quality of cell type proportion inference using IP signature in deconvolving 
pseudo-bulk samples from Darmanis.  The estimated and true proportions for each of 100 

pseudo-bulk samples are compared, for all cell types and all methods (BEDwARS, CIBERSORT, 

CIBERSORTx, FARDEEP). Overall, BEDwARS-estimated proportions have higher correlation 

with true proportions than other methods. The performance gap between BEDwARS and other 

methods except BayesPrism is larger for oligodendrocytes, for which CIBERSORT(x) 

underestimates the highest proportions by nearly 10-fold. Neurons, astrocytes and 

oligodendrocytes are abbreviated as Neu, Astro, and Olig, respectively. 

 
 
 
 
 
 
 
 
 
 



 
 
Figure S20. Cell type level comparison of RODEO/BayesPrism and RODEO/BEDwARS for 
the task of signature estimation by deconvolution of Darmanis pseudo-bulk samples. 
Different panels correspond to different reference signatures used during deconvolution -- the IP 

signature and its noisy variants NL-1, NL-2, … NL-6. Performance is measured by the Pearson 

Correlation Coefficient (PCC) between estimated and true signatures of a cell type. For 

evaluations with noisy signatures, the average over 11 noisy signatures at the same noise level 

is shown. In all cases RODEO/BEDwARS and RODEO/BayesPrism have similar performance. 

 



 
 
Figure S21. Relationship of different brain reference signatures with the true Darmanis 
signature.  For each reference signature (CA, IP, NG, and MM), each gene’s expression value 

in that signature is shown on the y-axis and its expression in the true signature (Darmanis) is 

shown on the x-axis; both are in log scale. CA is the most similar to the Darmanis signature 

whereas MM is the most dissimilar one. The MM signature is generated from mouse brain gene 

expression. NG signature is also highly diverged from the true signature, which may be attributed 

to it being derived from a different region (prefrontal cortex) of brain than the Darmanis (temporal 

middle gyrus) signature. 



 
 

Figure S22. Correlation between the true Darmanis signature and reference brain 
signatures from multiple sources. For each cell type, Pearson correlation coefficient (PCC) is 

shown between the log-transformed reference and true signatures. Overall, CA and MM are the 

most similar and dissimilar respectively to the Darmanis signatures. CA: adult single-nuclease 

RNA-seq of human brain from Cell Atlas, IP: RNA-seq data on immune-purified cells from human 

brain, NG: single-nuclease RNA-seq of human brain (Nagy et al.), MM: RNA-seq data on immune-

purified mouse brain.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
Figure S23. Quality of cell type proportion inference using NG signature in deconvolving 
pseudo-bulk samples from Darmanis. The estimated and true proportions for each of 100 

pseudo-bulk samples are compared, for all cell types and all methods (BEDwARS, CIBERSORT, 

CIBERSORTx, FARDEEP, BayesPrism). All methods except BEDwARS fail to predict neuron 

proportion for most of the samples. BayesPrism underestimates neurons proportions by at least 

a factor of 2.5 and 10 for higher and lower proportions, respectively. For astrocytes, the estimated 

values of the highest proportions are almost twice as large as true values, for all methods except 

BEDwARS. The same holds for oligodendrocytes, where other methods overestimate the highest 

proportions by ~ 3-fold. Note that the NG signatures are derived from a different region of brain 

than the Darmanis signatures. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 
 
 
Figure S24. Cell type level comparison of (BEDwARS, BayesPrism) and 
(RODEO/BEDwARS, RODEO/BayesPrism) for proportion and signature estimation by 
deconvolution of Darmanis pseudo-bulk samples using multiple brain reference 
signatures. Different panels correspond to different reference signatures used during 

deconvolution -- CA, IP, MM and NG. A. Performance is measured by the Pearson Correlation 

Coefficient (PCC) between estimated and true proportions of a cell type, across the 100 pseudo-

bulk samples. Performance of BEDwARS and BayesPrism are mostly similar in estimating cell 

type proportions. B. PCC is computed between estimated and true signatures of a cell type for 

signature estimation. Performance of RODEO provided with BEDwARS-estimated proportions is 

slightly better than RODEO/BayesPrism for NG signature. 
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Figure S25. Quality of cell type proportion inference using MM signature in deconvolving 
pseudo-bulk samples from Darmanis. The estimated and true proportions for each of 100 

pseudo-bulk samples are compared, for all cell types and all methods (BEDwARS, CIBERSORT, 

CIBERSORTx, FARDEEP, BayesPrism). Overall BEDwARS and BayesPrism-estimated 

proportions are better than other methods in capturing the trend of true proportions, especially for 

oligodendrocytes. While the maximum estimated proportion is ~10-fold (BEDwARS and 

FARDEEP) and ~100-fold (CIBERSORT(x)) less than the true proportion, BEDwARS and 

BayesPrism estimates have significantly higher correlation for this cell type. A cell type signature 

estimation method such as RODEO does benefit from estimations highly correlated with true 

values even if the absolute values do not match perfectly. 

 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
Figure S26. Quality of cell type proportion inference using CA signature in deconvolving 
pseudo-bulk samples from Darmanis. The estimated and true proportions for each of 100 

pseudo-bulk samples are compared, for all cell types and all methods (BEDwARS, CIBERSORT, 

CIBERSORTx, FARDEEP). All methods perform almost equally well in estimation of proportions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
Figure S27. Evaluation of cell type proportion and signature estimation by Pearson 
Correlation Coefficient and RMSE for SCADIE. Pseudo-bulk profiles of Darmanis dataset were 

deconvolved with SCADIE using two reference signatures – NG and MM. Performance of 

SCADIE was evaluated with three different deconvolution methods – BEDwARS, FARDEEP and 

CIBERSORTx – in its first step, and compared with BEDwARS for cell type proportion (A, B) and 

with BEDwARS and RODEO/BEDwARS for cell type signature estimation (C, D). For the 

estimation of cell type proportion with NG signatures, SCADIE/BEDwARS is competitive with 

BEDwARS but SCADIE/FARDEEP and SCADIE/CIBERSORTx are not competitive. For the 

estimation of cell type signatures starting with NG signatures, SCADIE/BEDwARS is competitive 

with RODEO/BEDwARS but SCADIE/FARDEEP and SCADIE/CIBERSORTx are not. SCADIE’s 

performance in the inference of cell type proportions and signatures is strongly dependent on the 

deconvolution method used for the initialization of cell type proportions in its first step. For 

example, FARDEEP shows the lowest quality of proportion estimates by PCC criterion using MM 

signature (Figure 4C) and SCADIE/FARDEEP (i.e., SCADIE with FARDEEP deconvolution in its 

first step) likewise has the lowest average correlation for the estimation of cell type proportions 

(A). Similarly, BEDwARS has the highest quality of cell type proportion estimates by both PCC 

and RMSE criterion using NG signature, and SCADIE initialized with BEDwARS-estimated 

proportions has similar performance to BEDwARS (A). 
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Figure S28. Quality of cell type proportion inference using NG signature in deconvolving 
pseudo-bulk samples from Darmanis for BEDwARS and SCADIE. SCADIE was evaluated 

with three different deconvolution methods – BEDwARS, CIBERSORTx, FARDEEP – for its first 

step (denoted by SCADIE/BEDwARS, SCADIE/CIBERSORTx, SCADIE/FARDEEP). The 

estimated and true proportions for each of 100 pseudo-bulk samples are compared, for all cell 

types and methods. Quality of estimated proportions by SCADIE are affected by the 

deconvolution method used for the initialization of cell type proportions. In astrocytes and 

oligodendrocytes SCADIE estimated proportions are almost two and three times larger than the 

true proportions when initialized with CIBERSORTx and FARDEEP. Neuron proportions are 

extremely underestimated as well. Similar patterns exist in Figure S23 for CIBERSORTx and 

FARDEEP. BEDwARS and SCADIE/BEDwARS have similar quality of estimation and show the 

most accurate estimates for all cell types. 

 
 
 
 



 
 
Figure S29. Quality of cell type proportion inference using MM signature in deconvolving 
pseudo-bulk samples from Darmanis for BEDwARS and SCADIE. The estimated and true 

proportions for each of 100 pseudo-bulk samples are compared, for all cell types and variants of 

SCADIE as well as BEDwARS. Quality of estimated proportions by SCADIE are affected by the 

deconvolution method used for the initialization of cell type proportions. For oligodendrocytes and 

astrocytes, the estimated proportions are poorly correlated with true correlations when FARDEEP 

is used for initialization. When initialized with CIBEROSRTx-estimated proportions the final 

proportions of oligodendrocytes reported by SCADIE are 100 times less than the true proportions 

even though they are highly correlated with each other. These observations are similar to the 

ones in Figure S25 which confirms that SCADIE’s performance is highly dependent on its 

initialization with other deconvolution methods. SCADIE initialized with BEDwARS has similar 

quality of estimates to BEDwARS and is more accurate than its other variants. 

 
 
 
 



 

 
 
Figure S30. Hierarchical clustering of the cells from DPD-deficient patient and the non-
affected individual. The standardized/scaled expression (divided by max in each dimension to 

fall in (0, 1) interval) of neuronal (GAP43, STMN2, DCX, TBR1, EOMES, SLC17A7) and non-

neuronal (VIM, HES1, SOX2, BGN, DCN) gene markers are shown for the cells of DPD-deficient 

patient and non-affected individual. Hierarchical clustering was performed on the cells grouped 

by their assigned cell type (left) or their cluster index (right). Each cell type and all the cluster 

indices assigned to it are represented with the same color in both heatmaps. Cells from both 

individuals were pooled into a single set before clustering. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S31. Overlap of statistically derived markers between DPD deficiency dataset and 
Tanaka et al. (27) study. For each cluster of cells (rows), shown is the overlap of its markers with 

the markers of a cell type from Tanaka et al. (columns). In cases where a cell type from Tanaka 

et al. has multiple subtypes such as CN1, CN2, …, CN5, the average overlap over the subtypes 

was computed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

         
 
 
Figure S32. Batch correction for bulk RNA-seq samples of affected and non-affected 
groups of individuals. A. PCA plot of bulk RNA-seq and pseudo-bulk samples used in the study 

of DPD deficiency. Points on the left (pink, teal and green) are the bulk RNA-seq samples from 

non-affected (48) and affected individuals (72). The teal and green points represent the eight 

semi-matched bulk samples of the non-affected and affected groups. Points on the right are the 

pseudo-bulk samples for each group. Red points represent pseudo-bulk samples generated by 

bootstrapping from single cell data for non-affected (top) and affected (bottom) groups. The blue 

and brown points are the pseudo-bulk samples generated by summing the expression of cells 

within each organoid. B. The bulk samples (teal) of non-affected and affected groups are batch 

corrected to the bootstrapped pseudo-bulk samples (red) of non-affected and affected groups 

separately.  
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Figure S33. Pairwise similarities of cell type signatures used for deconvolving affected and 
non-affected bulk samples by DPD deficiency. Pearson (left) and Spearman (right) correlation 

coefficients are shown for each pair of cell types. CBC has the highest correlation with INTER by 

both statistics. Similarly, CN is highly correlated with neuron (NEU), NEC, and cluster 11 by both 

criteria.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S34. Kmeans clustering of differential expression patterns across cell types. Each 

gene is assigned a cell type-specific expression fold change between affected and non-affected 

individuals based on results from BEDwARS deconvolution of bulk RNA-seq data. A gene’s (log) 

fold-change in each of 7 cell types (two of these represent pairs of cell types) is its differential 

expression pattern. Genes’ expression patterns are clustered into ten clusters using K-means. 

Shown are the differential expression patterns of genes in each resulting cluster.  



 
 

 
Figure S35. Distribution of the expression of marker genes over the cells. The normalized 

and log-transformed expression of neuronal (GAP43, STMN2, DCX, TBR1, EOMES, SLC17A7) 

and non-neuronal (VIM, HES1, SOX2, BGN, DCN) marker genes represented in the UMAP plots 



of the DPD-deficient patient and non-affected individual. The last panel shows the cluster indices 

on cell clusters. Clusters with the same color were assigned to the same cell type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 



Cluster 
Index 

Expressed 
Markers 

Marker 
Overlap 

GO 
Enrichment 

Cluster 
 type 

Assigned 
Cell Type 

0 CN CN - Affected  CN 
1 CN CN - Affected CN 
2 CN CN - Affected CN 
3 Non-neuronal AS AS Affected  AS 
4 CN CN - Non-Affected CN 
5 CN CN - Affected CN 
6 CN INTER - Affected unassigned 
7 Non-neuronal INTER/BRC - Non-Affected INTER 
8 CN CN - Non-Affected CN 
9 Neuron Neuron - Affected Neuron 

10 Non-neuronal AS AS Non-Affected AS 
11 Inconclusive INTER - Non-Affected unassigned 
12 PGC PGC - Non-Affected PGC 
13 Non-neuronal CBC CBC Non-Affected CBC 
14 Non-neuronal INTER/BRC - Non-Affected BRC 
15 Non-neuronal NEC NEC Affected NEC 
16 Non-neuronal CBC CBC Non-Affected CBC 

 
Table S1. Cell type assignment to cell clusters for the DPD deficient patient and the non-affected 

individual for whom scRNA-seq data were available. Each cluster of cells is assigned to a cell 

type based on the agreement of at least two out of three criteria used. First criterion (Expressed 

Markers) is the average expression of neuronal and non-neuronal genes used by Tanaka et al., 

second criterion (Marker Overlap) is the overlap of the statistically derived markers of our clusters 

and the cell types of Tanaka et al., and the third criterion (GO Enrichment) is the enrichment of 

statistically derived markers in relevant GO terms. Cluster type specifies whether most cells 

belong to the affected individual or non-affected individual.  

 
 
 
 
 
 
 
 
 
 
 
 
 



Table S2. Differential gene expression analysis for DPD deficiency. The summary of 

differential gene expression analysis using Limma package for bulk, pseudo-bulk, and 

deconvolved cell type or pairs of cell types (CN-NEU, CBC-INTER) expression profiles (“DGE”). 

Top 200 DE genes per cell type or pairs of cell types are listed in “Top 200 DE genes per cell 
type” sheet. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

GO:0000785 chromatin 
GO:0005576 extracellular region 
GO:0005615 extracellular space 
GO:0005683 U7 snRNP 
GO:0005739 mitochondrion 
GO:0005743 mitochondrial inner membrane 
GO:0005747 mitochondrial respiratory chain complex I 
GO:0005758 mitochondrial intermembrane space 
GO:0005783 endoplasmic reticulum 
GO:0005788 endoplasmic reticulum lumen 
GO:0005794 Golgi apparatus 
GO:0005852 eukaryotic translation initiation factor 3 complex 
GO:0016282 eukaryotic 43S preinitiation complex 
GO:0016607 nuclear speck 
GO:0032543 mitochondrial translation 
GO:0032870 cellular response to hormone stimulus 
GO:0034663 endoplasmic reticulum chaperone complex 
GO:0035976 transcription factor AP-1 complex 
GO:0042612 MHC class I protein complex 
GO:0042824 MHC class I peptide loading complex 
GO:0051082 unfolded protein binding 
GO:0098869 cellular oxidant detoxification 
GO:1990837 sequence-specific double-stranded DNA binding 

 
Table S3. GO term names for the GO IDs in Figure 5E. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S4. Summary of David gene set characterization performed on top 200 DE genes 
identified by DGE analysis for bulk, bootstrapped pseudo-bulk and deconvolved cell type 
expression profiles for DPD deficiency. In each annotation cluster the first GO with significant 

FDR (FDR < 0.05), highlighted with yellow, was considered.  

 

 

Table S5. Cluster of genes identified by Kmeans clustering based on the pattern of genes’ 
differential expression across the cell types for DPD deficiency. Each column represents the 

genes belonging to the same cluster.  

 

Table S6. Summary of David gene set characterization for cluster of genes identified by 
Kmeans algorithm based on the pattern of genes’ differential expression across the cell 
types for DPD deficiency. The David results for each cluster are included in a sheet named with 

the cluster name (Cluster X). Clusters zero and four were excluded as they had more than 2000 

genes. David results for top 200 DE genes identified by DGE analysis on bulk and bootstrapped 

pseudo-bulk are included for convenient comparison. 

 

Table S7. Top 200 markers per cluster of non-affected and affected cells for DPD 
deficiency. Each column contains the top 200 filtered marker genes for a cluster of cells. These 

markers were used for assigning cell types to the clusters. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Cluster 
Index 

GO Term −𝐥𝐨𝐠𝟏𝟎(𝐩𝐯𝐚𝐥𝐮𝐞) 

3 astrocyte differentiation 2.7 
10 astrocyte differentiation 4.5 

15 

mitotic cell cycle 17.7 
mitotic chromosome condensation 10.6 
regulation of mitotic cell cycle  5.8 
regulation of mitotic nuclear division 2.8 

13 motile cilium 4 
epithelial cilium movement 3.6 

16 

cilium movement 9.7 
motile cilium 7.6 
cilium assembly 4.7 
motile cilium assembly  4.3 

 
Table S8. Enrichment of statistically derived cell cluster markers for gene ontology terms 
used by Tanaka et al. in cell type assignment. Significance of the GO terms enriched in top 

200 statistically derived marker genes for a subset of cell clusters from affected and non-affected 

individuals. The enrichment of these GO terms was used in assigning cell type to clusters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table S9. KnowEng gene set characterization performed on the markers of a subset of cell 
clusters for DPD deficiency. These results were used to assign cell types to cluster of non-

affected and affected cells. The GO terms that were enriched and used for cell type assignment 

are summarized in Table S8 for easier lookup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table S10. Comparison of the run time and memory requirements for deconvolution of 
Segerstolpe-T2D dataset with Baron signatures. One and two Intel(R) Xeon(R) CPUs X5650 

@ 2.67GHz were used for CIBERSORTx and BayesPrism, respectively. One Tesla V100 GPU 

was used for BEDwARS. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Run Specifications Time Memory
BayesPrism 5 threads 60 mins 1 Gb
BayesPrism 20 threads 40 mins 1 Gb
CIBERSORTx - 65 mins 630 Mb

BEDwARS 150 chains 7 hrs 150 Mb



Supplementary Note 1. 
 
Part A.  We examined the histograms of cell type proportions for the benchmark datasets on 

pancreas and brain. In all pancreatic datasets, for each cell type there are samples where the cell 

type’s proportion is less than 0.1 (10%) (Table S11, Figure S36A,B,C). In the brain benchmark 

(Darmanis dataset) presence of rare cell types is not as frequent as the benchmark on pancreas 

(Figure S36D). Thus, we performed a closer examination of results on the pancreas benchmarks 

from the point of view of rare cell types.  
 

We compared the performance of BEDwARS to BayesPrism (the second-best method in our 

benchmarking, added in this revision) in recovering the proportion of cell types for pseudo-bulk 

samples containing at least one rare cell type (having nonzero proportion less than 0.1) (group 

“Has-Rare”) as opposed to pseudo-bulk samples that do not have any rare cell types (Group “No-

Rare”). We computed the PCC and RMSE between estimated and true proportions of each cell 

type, for each group. For both metrics, BEDwARS performance is similar between the two groups 

in all datasets and all cell types except for the ductal cell type RMSE in Segerstolpe-H and 

Segerstolpe-T2D datasets (Figure S37). In comparison, there is a more pronounced mismatch 

between the two groups (Has-Rare and No-Rare) in tests of BayesPrism (Figure S38), 

suggesting that the presence of rare cell types has a greater effect on this method. Figures S37 

and S38 also illustrate the generally superior performance of BEDwARS over BayesPrism, 

regardless of the presence of rare cell types. For instance, BayesPrism shows significantly higher 

RMSE (than BEDwARS) in both groups, for beta, delta and acinar cell types in Segerstolpe-H 

and Segerstolpe-T2D datasets. Also, RMSE of BayesPrism is significantly higher than BEDwARS 

for both groups, for ductal cell type in Segerstolpe-T2D and for beta and delta cell types in Enge-

H.  

 

To take a closer look at BEDwARS estimates of rare cell types’ proportions, for each pancreatic 

dataset we replotted the estimated vs true proportions for all cell types and all methods at a 

greater resolution of 0-0.2 for both axes. Figures S39, S40 and S41 are “zoomed-in” versions of 

Figures S2, S8, and S10. Overall, BEDwARS estimates match the true proportions in magnitude 

better than the other methods as the scatter plots of BEDwARS are more aligned with the diagonal 

(identity) line. BayesPrism shows severe underestimation of beta cell type proportions by a factor 

of ~2 and overestimation of delta and gamma in all three datasets. Also, all methods except 



BEDwARS underestimate the acinar cell type proportions by at least 2 fold in Segerstolpe-H 

(Figure S39) and Segerstolpe-T2D (Figure S40). 

 

In summary, BEDwARS estimates the rare cell type proportions better than the other methods in 

the benchmark on pancreatic datasets. 

 

 

 

 
Figure S36.  The histogram of cell type proportions for the pseudo-bulk mixtures used in 
the pancreas (A-C) and brain (D) benchmarks. 
 

 

 

Dataset Segerstolpe-H Segerstolpe-T2D Enge-H 

Rare Ratio (%) 38 44 17 

 
Table S11. The proportion of pseudo-bulk samples containing at least one rare cell type 
(cell type proportion <= 10%), in each pancreatic dataset. 

A 

B 

C 

D 



 

 
Figure S37. BEDwARS performance comparison between pseudo-bulk samples with 
(“Has-Rare”) or without (“No-Rare”) rare cell types. 
 

 
Figure S38. BayesPrism performance comparison between pseudo-bulk samples with 
(“Has-Rare”) or without (“No-rare”) rare cell types. 



 

 
Figure S39. Quality of cell type proportion inference for small proportions (0-0.2) using 
Baron signature in deconvolving pseudo-bulk samples from Segerstolpe-H. This Figure is 

revisualization of Figure S2 focused on small proportions. 



 

 
Figure S40. Quality of cell type proportion inference for small proportions (0-0.2) using 
Baron signature in deconvolving pseudo-bulk samples from Segerstolpe-T2D. This Figure 

is revisualization of Figure S8 focused on small proportions. 



 

 
Figure S41. Quality of cell type proportion inference for small proportions (0-0.2) using 
Baron signature in deconvolving pseudo-bulk samples from Enge-H. This Figure is 

revisualization of Figure S10 focused on small proportions. 

 
 

 

 

 



Part B. To study the performance of BEDwARS in deconvolution of heterogenous bulk population 

we constructed a third dataset (named “Segerstolpe-MIX”) consisting of 50 pseudo-bulk samples 

from Segerstolpe-H and 50 pseudo-bulk samples from Segerstolpe-T2D. We then performed 

deconvolution on Segerstolpe-MIX dataset using Baron signatures. Figure S42A shows the 

performance comparison by PCC and RMSE metrics averaged over the 50 Segesrtolpe-H 

pseudo-bulk samples that were deconvolved in homogenous (Segerstolpe-H) vs heterogeneous 

(Segerstolpe-MIX/H) settings. The same performance comparison is shown for Segerstolpe-T2D 

in Figure S42B. The deconvolution performance of Segerstolpe-H pseudo-bulk mixtures is similar 

for all cell types in heterogenous and homogeneous settings by both metrics, whereas the 

deconvolution of Segerstolpe-T2D pseudo-bulk mixtures is worsened in heterogenous setting for 

acinar and ductal cell types by both metrics. For beta and delta cell types, the deconvolution 

performance is affected as per RMSE metric only. In summary, BEDwARS performance is by and 

large robust to violation of the homogeneity assumption, as per our evaluations. 

  

The observed occasional deterioration in performance is expected as the underlying assumption 

of BEDwARS is a shared signature among all pseudo-bulk samples. Accommodating for higher 

granularity of signature adjustment, e.g., sample-specific signatures, is a more challenging 

problem, which is left for future work. 

 

 



 
Figure S42. Deconvolution performance comparison between homogenous and 
heterogenous settings on Segerstolpe-H and Segerstolpe-T2D datasets. In the 

heterogeneous setting the bulk samples provided to the deconvolution method are a mix of 

pseudo-bulk samples from Segerstolpe-H and Segerstolpe-T2D. In either setting, the reported 

accuracy is for pseudo-bulk samples from Segerstolpe-H only (panel A) or from Segerstolpe-T2D 

only (panel B).  

 
 
 
 
 
 
 
 
 

A 

B 



Part C. To study the effect of sample size, we repeated deconvolution of Segerstolpe-T2D data 

set using Baron signature with 50 and 25 samples and compared the performance with sample 

size 100 (original analysis in the paper, Figure 2B), using averaged PCC and RMSE per cell type 

(Figure S43). The PCC is not affected by sample size based on PCC metric. Also, except for 

gamma and beta cell types, the RMSE is not affected by sample size. This experiment suggests 

that at least 25 samples should be used in presence of six cell types for the deconvolution task. 

Generalizing from this, we thus recommend users to use datasets with the size at least four times 

the number of cell types to be deconvolved, as smaller sample sizes may not be well suited for 

the BEDwARS methodology. 

 

 
Figure S43. Impact of sample size on the BEDwARS performance. Deconvolution of 

Segerstolpe-T2D data set using Baron signature with three samples sizes 25, 50, and 100. 

 
 

 


