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Abstract: Background:
Haemorrhagic fever with renal syndrome (HFRS) is a rodent-related zoonotic disease
induced by hantavirus. Previous studies have identified the influence of meteorological
factors on the onset of HFRS, but few studies have focused on the stratified analysis of
the lagged effects and interactions of pollution and meteorological factors on HFRS.
Methods:
We collected meteorological, contaminant and epidemiological data on cases of HFRS
in Shenyang from 2005-2019. A seasonal autoregressive integrated moving average
(SARIMA) model was used to predict the incidence of HFRS and compared with Holt-
Winters three-parameter exponential smoothing model. A distributed lag nonlinear
model (DLNM) with a maximum lag period of 16 weeks was applied to assess the lag,
stratification and extreme effects of pollution and meteorological factors on HFRS
cases, followed by a generalized additive model (GAM) to explore the interaction of SO
2  and two other meteorological factors on HFRS cases.
Results:
The SARIMA monthly model has better fit and forecasting power than its own quarterly
model and the Holt-Winters model, with an optimal model of (1,1,0) (2,1,0)  12  .
Overall, environmental factors including humidity, windspeed and SO  2  were
correlated with the onset of HFRS and there was a non-linear exposure-lag-response
association. Extremely high SO  2  increased the risk of HFRS incidence, with the
maximum RR values: 2.583 (1.145,5.827). Extremely windless and low SO  2  played a
significant protective role on HFRS infection, with the minimum RR values: 0.487
(0.260,0.912) and 0.577 (0.370,0.898), respectively. Interaction indicated that the risk
of HFRS infection reached its highest when increasing daily SO  2  and decreasing
humidity.
Conclusion:
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It had shown that environmental factors such as humidity and SO  2  had a delayed
effect on the occurrence of HFRS. Public health professionals should take greater care
in controlling HFRS in low humidity, windless conditions and 2-3 days after SO  2
levels above 200 μg/m  3  .
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Dear Editor,  

Enclosed for your consideration is an original research article, entitled “Prediction, 

impacts and interaction of meteorological and pollution variables for the development of renal 

syndrome hemorrhagic fever”. 

A seasonal autoregressive integrated moving average (SARIMA) model was used to 

predict the incidence of HFRS and comparing with Holt-Winters three-parameter exponential 

smoothing model to assess its prediction effect. Boosted regression tree (BRT) was applied to 

validate the fit and interaction between the factors, followed by a distributed lag nonlinear 

model (DLNM) with a maximum lag period of 16 weeks to assess the lag, stratification and 

extreme effects of pollution and meteorological factors on HFRS cases. A generalized 

additive model (GAM) then was established to explore the interaction of SO2 and two other 

meteorological factors on HFRS cases. 

The SARIMA model might help to enhance the forecast of monthly HFRS incidence 

based on a long-range dataset. It had shown that environmental factors such as humidity and 

SO2 had a delayed effect on the occurrence of HFRS and that the effect of humidity could be 

influenced by SO2 and windspeed. Public health professionals should take greater care in 

controlling HFRS in low humidity, windless conditions and 2-3 days after SO2 levels above 

200 μg/m3.This study may provide a reference for the establishment of a targeted HFRS 

control early warning system. 

All authors have read the manuscript and conflict of interest statement, and approved the 

submission for publication; the work is original, has not been published, and is not being 

considered for publication elsewhere, in whole or in part, in any language. We would be very 

grateful if you could initiate the reviewing process. We are looking forward to hearing from 

you in due time. 

Yours sincerely 

Jing Dong 

School of Public Heath, China Medical University 

Shenyang, Peoples’ Republic of China. 

Email address: jdong@cmu.edu.cn 
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Abstract 

Background:  

Haemorrhagic fever with renal syndrome (HFRS) is a rodent-related zoonotic disease 

induced by hantavirus. Previous studies have identified the influence of 

meteorological factors on the onset of HFRS, but few studies have focused on the 

stratified analysis of the lagged effects and interactions of pollution and 

meteorological factors on HFRS. 

Methods: 

We collected meteorological, contaminant and epidemiological data on cases of HFRS 

in Shenyang from 2005-2019. A seasonal autoregressive integrated moving average 

(SARIMA) model was used to predict the incidence of HFRS and compared with 

Holt-Winters three-parameter exponential smoothing model. A distributed lag 

nonlinear model (DLNM) with a maximum lag period of 16 weeks was applied to 

assess the lag, stratification and extreme effects of pollution and meteorological 

factors on HFRS cases, followed by a generalized additive model (GAM) to explore 

the interaction of SO2 and two other meteorological factors on HFRS cases. 

Results: 

The SARIMA monthly model has better fit and forecasting power than its own 

quarterly model and the Holt-Winters model, with an optimal model of (1,1,0) 

(2,1,0)12. Overall, environmental factors including humidity, windspeed and SO2 were 

correlated with the onset of HFRS and there was a non-linear exposure-lag-response 

association. Extremely high SO2 increased the risk of HFRS incidence, with the 

maximum RR values: 2.583 (1.145,5.827). Extremely windless and low SO2 played a 

significant protective role on HFRS infection, with the minimum RR values: 0.487 

(0.260,0.912) and 0.577 (0.370,0.898), respectively. Interaction indicated that the risk 

of HFRS infection reached its highest when increasing daily SO2 and decreasing 

humidity. 

Conclusion: 

It had shown that environmental factors such as humidity and SO2 had a delayed 

effect on the occurrence of HFRS. Public health professionals should take greater care 

in controlling HFRS in low humidity, windless conditions and 2-3 days after SO2 

levels above 200 μg/m3. 
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1.Introduction 

This hantavirus-like infection has attracted world attention during the Korean 

War since it was first described in Chinese texts 900 years ago(Avsic-Zupancet al. 

2019). Two clinical syndromes caused by hantavirus infection have been 

characterized: hantavirus cardiopulmonary syndrome(HCPS), prevalent mainly in 

America, and Hemorrhagic fever with renal syndrome(HFRS), found in Eurasia(Gutet 

al. 2013). HFRS(Avsic-Zupancet al. 2019), characterized by headache, fever, back 

pain, abdominal pain and acute renal insufficiency(Sunet al. 2021), has caused a 

variety of public problems, with 30,000-60,000 cases per year in mainland China in 

the 1990s(Zhanget al. 2010b). In Europe, over 9000 cases of HFRS are reported 

annually, and most cases associated with HFRS are diagnosed in parts of Europe in 

Russia, Finland and Sweden(Heymanet al. 2009; Vapalahtiet al. 2003). China has the 

highest rate of HFRS disease in the world, with domestic HFRS cases constituting 

90% of the total number of cases worldwide each year(Heet al. 2018; Schmaljohn and 

Hjelle 1997). HFRS is a zoonotic disease associated with rodents and a legally 

reported disease in China(Chen and Qiu 1993). 

In the past, descriptive statistical methods were mostly used for the analysis of 

infectious diseases such as HFRS. Nonetheless, effective prediction of short and 

medium term HFRS incidence can provide a reliable basis for the Center of Disease 

Control (CDC), as well as scientific theory and support for national infectious disease 

prevention and control planning(Liuet al. 2011a). With the application of big data 

prediction technology in various fields, it also supplies approaches for the 

development of HFRS prediction technology. At present, there are many ways to 

study data prediction technology at home and abroad, and they have been broadly 

applied good results(Frazeret al. 2021). Regarding infectious disease forecasting, 

autoregressive integrated moving average (ARIMA) and Holt-Winters models are one 

of the most representative and widely used models in time series forecasting(Qiuet al. 

2021). Today, predictive modeling has been used in many studies in epidemiological 

research. Some reseachers applied the seasonal autoregressive fractionally integrated 

moving average (SARFIMA) model to predict renal syndrome hemorrhagic 

fever(Qiet al. 2020). Furthermore, a European study had applied mathematical 

modeling to explore the pathogenesis and impact of influenza and 

pathogens(Opatowskiet al. 2018).  

Although the amount of HFRS cases dropped significantly from over 1 million 

cases between 1950 and 1995 to 10,000 cases in 2009, the geographical dispersion of 

HFRS cases further increased, with cases notified in all 31 provinces of mainland 

China(Xiaoet al. 2016a). Seven hantavirus serotypes/genotypes have been identified 

in China(Zouet al. 2008). Of these, Hantaan virus and Seoul virus are the main 

pathogens of HFRS, and cases caused by Hantaan virus account for about 70% of 

domestic HFRS cases(Zhanget al. 2011). Climate and environmental changes might 

impact the reservoir ecology and dynamics of rodent carriers, thereby triggering the 

spread of hantavirus transmission(Tianet al. 2017; Zhanget al. 2010b).  

Climatic conditions are broadly regarded as one of the most pivotal factors 
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affecting rodent population dynamics and contributing to more cases of HFRS in 

humans(Liuet al. 2011b). Some studies have found a relevance of climatic factors to 

HFRS. For instance, a systematic evaluation of climate variability and human 

hantavirus infection in Europe was previously carried out by J. Roda Gracia et al. In 

2010, some researches in China used time-series Poisson regression model to examine 

the independent effect of climate variables on the spread of HFRS, pointing out the 

important role of climate variation in the transmission of HFRS in northeastern 

China(Zhanget al. 2010a).It will contribute to future international discussions on 

zoonotic diseases in the context of climate change(Roda Graciaet al. 2015). Yet little 

research has been done on the correlation between pollutants and HFRS epidemics. 

And few studies have synthesized the lagged effects of diverse environmental 

variables on the onset of HFRS and analyzed the interactions among them. Therefore, 

we explored the relationship between meteorological and pollutant factors and the 

onset of HFRS, and speculated that the interaction among environmental factors is of 

attention for the onset of HFRS.  

In this study, the incidence rate was predicted by comparison using time series 

analysis using HFRS surveillance data in Shenyang, followed by the application of 

Boosted regression tree (BRT) verifing the fit and interaction among the 

environmental factors, and the lag effect and interaction of meteorological and 

pollutant factors were investigated using distributed lag nonlinear model (DLNM) and 

generalized additive model (GAM). 

 

2.Methods 

2.1 Setting 

Shenyang is the capital city of Liaoning Province. It is a district-level city in 

China, covering both urban and rural locations. Shenyang is located in latitude 

41°11′–43°02′N and longitude 122°25′–123°48′E, measures 12,860 Sq km and 

composed of 13 districts and 214 towns(Dai and Zhang 2018). In 2019, Shenyang 

City’s average population was 7,511,923. Shenyang city belongs to the temperate 

semi-humid continental climate zone. The geographical situation of Shenyang is 

indicated in Figure S1. 

2.2 Data collection 

We obtained surveillance data on cases of HFRS in Shenyang between 2005 and 

2019 from CDC of Shenyang. All patients were diagnosed according to the Criteria 

and Management Principles of Renal Syndrome Hemorrhagic Fever issued by the 

Ministry of Health. We obtained the corresponding daily weather data from the China 

Meteorological Data Sharing Service (www.data.cma.cn). Meteorological, pollutant 

information were originally from the National Oceanic and Atmospheric 

Administration (NOAA) and 11 state-controlled environmental air quality automatic 

monitoring stations through the website of Shenyang Bureau of Ecology and 

Environment.  

2.3 SARIMA and Holt-Winters model construction 
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Based on the quarterly and monthly data series, additive and multiplicative 

models were adopted to build factor decomposition models respectively, followed by 

the application of simple central moving average method to decompose the following 

four factor maps respectively: (1) long-term trend. (2) cyclical fluctuations. (3) 

seasonal variations. (4) random fluctuations. Auto regressive integrated moving 

average model(Liuet al. 2011a) is a time series forecasting method proposed by 

Geogre Box and Gwilym Jenkins. The ARIMA model is a classical time-series 

analysis method and is extensively used. The SARIMA model is developed on the 

foundation of the ARIMA model. The SARIMA model is based on a further 

development of the ARIMA model, which is particularly suitable for cases where both 

trend and seasonality are present in the series. The SARIMA model is abbreviated as 

SARIMA (P, D, Q) S, where p and q are the orders of autoregressive and moving 

average, P and Q are the orders of seasonal autoregressive and moving average, d is 

the number of variances, D is the number of seasonal variances, and S is the seasonal 

period and cycle length(Chen and Qiu 1993). The construction of the SARIMA model 

is shown in Equation (1). 
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where L is the delay operator, AP(Ls) is the p-order autoregressive operator, Aq(L
s) 

is the q-order seasonal moving average operator, ∇d=(1-L)d is the difference operation, 

and ∇D 

s =(1-Ls)d is the seasonal difference operation. The order of approximation of the 

model is determined based on the autocorrelation function. The QAIC information 

criterion is then used to determine the best combination of parameters for the model, 

and the model satisfies the residual white noise test. 

The Holt-Winters model is a forecasting technique proposed by Holt and Winters 

in 1960 that is based on speculative smoothing. Unlike ARIMA, Holt's linear equation 

has a built-in equation for seasonal factors that directly captures seasonality(Zhuet al. 

2019). 

Three smoothing equations are used to calculate and evaluate deseasonalized 

series, trends and seasonality variables. The Holt–Winters’ additive method can be 

written as follows: 

   1 1(1 )t t t s t tL y S L b                 

  1(1 )t t t tS y L S       1 1(1 )t t t tb L L b       

  1(1 )t t t tS y L S       

where t =1, ..., n, S represents the length of seasonality (months), Lt represents 

the level of the series, and bt denotes the trend and seasonal components. The 

constants used in this model are α (horizontal smoothing constant), γ (trend smoothing 
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constant) and δ (seasonal smoothing constant)(Harrisonet al. 2012). 

2.4 BRT model construction 

BRT methods have been successfully applied to research fields such as disease 

modeling(Mazaheriet al. 2017). The BRT method produces a series of trees, each of 

which grows on the remnant of the previous tree. In this case, the predictions are 

obtained by weighting the grouped responses of the entire regression tree(Hussainet al. 

2021). In the BRT model, f(x) is an evaluation of the response y based on a vector 

predictor of x, which in turn is integrated as an additive form of b(x; γm), as follows: 

 ( ) ( ) ;m m m

m m

f x f x b x     

where βm is the expansion factor and b(x; γm) is a simpli-categorical function with 

parameters y and variables x. The coefficient βm reflects the weights allocated to the 

nodes of each tree and identifies the type of combination predicted for each tree. In 

this approach, the three regularization parameters, number of trees , learning rate (lr) 

and tree complexity (tc), should be optimized. The complexity (tc) should be 

optimized. To this purpose, in this study, various nt, tc (1-10), and lr (0.001, 0.05, and 

0.01) are allocated to the training of the BRT model in order to maximize the model 

performance(Foroughiet al. 2020). 

 

2.5 DLNM model and GAM construction 

DLNM has been extensively used to assess the exposure-lag-response 

relationship between environmental factors and human diseases, such as congenital 

heart disease, HFRS, non-accidental deaths and so on(Caoet al. 2021; Zhanget al. 

2021). The model can be written as follows: 

   log ( , , lag, ) ( Time , )  Holiday t i t tE Y NS M df df NS X NS df DOW           

To analyze the lag and extreme effects of environmental factors, Humidity, 

Windspeed and SO2 were taken and applied to the cross-basis functions of DLNM. 

Here, Yt was the number of daily counts of HFRS cases in daily t; α was the intercept 

of the whole model; NS is a natural cubic spline that acts as a smooth function of the 

model; M represents the estimated environmental variable related to HFRS; Xt is the 

other environmental variables in the pathogenesis of HFRS that requires nonlinear 

confounding effect adjustment; NS was used to adjust for daily confounding in the 

model; DOW is a categorical variable for day of week; Holiday is a binary variable 

used to control the effect of chinese public holidays, β and γ are the regression 

coefficients; The optimal degrees of freedom (df) for the spline function were 

estimated by Akaike information criterion for quasi-Poisson (Q-AIC) and Minimum 

partial regression coefficient (PACFmin) criteria; NS of 4,6 and 8 df were used for 

windspeed, SO2 and relative humidity respectively, and the lag space was set to 3 df. 

NS with 5df/year was applied to time variable. In addition, as the incubation period 

for human hantavirus infection is typically 7-14 days, our model applied the Q-AIC 

guidelines using a delay of up to 16 days.  

In our study, the median environmental variable has been used as a reference 
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value to compute the relative risk. Furthermore, We estimated the effect of extreme 

environmental factors on the incidence of HFRS by comparing the 25th or 75th 

percentile of environmental variables with the median. The impact of environmental 

factors was analyzed by stratifying by gender, age group and number of diagnostic 

delayed days in order to identify susceptible populations and their corresponding 

sensitivities. 

Subsequently, the GAM method was used to explore the interaction of 

meteorological and pollutant factors on the prevalence of HFRS. The model can be 

written as follows: 

1 1 2 2 3 3log[ ( )] 2 ( , ) ( ) ( day )E Yt s X X s X s     

α2 is the intercept; X1 indicates one of the environmental factors (Humidity, 

Windspeed and SO2) whereas X2 and X3 denote the other two; s () indicates penalized 

spline function. s1(X1, X2) is a spline function of the interaction between the 

parameters X1 and X2. (X1, X2, X3 are all 16 lagged variables.) 

 

2.6 Statistical analysis 

As there were missing values in the incidence data of HFRS in Shenyang, we 

performed linear interpolation to compensate as soon as possible in order to better 

apply Box-Jenkins and exponential smoothing methods for incidence prediction. For 

the influence of meteorological and pollutant factors on the number of HFRS cases, 

Spearman correlation analysis was used for feature selection, followed by BRT to fit 

the selected features to the variables and interaction tests. We developed a DLNM 

with a maximum lag of 16 weeks to evaluate the lagged, stratification and extreme 

effects of pollution and meteorological factors on the cases of HFRS. A GAM then 

was established to explore the interaction of SO2 and two other meteorological factors 

on HFRS cases. 

All analyses in our study were performed in R software (version 4.1.3). 

 

3.Results 

3.1 Descriptive characteristics of HFRS cases and environmental factors 
A total of 1,880 cases of HFRS were reported in Shenyang from 2005-2019, of 

which the incidence of HFRS was predominantly in young adults aged 20-50, 

accounting for 71.81% of all cases. Men are more sensible than women at a ratio of 

3.67:1 (1477:403). By the end of 2019, the prevalence of HFRS in Shenyang was 

25.03(10-5) %, and the mortality rate was 0.691% (Table 1). The onset of HFRS 

showed significant differences in seasonality, age, and delayed days in diagnosis of 

onset (p<0.05) (Table S1). Summary statistics of all HFRS cases and environmental 

variables in Shenyang are shown in Table S2. Figure 1 shows the time series 

distribution of daily cases of HFRS and environmental factors from 2005-2019. There 

are distinct seasonal variations in both HFRS and environmental conditions. 
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3.2 Time-series analysis of HFRS% of Holt-Winters and SARIMA model in monthly 

and seasonal prediction.  

From the factor decomposition diagrams in Figure S2, it can be seen that the 

annual incidence rate of HFRS is trending down, and after removing the trend effect 

from the original series, the difference in the average seasonal index among different 

quarters is the difference caused by the seasonal effect. The incidence rate of HFRS in 

Shenyang is in the 1st and 4th quarters every year. The monthly HFRS has the 

characteristics of bimodal distribution, with the first peak in March-May, the second 

peak in November-December, and the seasonal inelasticity rising from April-August. 

The incidence of HFRS in Shenyang is characterized by a bimodal monthly 

distribution, with the first peak in March-May, the second peak in 

November-December, and an exponential decline in April-August, and a seasonal 

inverse rise starting in September. 

The model fixed-order plots in Figures S3 and S4 allow the SARIMA seasonal 

and monthly models to be parameterised for the ACF, PACF plots, combined with the 

“auto.arima()” function to correct for the AR and MA parameters (parameter estimates 

< 2 times the sample standard deviation). The model parameters and tests are shown 

in Table 2, it gives the forecasting accuracy of two models for the HFRS series. The 

SARIMA model has lower values for RMSE, MAE and MAPE, which means the 

SARIMA is more accurate. After modifying the model according to the model 

parameters, the incidence of HFRS from 2005-2018 was used as the training set and 

2019 as the validation set, and the Holt-Winters and SARIMA models were applied to 

predict the incidence of HFRS, respectively, and the prediction effects were plotted as 

obtained in Figure 2 and Table S3. From them it can be seen that the Holt-Winters 

model predicts trends closer to the actual values than the SARIMA model. the 95% 

confidence interval for the SARIMA model is narrower than the Holt-Winters model 

and its interval contains all the actual values. Figure S5-S6 show the tests of goodness 

of fitness and significance for the series of HFRS incidence from the two methods. 

 

3.3 Feature selection and fitting of environmental factors for HFRS 

Spearman correlation analysis showed that HFRS was significantly correlated 

with Humidity (r=-0.10, p<0.01), Windspeed (r=0.07, p<0.05) and SO2 (r=0.09, 

p<0.01) (Table S4). Furthermore, to fit the BRT model, we set the model parameters: 

tree complexing was 5, learning rate was 0.005, and bag.fraction was 0.5. According 

to Figure S7, it can be seen that the degree of fit of each of the three environmental 

factors fitting functions was similar to the Spearman correlation results, and the trend 

with the number of HFRS incidence was significant. 

 Depending on the distribution of observations in the environment space, the 

fitting function can give a distribution of fitted values relating to each predictor. The 

values at the top of each graph indicate the weighted average of the fitted values 

associated with each non-factor predictor. According to the interaction fitting function 

in Figure 5, it is known that environmental factors fit better at moderate levels of 

interaction. 
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3.4 The lag relationship between environmental variables and the incidence of HFRS 

Figure S8 shows that the non-linear exposure–lag–response association among 

daily humidity, windspeed, SO2 and HFRS incidence cases, which indicated that these 

factors are at high relative risk at lags above moderate levels. Different lag times 

correspond to different effects, specifically the effect of low wind speed occurs 

rapidly but lasts for a short time, the effect of high wind speed has a longer lag time 

but has a greater impact, while high humidity can have a transient effect on HFRS and 

high levels of SO2 can have a transient or continuous effect on HFRS, with the effect 

initially concentrated in the lag time of 0-5 days and after 15 days. 

Estimates of the impact of meteorological and pollutant factors on HFRS cases 

show varied lagging modes. Figure S9 shows the overall effect of environmental 

variables for total, gender, age and delayed-days HFRS cases within 16 days. Overall, 

these meteorological and pollutant variables were significantly relevant to HFRS 

cases. We found that RRs increased with the improvement of humidity, windspeed, 

and SO2, suggesting that higher humidity, windspeed, and SO2 increased the risk of 

HFRS. Yet humidity and SO2 separately reached the peak at 98% and 229.1g/m3, 

then began to decrease or stabilize. Windspeed arrived the peak at 3m/s and start 

decreasing. In general, similar trends in exposure-response relationships between 

environmental variables and cases of HFRS disease by gender, age and delayed-days 

group compared to total cases are shown in Figure S9. The minimum risk of incidence 

(RRmin values for environmental factors such as humidity, windspeed and SO2 were 

16%, 8.1m/s and 223μg/m3 respectively. 

Generally, analogous trends in exposure-response and lag-response relationships 

among environmental variables and HFRS cases across gender, age, and delay days of 

groups compared to total cases are shown in Figures S9, 3, and 4. 

 

3.5 Exposure-response relationships for environmental factors with different lag times 

The effects of humidity, SO2 on HFRS differed across lag times and stratification 

factors when the study lag time points were 0 and 16 days. The RR of the effect of 

humidity on HFRS cases tended to increase at lag 0 and 16 days, with humidity RR 

values reaching a maximum at 20-40% and above 90% at lag 0, while lag 16 days 

only showed a maximum RR value at high humidity. The effect values of windspeed 

and SO2 on HFRS cases at lags 0 and 16 days showed a trend of increasing and then 

decreasing RR, with RR values in the range of 2-4m/s and 200-250μg/m3, respectively. 

Within the different grouping intervals, the trend of RR effect values for humidity 

within Delay 0-4 days was slightly different from the overall, and the RR effect values 

for windspeed within Female, Delay 0-4, Delay 5-9 days, and SO2 within Delay 0-4 

days were significantly different. 

 

3.6 Effects of extreme environmental variables on HFRS cases 

To determine the effect of extreme environmental factors on the HFRS, the 

estimated effects were examined by comparing the 25th or 75th percentile of relative 

humidity, wind speed and SO2 with their median values. Table 3 shows the cumulative 

impact of the lag factor extremes on the HFRS at 16 lag days. We found that extreme 
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high levels of SO2 were positively linked to the onset of HFRS, while extreme low 

levels of SO2, with no wind effect, had a protective effect, and the RR values of 

cumulative effects of were 2.583 (1.145,5.827) for high SO2 effect and 0.577 (0.370, 

0.898) for cold SO2 effect. At 16 lag days, significant cumulative effects of windless 

conditions were observed in males (RR value: 0.490 (0.241,0.997)), in the over 50 

years age group (RR value: 0.335 (0.113,0.992)) and in delayed onset for over 10 

days (RR value: 0.324 (0.106,0.983)).In turn, women at extreme SO2 levels and 

patients with a delayed onset of 5-9 days are susceptible, with their RR values: 8.122 

(1.009,65.403) for high SO2 and 0.285 (0.090,0.898) for low SO2, 4.491(1.246,16.193) 

for high SO2 and 0.427(0.213, 0.858) for low SO2, respectively. 

The distributed lagged effects of extreme environmental factors at various lag 

days for all groups were showed in Fig 4. We found that the dry effect indicated a 

maximum RR value on the current day, peaking at 4 lag days and then showed a 

U-shaped curve along the lag days, and the RR value subsequently decreased for the 

next days and then turned to rise along the lag days, whereas wet effect showed the 

opposite trend. The curve of dry and wet effect was roughly similar among different 

stratified groups. On the windless effect, the 2 lag days is a peak followed by a 

decline, while the opposite is true for the windy effect. The overall patients reached 

their highest effect at extreme high or low levels of SO2, usually at a lag of 1 day, 

followed by a gradual downward trend. female, aged >1 years and delayed 5-9 days 

remain the most sensitive people. 

Table 4 indicates the cumulative relative risk of HFRS cases related to extreme 

environmental variables at various lags. Overall, the high level SO2 effect was 

positively related to the risk of developing HFRS, and the cumulative impact 

increased with the number of lag days. The cumulative RR values gradually decreased 

as the number of lagging days rose. There was no significant correlation within the 

lag days for humidity and windy effects with HFRS. The windless effect and low 

levels of SO2 were protective after 0 and 15 days of lagging. 

 

3.7 Environmental interaction during humidity, windspeed, SO2 and HFRS cases 
Statistically significant GAMs were built to show the interaction effect among 

humidity, windspeed and SO2 on HFRS incidence (Figure 5). The program on the top 

side of Fig 5 shows the interaction effect of windspeed and humidity on HFRS. The 

HFRS infection risk increased as daily windspeed and humidity decreased. The plot to 

the bottom of Fig 5 indicates the interaction effect of SO2 and humidity, HFRS tends 

to occur in higher SO2 and lower humidity environmental conditions. 
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4.Discussion 

From the time series and seasonal decomposition of the incidence of HFRS in 

Shenyang, combined with studies in various regions of China(Wuet al. 2020), it can 

be seen that there is a clear seasonal trend in the incidence of HFRS in China, with a 

decreasing trend year upon year. The peak in case reporting differs between single and 

double peaks across regions, with the main peak occurring between March and May 

each year. This study also shows a second peak in November to December, which 

may occur for the following reasons: (1) The peak of population movement is about 

March each year, when the mobility of urban life becomes more complex and the fast 

pace of life and consumption leads to a gradual decline in the demand for health. (2) 

After November, the cooler temperatures in the city lead to larger crowds and a 

greater temperature difference between indoors and outdoors, allowing host animals 

to enter human life more closely and the disease to be more contagious. 

Currently, many scholars have conducted research on predictive models for the 

onset of infectious diseases. The SARIMA model had been used to predicted the 

incidence of HFRS(Qiet al. 2020; Sun and Zou 2018). It shows that SARIMA has the 

characteristics of being unconstrained by data type and high applicability, integrating 

factors such as trend, periodicity and random error, so that it can be used in prediction 

studies of infectious diseases with periodic morbidity characteristics. Pritthijit Nathet 

al.applied both the SARIMA model and the Holt-winters seasonal model for the 

prediction of airborne particulate matter in eastern India, the Holt - winters model was 

considered to be simple in principle and had a high predictive accuracy for diseases 

with a cyclical pattern of onset(Nathet al. 2021). In this study we discussed the effect 

of the SARIMA model applied to the HFRS series and compared it with the 

Holt-Winters model. In terms of model mechanism, the SARIMA model is suitable 

for predicting series that are smooth and stable over time compared to the Holt - 

winters model, which is suitable for predicting models with a single trend of change. 

However, research on time series has limitations, as both methods in this study are 

extrapolated forecasts based on historical data, usually considering the characteristics 

of the series itself, and cannot predict sudden changes in the data due to changes in 

external factors. Moreover, the occurrence and prevalence of infectious diseases are 

influenced by multiple natural factors, climate and other social factors. Our study thus 

explored the lagging, interactive and stratified effects of meteorological and pollutant 

factors on the prevalence of HFRS in Shenyang. 

Firstly, we need to select and fit the features using the spearman method 

combined with a BRT. The results were chosen from three environmental factors, 

windspeed, humidity and SO2, in order to achieve a precise study of the influence of 

environmental factors on HFRS. Subsequently, the DLNM method was applied to 

examine the exposure-lag-response relationship between the average daily cases of 

HFRS disease and environmental factors in Shenyang from 2014-2019. The results 

showed a non-linear lagged relationship among meteorological, pollutant factors and 

HFRS. Extremely high concentration levels of SO2 increased the risk of HFRS, while 

low wind speed and low concentration levels of SO2 were protective against HFRS 
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from 0-16d. It was also found that the lagged effects of different climatic and 

pollutant factors were not identical. The different delay periods reflect the fact that the 

lagged effect of each environmental variable may be related to the spread of infection 

influenced by various factors, including the growth of the virus in the external 

environment, the inclination of people to go outside, and seasonal changes in rodent 

populations(Zhanget al. 2010a; Zhaoet al. 2019). We demonstrated that high 

concentrations of SO2 significantly influenced the spread of HFRS after 0-5 and 15 

lag days. Extreme low wind speeds were strongly associated with HFRS from lag 0 to 

a maximum lag 16 days, suggesting that the incidence of HFRS may be lagged by 

approximately 16 days at low windspeed. It could be similar to the study by 

Zhang(Zhanget al. 2016) et al. on HFMD, mainly because low windspeed may inhibit 

the spread of hantavirus-containing particles(Lighthart and Mohr 1987). The effect of 

humidity on HFRS cases tended to increase at days 0 and 16 when the lag time was 

16 days, with the greatest effect at 20-40% at lag 0 days and at over 90% at lag 16 

days. Higher humidity levels may indicate that humidity affects the survival of the 

rodent host, in addition to affecting the infection and stability of the virus in the in 

vitro environment(Zhanget al. 2010a). Furthermore, in contrast to previous studies, 

our study included pollutants in the HFRS influencing factors and explored the 

non-linear lag between SO2 and HFRS. Our study found that elevated SO2 

concentrations increased the risk of HFRS infection at levels in the range of 200-250 

μg/m3 and were significant in women and in patients with a delayed onset of 5-9 days. 

There is still controversy about the effect of SO2 on HFRS, which may be related to 

regional, population differences and the proportion of pollutants in the air. However, 

regarding the effect of SO2 on other infectious diseases, there were different reports 

showing a significant protective effect of SO2 against influenza(Liet al. 

2021)(RR=0.892, 95% CI: 0.840-0.948), which probably due to the higher outdoor 

pollutants, resulting in a population more dependent on the indoor environment and 

less exposed to the virus.  

Stratified analysis showed that the effects of meteorological and pollutant factors 

varied by sex, age group, and number of days delayed onset. Men were more sensitive 

to extreme low wind speeds than women, and women were more sensitive to extreme 

SO2 concentration levels than men. Similar results have been reported in several 

studies on other infectious diseases(Liet al. 2021).Patients over 50 years were more 

significantly affected by extreme low wind speeds and showed a protective effect, as 

compared to other age groups. But based on previous studies, windspeed effects were 

generally significantly associated with lower age(Yuet al. 2019). This study showed 

that HFRS mainly affected people under 50 years of age at low windspeed, which 

might be attributed to underlying factors such as social factors, population distribution, 

etc. In terms of delay days, patients with a delay of 5-9 days were more sensitive to 

extreme SO2 concentrations and patients with a delay of over 10 days were more 

susceptible to extreme low windspeed. The delay between the onset of HFRS and the 

time of diagnosis led to a lagging effect of environmental factors reinforced by the 

length of time the patient spent in the environment after onset. Additionally, we did 

not take temperature, barometric pressure into account in our study of the correlation 



between environmental factors and HFRS. Some studies had shown that mean and 

extreme temperatures were negatively correlated with cases of HFRS(Liuet al. 2011b). 

This study did not discuss the relationship with HFRS cases in terms of temperature, 

barometric pressure, and rainfall factors, showing different findings of HFRS in 

Shenyang before 2011 and after 2014, suggesting possible spatial and temporal 

variability.  

The results of the interaction analysis showed that higher SO2 and lower 

humidity environments were the dangerous environmental conditions for the 

occurrence of HFRS. It was demonstrated that NOX and SO2 in the air showed strong 

seasonal variations and that their concentrations were closely related to 

meteorological factors such as wind speed, temperature and relative humidity. Air 

pollution may impact the frequency of HFRS cases by modifying viral infectivity and 

immunity in humans and rodents(Ciencewicki and Jaspers 2007; Weber and 

Stilianakis 2008).The combined effect of low windspeed and low humidity also 

affected the development of HFRS disease. Analysis of the geographical distribution 

of the country suggested that this result could be attributed to the region's location in a 

climatic zone(Xiaoet al. 2016b).  

Our research benefits cover: (1) the study period is long, and the study collected 

case and environmental data over many years. (2) For the time series analysis, we 

applied two different models for comparison and also split the data into monthly and 

seasonal data for accurate comparison and forecasting. (3) Our study applies advanced 

statistical methods, not only applying spearman to feature selection, but also applying 

the BRT method to fit the screened variables and their interactions, followed by 

DLNM and GAM to analyse the lagged, extreme and cumulative effects of 

environmental factors. Our findings can provide evidence and guidance on the lagged 

effects and interactions of environmental factors on HFRS. It is worth pointing out 

that there were some limitations to our study. Firstly, there are cases of HFRS in this 

study that have been diagnosed both clinically and through the laboratory, which may 

be subject to diagnostic bias and are under-reported. Moreover, due to the regional 

limitations of this study, other regions should be referred to with caution in studying 

the impact and prediction of HFRS disease, taking into account regional 

characteristics, and making changes in model selection, parameters and factor 

selection. 

5.Conclusion 

The SARIMA model may help to enhance the forecast of monthly HFRS 

incidence based on a long-range dataset. Our study had shown that environmental 

factors such as humidity and SO2 have a delayed effect on the occurrence of HFRS 

and that the effect of humidity can be influenced by SO2 and windspeed. Public health 

professionals should take greater care in controlling HFRS in low humidity, windless 

conditions and 2-3 days after SO2 levels above 200 μg/m3. 
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Figure 1 The time series distribution of daily HFRS cases, meteorological 

and air-pollution factors in Shenyang from 2005 – 2019. 
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Figure 2 Resulting comparisons of the HFRS seasonal and monthly incidences using the preferred two models. The deep 

shaded regions indicate 80% confidence intervals , the light shaded regions indicate 95% confidence intervals. 
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Figure 3 Summary of slices lag1-16 days exposure-response relationship between meteorological factors, air-pollution and 

HFRS cases for total, gender (male, female), age (20-50years, and 50-years) and delay groups (0-4days, 5-9days and 

10-days) in Shenyang. 
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Figure 4 Summary of estimated extreme effects at the 25th and the 75th percentile of relative humidity, wind speed and SO2 

on HFRS cases for total, gender (male, female), age (20-50years, and 50-years) and delay groups (0-4days, 5-9days and 

10-days) at different lag days. The median value of each meteorological factor (relative humidity: 61%, wind speed: 2 m/s, 

SO2: 26μg/m3) is as a reference level. 
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Figure 5 The fitting interactions of the association among humidity, windspeed, SO2 and HFRS cases in Shenyang, 

2014–2019 based on the growth regression tree model and the generalized additive model. 
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Table 1 Distribution of the hemorrhagic fever with renal syndrome (HFRS) cases by age and season group in Shenyang, 2005-2019 

Characteristic 

0-20 20-50 ＞50 

Total Population 

Incidence 

No of Deaths 

Mortality Case fatality 

 No of HFRS cases (%) （10-5%） （10-5%） （10-2%） 

Year 

2005 31(6.33 %) 368(75.10%) 91(18.57 %) 490 6962186 7.04  4 0.057  0.816  

2006 18(5.44 %) 250(75.53%) 63(19.03 %) 331 7010640 4.72  3 0.043  0.906  

2007 11(5.91 %) 139(74.73 %) 36(19.35 %) 186 7066666 2.63  2 0.028  1.075  

2008 5(2.78 %) 139(77.22 %) 36(20%) 180 7116384 2.53  0 0.000  0.000  

2009 6(4.65 %) 88(68.22 %) 35(27.13 %) 129 7150272 1.80  1 0.014  0.775  

2010 6(6.38 %) 60(63.83 %) 28(29.79%) 94 7180769 1.31  0 0.000  0.000  

2011 5(5.81 %) 59(68.60 %) 22(25.58 %) 86 7211479 1.19  0 0.000  0.000  

2012 3(3.70 %) 59(72.84 %) 19(23.46%) 81 7237420 1.12  0 0.000  0.000  

2013 1(1.37 %) 49(67.12 %) 23(31.51 %) 73 7259528 1.01  0 0.000  0.000  

2014 0(0.%) 28(54.90 %) 23(45.10 %) 51 7289761 0.70  0 0.000  0.000  

2015 1(2%) 35(70%) 14(28%) 50 7306224 0.68  0 0.000  0.000  

2016 2(6.06 %) 25(75.76%) 6(18.18 %) 33 7324009 0.45  1 0.014  3.030  

2017 1(2.22 %) 23(51.11 %) 21(46.67 %) 45 7356745 0.61  0 0.000  0.000  

2018 3(8.33%) 21(58.33 %) 12(33.33%) 36 7414719 0.49  2 0.027  5.556  

  2019 1(6.67 %) 7(46.67 %) 7(46.67 %) 15 7511923 0.20  0 0.000  0.000  

Seasons 

Spring(Mar-May) 14(4.53 %) 209(67.64 %) 86(27.83 %) 309 - - 4 - 1.294  

Summer(Jun-Aug) 33(4.51 %) 543(74.18 %) 156(21.31 %) 732 - - 3 - 0.410  

Autumn(Sep-Nov) 24(7.08 %) 223(65.78 %) 92(27.14 %) 339 - - 2 - 0.590  

Winter(Dec-Feb) 23(4.60%) 375(75%) 102(20.40%) 500 - - 4 - 0.800  

Total 94(5%) 1350(71.81%) 436(23.19%) 1880 7511923 25.03  13 0.173  0.691  

 

Table Click here to access/download;Table;Table.doc

https://www.editorialmanager.com/pntd/download.aspx?id=1159794&guid=88df25dc-e787-4c53-87bc-f1f683839bb8&scheme=1
https://www.editorialmanager.com/pntd/download.aspx?id=1159794&guid=88df25dc-e787-4c53-87bc-f1f683839bb8&scheme=1
Comment on Text
should this be %? compare this to the text. I believe these are percentages, not percentages x 10^-2?

Comment on Text
this should not be %? These seem to be incidence values per 100,000, not %.

Comment on Text
see comment to the left on incidence. I believe the % is an error

Comment on Text
If this a percentage as stated in the text, correct the units above.



 

Table 2 Performance measures of time series techniques for the hemorrhagic fever with renal syndrome (HFRS) incidence in Shenyang 

Model Best parameters Method 

Box-Ljung test 

RMSE MAE MAPE 

X-squared  Df p-value 

Holt-Winters seasonal model α= 0.27, β=0.38 ,γ=1  Additive 0.087 2 0.957 0.198 0.13 40.215 

Holt-Winters monthly model   α= 0.24, β=0.05 , γ=0.75  Additive 7.386 6 0.287 0.078 0.054 71.535 

SARIMA seasonal model ((1,2),1,0) (0,1,0) [4] Additive 6.59*10-6 1 0.998 0.182 0.116 38.031 

SARIMA monthly model (1,1,0) (2,1,0) [12] Multiple 0.381 1 0.537 0.071 0.049 65.968 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3 The cumulative effects of extreme meteorological and air-pollution factors on HFRS cases of children by sex, age and delay 

Series Variables 

Cumulative effects(95%CI) 

Dry effect Wet effect Windless effect Windy effect Low SO2 effect High SO2 effect 

  Total cases 0.761(0.158,3.673) 0.557(0.129,2.405) 0.487(0.260,0.912) 1.617(0.982,2.663) 0.577(0.370,0.898) 2.583(1.145,5.827) 

Sex 

Male 0.461(0.078,2.737) 0.462(0.088,2.428) 0.490(0.241,0.997) 1.593(0.906,2.801) 0.692(0.425,1.126) 1.832(0.750,4.474) 

Female 9.817(0.203,473.684) 4.091(0.131,127.899) 0.683(0.153,3.039) 1.075(0.347,3.334) 0.285(0.090,0.898) 8.122(1.009,65.403) 

Age 

 20-50 years 0.745(0.094,5.870) 0.535(0.083,3.451) 0.523(0.225,1.213) 1.544(0.787,3.032) 0.645(0.363,1.146) 2.031(0.706,5.845) 

50- years 1.574(0.097,25.407) 0.723(0.053,9.803) 0.335(0.113,0.992) 2.007(0.855,4.711) 0.530(0.240,1.167) 3.287(0.767,14.079) 

Delay 

 0-4 days 0.303(0.005,19.164) 0.061(0.002,2.207) 0.589(0.129,2.677) 1.515(0.460,4.993) 0.408(0.126,1.319) 3.652(0.438,30.408) 

 5-9 days 0.897(0.088,9.191) 1.540(0.175,13.525) 0.451(0.180,1.133) 1.874(0.884,3.971) 0.427(0.213,0.858) 4.491(1.246,16.193) 

 10- days 1.285(0.094,17.643) 0.149(0.012,1.899) 0.324(0.106,0.983) 1.392(0.596,3.254) 0.638(0.314,1.297) 2.104(0.570,7.762) 

 



 

 

Table 4 The cumulative relative risk of HFRS cases associated with extreme meteorological and air-pollution variables at various lag days during 

2014-2019 in Shenyang 

Variables 

Relative risk (95% CI) 

Lag0 Lag0-1 Lag0-14 Lag0-15 Lag0-16 

Dry effect 1.364(0.954,1.950) 1.359(0.860,2.146) 0.860(0.215,3.444) 0.809(0.186,3.511) 0.761(0.158,3.673) 

Wet effect 0.917(0.618,1.359) 0.706(0.436,1.143) 0.505(0.134,1.899) 0.518(0.130,2.060) 0.557(0.129,2.405) 

Windless effect 0.829(0.705,0.975) 0.795(0.642,0.986) 0.562(0.317,0.995) 0.525(0.289,0.952) 0.487(0.260,0.912) 

Windy effect 1.135(0.987,1.305) 1.138(0.946,1.368) 1.471(0.932,2.322) 1.539(0.959,2.471) 1.617(0.982,2.663) 

Low SO2 effect 0.960(0.815,1.131) 1.001(0.822,1.220) 0.693(0.461,1.042) 0.640(0.420,0.975) 0.577(0.370,0.898) 

High SO2 effect 1.083(0.797,1.470) 0.983(0.680,1.420) 1.814(0.860,3.828) 2.114(0.978,4.568) 2.583(1.145,5.827) 

 

Comment on Text
the value of the DLNM is in estimation of the associations over the range of lags using a smooth function. Why are these lagged effects apparently averaged to a single number? Some of the associations shown in Fig 4 apparently reverse over the period, making these cumulative effects of environmental conditions of questionable value and potentially misleading. Also, the cumulative effects presume persistence of the conditions, which may or may not be true for a given situation.



  

Supporting Information

Click here to access/download
Supporting Information

Supplement file.doc

https://www.editorialmanager.com/pntd/download.aspx?id=1159796&guid=65604be6-b5ef-4246-a23f-e1ab33ec5c76&scheme=1


Figure S1 The geographical location of Shenyang City in China. 

 



Figure S2 Decomposition of determinants in HFRS cases with seasonal and monthly model. 

 

 
 
 
 

 

Comment on Text
y and x axis labels are unclear and seem to be derived from default output from statistical software. please rename to clearly define each. Change “index” to a more informative title for x axes where appropriate. Are these months?



Figure S3 Autocorrelation function (ACF) and partial ACF charts of monthly HFRS incidence with SARIMA model 
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Figure S4 Autocorrelation function (ACF) and partial ACF charts of seasonal HFRS incidence with SARIMA model 
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Figure S5 Tests of goodness of fit for the error series of HFRS incidence from the Holt-Winters method. (a)Autocorrelation 

function (ACF) plot for the seasonal Holt-Winters residual series; (A)Autocorrelation function (ACF) plot for the monthly 

Holt-Winters residual series; (b) Partial autocorrelation function (PACF) plot for the seasonal Holt-Winters residual series; 

(B) Partial autocorrelation function (PACF) plot for the monthly Holt-Winters residual series; (c) Standardized residual 

seasonal Holt-Winters series; (C) Standardized residual monthly Holt-Winters series. These manifested its adequacy and 

suitability of this data-driven hybrid model for the data. 



 



Figure S6 The significance of SARIMA seasonal and monthly model 



Figure S7 Fitting function variables and distribution of fitted values created based on the growth regression tree model. 

 



Figure S8 Relative risk of meteorological and air-pollution variables on HFRS incidence over 16 lag days, including 

relative humidity, wind speed and SO2. 

 



Figure S9 Effect of different meteorological and air-pollution variables on the incidence of HFRS at different days for total, 

gender (male, female), age (20-50 years, and 50-years) and delay groups (0-4 days, 5-9days and 10-days) in Shenyang. 

 
 



Table S1 Stratified characteristics of the hemorrhagic fever with renal syndrome (HFRS) seasonal cases of Shenyang 

Characteristic 
Spring Summer Autumn Winter 

Total P-value 
 No of HFRS cases (%) 

Age 

0-20 14(4.53 %) 33(4.51 %) 24(7.08 %) 23(4.60%) 94 

＜0.05 20-50 209(67.64 %) 543(74.18 %) 223(65.78 %) 375(75%) 1350 

＞50 86(27.83 %) 156(21.31 %) 92(27.14 %) 102(20.40%) 436 

The interval of days 

0-4 428(38.35%) 219(19.62%) 169(15.14%) 300(26.88%) 1116 

＜0.05 5-9 248(42.18%) 96(16.33%) 94(15.99%) 150(25.51%) 588 

10- 56(31.82%) 24(13.64%) 46(26.14%) 50(28.41%) 176 

Occupation 

Farmer 210(33.49%) 135(21.53%) 109(17.38%) 173(27.59%) 627 

>0.05 Home 219(35.44%) 116(18.77%) 119(19.26%) 164(26.54%) 618 

Other 303(47.72%) 88(13.86%) 81(12.76%) 163(25.67%) 635 

 
 
 



Table S2 Descriptive statistics for daily HFRS cases, meteorological and air-pollution factors in Shenyang, 2005–2019. 

Series Variables Total Mean±SD Min P25 Median P75 Max 

Daily HFRS case 

Total cases 1880 0.34±0.72 0 0 0 0 7 
Male 1477  0.27±0.62  0 0 0 0 5 

Female 403 0.07±0.28 0 0 0 0 3 
Aged 1-20 years 94 0.02±0.13 0 0 0 0 2 
Aged 20-50 years 1350 0.25±0.60 0 0 0 0 5 
Aged 50- years 436 0.08±0.30 0 0 0 0 5 
Delay 0-4 days 1116 0.20±0.54 0 0 0 0 6 
Delay 5-9 days 588 0.11±0.36 0 0 0 0 4 
Delay 10- days 176 0.03±0.18 0 0 0 0 2 

Meteorological parameters 

Airpressure - 1010.32±9.59 980.8 1002.4 1010 1017.8 1038.6 
Sunlight - 6.74±3.94 0 3.7 7.7 9.8 13.9 

Meantemperature -  8.50±13.40 -24 -3.1 10.6 20.9 32.4 
Humidity - 64.43±16.52 12 53 66 77 100 

Wind speed - 2.28±1.02 0 1.5 2.1 2.875 9.2 
Rainfall - 1.87±7.04 0 0 0 0 102.4 

Air pollution parameters 

PM2.5 - 55.17±46.14 4 28 42 69 908 

PM10 - 94.48±61.32 9 55 80 117 912 

SO2 - 44.15±48.32 4 15 26 49 335 

NO2 -  41.94±16.45 10 30 39 51.5 126 

CO - 0.98±0.45 0.3 0.7 0.9 1.2 3.2 

O3 - 97.41±49.81 10 57 89 129 327 



Table S3 Comparison of the prediction results of the two models for 2019 in Shenyang 

Time 
Actual 

incidence 
Holt-Winters  SARIMA   Holt-Winters  SARIMA   Holt-Winters  SARIMA 

Forecasted incidence   Standard Error   95%CI 

Month 

January 2019 0.013 0.005 -0.013  0.007 0.027  (-0.148,0.159) (-0.158,0.131) 
February 2019 0.013 0.035 -0.001  -0.022 0.014  (-0.124,0.193) (-0.161,0.158) 
March 2019 0.013 0.089 0.092  -0.076 -0.079  (-0.075,0.253) (-0.073,0.257) 
April 2019 0.027 0.038 0.015  -0.011 0.012  (-0.131,0.208) (-0.154,0.184) 
May 2019 0.013 0.054 0.022  -0.041 -0.009  (-0.121,0.229) (-0.150,0.195) 
June 2019 0.04 0.027 0.023  0.013 0.016  (-0.155,0.208) (-0.152,0.200) 
July 2019 0.026 0.009 0.003  0.018 0.023  (-0.179,0.197) (-0.175,0.182) 

August 2019 0.013 -0.0008 0.004  0.014 0.009  (-0.196,0.194) (-0.178,0.185) 
September 2019 0.013 -0.01 0.008  0.023 0.005  (-0.213,0.192) (-0.176,0.193) 

October 2019 0.013 0.02 0.041  -0.007 0.028  (-0.190,0.229) (-0.146,0.229) 
November 2019 0.013 0.033 0.044  -0.02 -0.031  (-0.184,0.251) (-0.146,0.234) 
December 2019 0.053 0.005 -0.011   0.047 0.063   (-0.220,0.231) (-0.203,0.182) 

Season 

Spring 2019 0.053 0.196 0.205  -0.143 -0.152  (-0.193,0.586) (-0.169,0.580) 
Summer 2019 0.053 0.051 0.081  0.001 -0.028  (-0.364,0.467) (-0.313,0.475) 
Autumn 2019 0.027 0.058 0.042  -0.031 -0.015  (-0.397,0.513) (-0.356,0.440) 
Winter 2019 0.067 0.017 0.017   0.049 0.05   (-0.490,0.525) (-0.458,0.492) 

 
 
 
 
 
 



Table S4 Spearman correlation between daily HFRS cases and the affected variables in Shenyang 

  HFRS cases Humidity Wind speed SO2 

HFRS cases 1.00       

Humidity -0.10** 1.00   

Wind speed 0.07* -0.4** 1.00  

SO2 0.09** -0.2** -0.11** 1.00 

** P < 0.01，* P < 0.05 

 




