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1 The Teacher-Student-Notebook framework

We consider a setting in which an agent experiences examples of a relationship
in the environment in the form of P pairs of activity patterns {xµ, yµ}, µ =
1, · · · , P . Given the input activity vector of dimension N , xµ ∈ RN , the agent
must both memorize the associated scalar output activity yµ and develop the
ability to predict outputs for new inputs. For example, xµ might represent
activity in visual cortex in response to an event like seeing a bird, and yµ

might represent activity in a higher association cortex derived from a caregiver’s
speech: “Look, a bird!” The agent wishes to memorize what was seen and said
in this specific instance, as well as learn what birds look like more generally.

For any given event, there will be many such relationships to learn, which
collectively encode many diverse features in the environment. For instance,
while viewing the bird, other neural circuits may encode the spatial location of
the event, the time of day, other objects in the scene, and so on. Our model
first considers just one of these relationships, and we return to having multiple
relationships in the later sections of this document. Our theory contains three
neural network components, and we refer to it eponymously as the teacher-
student-notebook framework. We now describe each of these components in
sequence.

Teacher Network. The ground truth relationship between inputs and
output is represented by a teacher network. It generates input-output pairs by
first drawing an input vector, x, in which each element is i.i.d. normal with
variance 1/N , i.e., xi ∼ N (0, 1/N), i = 1, · · · , N . Thus, the norm of the input
vector is one in expectation. Next, the teacher labels this input according to
the rule

y = w̄x+ ε, (1)

where w̄ ∈ R1×N are the teacher weights, and ε is the teacher output noise. In
words, the teacher is simply a shallow linear network with output noise. We take
the teacher weights to be i.i.d. normal with variance σ2

w̄, w̄i ∼ N (0, σ2
w̄), i =

1, · · · , N , and the output noise is i.i.d. normal with variance σ2
ε . Note that the

noise varies across examples, but the weights are fixed for all examples.
A key parameter of this setting is the signal-to-noise ratio (SNR),

S =
〈(w̄x)2〉x,w̄
〈ε2〉ε

=
σ2
w̄

σ2
ε

, (2)

where 〈·〉x,w̄ denotes the average over input patterns and teacher weights, and
〈·〉ε denotes the average over noise. This ratio measures the extent to which the
teacher’s output follows a systematic mapping between input and output. To
fix the scale across different teachers, we consider the case where the variance
of the teacher’s output is one,

〈y2〉x,w̄,ε = σ2
w̄ + σ2

ε = 1, (3)
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such that the SNR fixes the variances,

σ2
w̄ = S

1+S , (4)

σ2
ε = 1

1+S . (5)

Conceptually, the teacher provides a generative model of the environment.
We emphasize that taking the teacher to be a simple neural network does not
reflect an assumption that the real environment is either simple or a neural
network. Rather, the teacher network can be thought of as containing the
optimal synaptic weights for approximating the true generative model of the
environment, which may reflect diverse causal processes, from the physics of the
world to the neural circuits that generate input and output activity patterns.
In this sense, the teacher is a useful abstraction, not a mechanistic theory of the
environment. We discuss further interpretations of the teacher in Section 10.

Student Network. The goal of the student network is to learn to ap-
proximate the relationship defined by the teacher. Here we take the student to
have the same architecture as the teacher, that is, it is a shallow linear network
that receives an N -dimensional input, x, and produces a predicted output, ŷ,
according to

ŷ = wx, (6)

where w ∈ R1×N are the student weights. These weights are learned using
gradient descent on a loss function L(w)

τ
d

dt
w = − ∂

∂w
L(w), (7)

here formulated in continuous time (also known as gradient flow) with time
constant τ . We take the loss function to be the mean squared error over the
example patterns,

L(w) =
1

P

P∑
µ=1

(yµ − ŷµ)2, (8)

where µ = 1, · · · , P indexes examples, yµ is the scalar target output, and ŷµ

is the scalar output prediction in response to input vector xµ. As described
in more detail subsequently, the target patterns that drive learning can have
multiple sources–they may come directly from the teacher or from a memory of
past examples.

The performance of the student can be measured in two ways. First, its
predictions can be evaluated on the specific examples µ = 1, · · · , P seen during
training, which we refer to as the memory error Em (also known as the training
error in machine learning contexts),

Em =
1

P

P∑
µ=1

(yµ − ŷµ)2, (9)
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where here we have not indicated the time dependence of ŷµ for notational
simplicity. Second, the student’s predictions can be evaluated on novel input-
output pairs drawn from the teacher, which we refer to as the generalization
error Eg (also known as the test error in machine learning contexts),

Eg = 〈(y − ŷ)2〉x,ε,
= 〈(w̄x+ ε− wx)2〉x,ε
=

〈
((w̄ − w)x+ ε)

2
〉
x,ε

=
1

N
||w̄ − w||22 + σ2

ε , (10)

where 〈·〉x,ε denotes the average over the teacher input distribution and out-
put noise distribution, and we have used the fact that these distributions are
independent.

Notebook Network. Finally, the job of the notebook network is to faith-
fully memorize experienced patterns as attractors of neural network dynamics,
making possible later recall and replay. We consider a notebook of M neurons
recurrently connected through the M×M weight matrix J . The activity in this
network is binary, h ∈ {0, 1}M , and evolves according to

h(u) = f(Jh(u− 1)− θ), (11)

where f is the Heaviside step function, u denotes discrete time steps of syn-
chronous activity propagation, and θ is a threshold that can have a fixed value
or be dynamically adapted to maintain a desired sparsity of activity (as de-
scribed subsequently).

The notebook represents memorized patterns as binary vectors of zeros and
ones by embedding these vectors as fixed points of the dynamics in Eq. (11).
In particular, to store input-output pairs, {xµ, yµ}, µ = 1, · · · , P , the notebook
first chooses P binary (0/1) vectors of length M , uniformly at random from the
set of vectors with sparsity a (i.e., with exactly aM nonzero entries). These
binary patterns of activity in the notebook act as distinctive neural codes to be
associated with each pattern, and this notebook code is sometimes referred to
as a memory index.

Stacking the binary patterns into the columns of the M × P matrix ξ, and
similarly stacking the input and output patterns into the N × P and 1 × P
matrices X and Y respectively, the weights within the notebook and between
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the notebook and student are given through a Hebbian scheme,

Jij =


(

(ξ−a)(ξ−a)T

Ma(1−a) − γ
Ma

)
ij

for i 6= j

0 otherwise
, (12)

USx→N = (ξ − a)XT , (13)

USy→N = (ξ − a)Y T , (14)

V N→Sx =
X(ξT − a)

Ma(1− a)
, (15)

V N→Sy =
Y (ξT − a)

Ma(1− a)
. (16)

Here USx→N ∈ RM×N and USy→N ∈ RM×1 map from the student inputs x
and output y to the notebook activity h, and the matrices V N→Sx ∈ RN×M

and V N→Sy ∈ R1×M perform the reverse mapping from the notebook activity
back to the student input and output. For simplicity and tractability, we take
all student neurons to be linear. The parameter γ in Eqn. 12 implements global
all-to-all inhibition, which causes activity that is far from stored patterns to
decay to a silent state [12]. In simulations, we take γ = 0.6, which lies in
the range theoretically derived to stably store the intended patterns without
spurious attractors in this model [12]. These pathways allow diverse interactions
between notebook and student, and we describe a number of specific interaction
patterns subsequently.

The mean subtraction and normalization in these updates have been cho-
sen to aid performance, as derived subsequently in Section 5.1 for connections
from notebook neurons. In essence, the notebook generates distinct, pattern-
separated activity patterns, stabilizes these as attractors of its recurrent dynam-
ics, and links these bidirectionally to the student’s input and output neurons to
facilitate later replay and reactivation.

2 Learning setting

The teacher-student-notebook framework can allow for diverse learning settings
in which examples from the teacher arrive at different times and in different
quantities. Here we usually characterize memorization and generalization per-
formance in a simple setting: the single-batch, high-dimensional regime. That
is, we consider a scenario where an organism receives P training experiences
up front in a short time window, and memory and generalization performance
are evaluated subsequently over longer periods of time. For instance, a human
subject might learn a task in a single hour long session but then be tested after
several weeks’ delay, or a rodent might perform several trials in a water maze
on one day and be tested on the next. In our framework, these P experiences
are drawn i.i.d. from the teacher and constitute one single batch for learning
and consolidation. For convenience, we can collect this batch of samples into
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the N ×P matrix X with columns xµ, µ = 1, · · · , P , and the 1×P row vector
Y with elements yµ, µ = 1, · · · , P .

Given abundant training experience (P >> N), many different learning
schemes can converge to similar performance. However, real world learning is
often severely data limited. Animals may receive only one or two foot shocks.
A human subject may need to learn a new visual discrimination (possibly de-
pendent on millions of pixels) from just a few blocks of training trials. Real
world settings therefore place a premium on learning from limited experience.
Moreover, neuronal networks in the brain are typically very large relative to the
amount of training experience. Even a simple visual discrimination may engage
a network of millions or billions of neurons interconnected by billions or trillions
of adjustable synapses. To address this large network, limited data setting, we
analyze the high-dimensional regime, in which the size of the student network
and the number of training samples both tend to infinity (N → ∞, P → ∞),
but their ratio α = P/N remains finite. The load parameter α is a key param-
eter of our setting, and it measures the amount of experience relative to the
number of tunable synapses in the student network. For α < 1, the network
has more tunable parameters than training experiences, allowing analysis of
highly overparametrized learning settings. For α >> 1, the network has many
more training experience than tunable parameters, reflecting the more standard
classical regime of statistics.

While in this paper we emphasize this single-batch, high-dimensional learn-
ing setting, future work in the teacher-student-notebook framework could in-
vestigate more complex scenarios where examples continue to arrive over time.

3 Interaction policies & performance

The single-batch learning setting still allows diverse possible interaction poli-
cies between the modules in the teacher-student-notebook framework. These
interaction policies specify which modules undergo learning, from what activity
patterns (e.g., from the teacher, or from replay from the student), and which
modules are used to answer queries for new experiences. We consider four
interaction policies, meant to typify common approaches to learning and con-
solidation.

Online Student. Only the student is trained, without any replay. Each ex-
ample drives one update of error-corrective learning and is never revisited.
This strategy provides a reference point for performance of a system based
on online gradient descent learning.

Online Notebook. Only the notebook is used. Each example is stored in the
notebook with Hebbian updates, and predictions for novel inputs are gen-
erated using the notebook only. This strategy provides a reference point
for performance of a system based on Hebbian memorization, without
replay-guided learning.
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Memory-optimized Replay. This strategy initially stores all experiences in
the notebook and trains the student using notebook-driven reactivations
until the student has fully memorized all examples. This is similar to the
standard theory of systems consolidation.

Generalization-optimized Replay. This novel strategy, proposed in this work,
initially stores all experiences in the notebook but only trains the student
using notebook-driven reactivations as long as generalization performance
improves.

The next four sections of the supplement sequentially characterize the memo-
rization and generalization performance of each of these interaction policies.

4 Online Student Policy

In the online student policy, each example xµ ∈ RN , µ = 1, · · · , P, in the batch
is visited in order and a single step of error corrective gradient descent learn-
ing is applied with an example-dependent learning rate ηµ. In this section we
characterize the expected generalization error dynamics under this scheme; to
ensure a robust normative comparison to other policies, we derive the globally
optimal learning rate function that maximizes generalization performance after
all updates.

4.1 Generalization dynamics with example-dependent learn-
ing rate

Upon receiving each example µ = 1, · · · , P , the student weights are updated
according to

wµ+1 = wµ + ηµeµxµ
T

, (17)

where wµ+1 is the weight vector resulting from the µth learning step, ηµ is the
learning rate of this step, xµ is the µth input example, and eµ = yµ − ŷµ is
the error between the network’s output and the target output for this example.
We assume that the initial weights are zero, w1 = 0. Using the teacher model,
yµ = w̄xµ + εµ, we have

wµ+1 = wµ + ηµ (w̄xµ + εµ − wµxµ)xµ
T

= wµ + ηµ (w̄ − wµ)xµxµ
T

+ ηµεµxµ
T

. (18)

In contrast to Eqn. (10), which expresses the generalization error Eg for
a specific student and teacher, here we ask what the expected generalization
error is for a randomly drawn teacher by averaging over the teacher weight
distribution as well. That is, we track the expected generalization error Eg =
〈Eg〉w̄, where the average is over the teacher weight distribution. In the high-
dimensional regime, the generalization error is self-averaging, such that any
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specific realization closely tracks this expected generalization error, as will be
verified by a close match between single simulations and the average dynamics
we derive. The expected generalization error before example µ is

Eg[µ] = 〈(y − ŷ)2〉w̄,x,ε,x1:µ−1,ε1:µ−1

= 〈((w̄ − wµ)x+ ε)
2〉w̄,x,ε,x1:µ−1,ε1:µ−1

= 〈(w̄ − wµ)xxT (w̄ − wµ)
T 〉w̄,x,x1:µ−1,ε1:µ−1

+2〈ε(w̄ − wµ)x〉w̄,x,ε,x1:µ−1,ε1:µ−1 + 〈ε2〉ε

=
1

N
〈‖w̄ − wµ‖2〉w̄,x1:µ−1,ε1:µ−1

+ σ2
e , (19)

x1:µ and ε1:µ denote history of training patterns and corresponding additive

noise, respectively. We used that (w̄ − wµ)x = xT (w̄ − wµ)
T

is a scalar, that
ε is zero mean and independent of all other terms, and that x is multivariate
normal with covariance matrix 〈xxT 〉 = 1

N I. Similarly, note that after example
µ, the expected generalization error becomes

Eg[µ+ 1] =
1

N
〈
∥∥w̄ − wµ+1

∥∥2〉w̄,x1:µ,ε1:µ + σ2
e . (20)

Substituting in Eqn. 18, we have

Eg[µ+ 1] =
1

N

〈∥∥∥w̄ − wµ − ηµ(w̄ − wµ)xµxµ
T

− ηµεµxµ
T
∥∥∥2
〉
w̄,x1:µ,ε1:µ

+ σ2
e ,

=
1

N
〈
(

(w̄ − wµ)(1− ηµxµxµ
T

)− ηµεµxµ
T
)

×
(

(w̄ − wµ)(1− ηµxµxµ
T

)− ηµεµxµ
T
)T
〉w̄,x1:µ,ε1:µ + σ2

e

=
1

N
〈(w̄ − wµ)(1− ηµxµxµ

T

)2(w̄ − wµ)T 〉w̄,x1:µ,ε1:µ

− 2

N
〈ηεµxµ

T

(1− ηµxµxµ
T

)(w̄ − wµ)T 〉w̄,x1:µ,ε1:µ

+
1

N
〈(ηµ)2(εµ)2xµ

T

xµ〉xµ,εµ + σ2
e . (21)

The term linear in the noise again vanishes, and we note that 〈xµT xµ〉xµ =

〈‖xµ‖2〉xµ = 1. Therefore, the last term’s expectation is
(ηµ)2σ2

e

N , and

Eg[µ+ 1] =
1

N
〈(w̄ − wµ)(1− ηµxµxµ

T

)2(w̄ − wµ)T 〉w̄,x1:µ,ε1:µ

+

(
1 +

(ηµ)2

N

)
σ2
e

=
1

N
〈‖w̄ − wµ‖2〉w̄,x1:µ,ε1:µ −

2

N
〈(w̄ − wµ)ηµxµxµ

T

(w̄ − wµ)T 〉w̄,x1:µ,ε1:µ

+
1

N
〈(w̄ − wµ)(ηµxµxµ

T

)2(w̄ − wµ)T 〉w̄,x1:µ,ε1:µ

+

(
1 +

(ηµ)2

N

)
σ2
e (22)
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To simplify this expression, it’s convenient to note that

〈(xµxµ
T

)2
ij〉xµ =

∑
k

〈xµi x
µ
kx

µ
kx

µ
j 〉xµ

=
∑
k

(2〈xµi x
µ
k〉xµ〈x

µ
kx

µ
j 〉xµ + 〈xµi x

µ
j 〉xµ〈(x

µ
k)2〉xµ)

=
∑
k

1

N2
(2δikδjk + δij)

=
2

N2
δij +

1

N
δij , (23)

where the second line follows from Wick’s theorem for Gaussian moments, and

δij is the Kronecker delta. This implies 〈(xµxµT )2〉 = 2
N2 I + 1

N I, and together

with 〈xµxµT 〉 = 1
N I, our expression for Eg[µ+ 1] becomes,

Eg[µ+ 1] =

[
1− 2ηµ

N
+ (ηµ)2 2 +N

N2

]
1

N
〈‖w̄ − wµ‖2〉w̄,x1:µ,ε1:µ

+

(
1 +

(ηµ)2

N

)
σ2
e . (24)

This weight norm is related to the generalization error by Eqn. 19, which enables
a recursive equation for the generalization error

Eg[µ+ 1] =

[
1− 2ηµ

N
+ (ηµ)2 2 +N

N2

] (
Eg[µ]− σ2

e

)
+

(
1 +

(ηµ)2

N

)
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+

[
1 +

(ηµ)2

N
− 1 +

2ηµ

N
− (ηµ)2 2 +N

N2

]
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+

[
2ηµ

N
− 2(ηµ)2

N2

]
σ2
e

=

[
1− 2

ηµ

N
+

(
ηµ

N

)2

(2 +N)

]
Eg[µ]

+2

[
ηµ

N

(
1− ηµ

N

)]
σ2
e . (25)

Now passing to the limit N >> 1, we have

Eg[µ+ 1] =

[
1− ηµ(2− ηµ)

N

]
Eg[µ] + 2

ηµ

N
σ2
e . (26)
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We then enter the high-dimensional regime where α = µ/N and consider the new
continuous variables Eg(α) ≈ Eg[αN ] for the generalization error and η(α) ≈
ηαN for the learning rate1. We wish to calculate an equivalent differential
equation,

dEg(α)

dα
= lim
dα→0

Eg(α+ dα)− Eg(α)

dα
, (27)

where we take dα = 1/N , which is infinitesimal in the limit N →∞, to approx-
imate the increment provided by a single new example. Thus

Eg(α+ dα)− Eg(α)

dα
= N(Eg[αN + 1]− Eg[αN ])

= −ηαN (2− ηαN )Eg[αN ] + 2ηαNσ2
e . (28)

We thus have the ordinary linear differential equation

d

dα
Eg(α) = −η(α)(2− η(α))Eg(α) + 2η(α)σ2

e . (29)

The solution can be found through the method of integrating factors. In par-
ticular, we define

H(α) =

∫ α

0

η(α′)(2− η(α′))dα′, (30)

and find

Eg(α) = Eg(0)e−H(α) + 2σ2
ee
−H(α)

∫ α

0

η(τ)eH(τ)dτ. (31)

4.2 Optimal online learning rate

Equation (31) yields the expected generalization error for arbitrary learning
rate functions. To ensure a fair normative comparison to other methods, we
now compute the optimal learning rate as a function of example. We again
begin by considering a discrete sequence of examples, and we will take the high-
dimensional limit at the end.

Let η∗,µ denote the learning rate schedule that minimizes the expected gen-
eralization error on example T = αN . Also let

f(x, η) =

[
1− η(2− η)

N

]
x+ 2

η

N
σ2
e (32)

be the discrete dynamics update from Eqn. (26), that is, the generalization error
on example µ+ 1 if the generalization error on example µ is x and the learning
rate used on example µ is η.

1To avoid confusion, recall that ηαN notates the learning rate for example αN ≈ µ, and
this notation is not meant to imply an exponential learning rate schedule.
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At the penultimate example before the deadline, T −1, because there is only
one update left, the best learning rate is given by greedily optimizing f ,

η∗,T−1 = argminηf(Eg[T − 1], η). (33)

We directly perform the minimization by differentiating with respect to η and
setting this derivative to zero,

∂

∂η
f(x, η) = ηx/N − (2− η)x/N + 2σ2

e/N,

0 = 2η∗x− 2x+ 2σ2
e ,

η∗(x) = 1− σ2
e

x
, (34)

which yields the optimal update of

η∗,T−1 = 1− σ2
e

Eg[T − 1]
. (35)

The final generalization error as a function of the penultimate generalization
error, x, is thus

g(x) ≡ min
η
f(x, η)

= f(x, η∗(x))

=

1−

(
1− σ2

e

x

)
(1 +

σ2
e

x )

N

x+ 2
1− σ2

e

x

N
σ2
e

=

1−

(
1− σ4

e

x2

)
N

x+ 2
1− σ2

e

x

N
σ2
e

= (1− 1/N)x− σ4
e

Nx
+ 2

σ2
e

N
. (36)

Differentiating with respect to x, we have

d

dx
g(x) = 1− 1/N +

σ4
e

Nx2
, (37)

which is strictly positive for N ≥ 1, x > 0. This indicates that the function g(x)
is strictly increasing, meaning that larger generalization errors at the penulti-
mate step directly translate into larger generalization errors at the deadline.

Let vµ(x) denote the optimal final generalization error on example T , start-
ing from an error of x at step µ and choosing the optimal learning rate thereafter.
We have shown that vT−1(x) = g(x), and it is strictly increasing. Now for the
inductive step, assume that vµ+1(x) is strictly increasing. Then

η∗,µ = argminηvµ+1(f(x, η))

= argminηf(x, η). (38)
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Therefore the optimal learning rate is again selected by greedily minimizing
f(x, n). Finally, we note that vµ(x) = vµ+1(g(x)) is the composition of strictly
increasing functions, and therefore strictly increasing. This establishes the in-
ductive hypothesis and yields the optimal learning rate function for all examples

η∗,µ = 1− σ2
e

Eg[µ]
. (39)

In the high-dimensional regime, the optimal learning rate is thus

η∗(α) = 1− σ2
e

Eg(α)
. (40)

Inserting this optimal learning rate function back into Eqn. (29) yields the
following optimal generalization error dynamics,

d

dα
Eg(α) = 2σ2

e − Eg(α)− σ4
e

Eg(α)
. (41)

5 Online Notebook Policy

In the online notebook policy, each example is stored in the notebook according
to the Hebbian scheme in Eqns. (12)-(16). The notebook is then used to make
predictions even for novel inputs, by allowing the notebook to converge to an
attractor and reading off the predicted output.

In particular, an input x arriving at the student from the teacher can be
used to seed recurrent pattern completion in the notebook, by letting h(0) =
f(USx→Nx) and then running the notebook dynamics. In the simulations in
the main text, rather than run the recurrent dynamics to convergence, we use
the pattern obtained after 9 updates. At each update, the neurons are ranked
by net input and the threshold θ is chosen so that the top aM are active (in the
case of ties, slightly more neurons can be active). After the network dynamics
have settled on some pattern ξ̃, a predicted output can be generated (using just
the notebook) as ỹ = V N→Sy ξ̃.

This section shows that, in the high-dimensional setting considered here,
the notebook attains low memorization error (i.e., error on already-experienced
examples) but is incapable of generalization.

5.1 Hebbian learning rule scale factor and offset

The memorization ability of recurrent attractor networks, as well as the perfor-
mance of Hebbian plasticity rules in mapping from notebook activity patterns
to student activity patterns, is known to depend on the statistics of the pat-
terns and the specific form of the learning rule used to configure the weights
[19, 5, 6, 37]. We begin by justifying the scaling and subtractive offsets in
Eqns. (12)-(16), typically as an approximate implementation of the pseudoin-
verse learning rule given our sparse pattern statistics.
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5.1.1 Recurrent weights

The job of the notebook is to faithfully memorize example patterns as attrac-
tors of neural network dynamics. The pseudoinverse learning rule is a flexible
mechanism to memorize these patterns, wherein the M×M matrix of recurrent
notebook connections would be

J = ξξ+ = ξ(ξT ξ)−1ξT , (42)

where ξ+ is the pseudoinverse of ξ, and we assumed that P ≤ M . Suppose
that the neural network dynamics have the form h(u) = f(Jh(u − 1)), where
h is the pattern of notebook activity. Assuming that f(0) = 0 and f(1) = 1
(e.g., f may be linear, threshold-linear, or binary), then these weights would
successfully memorize all P patterns as steady-states of the network dynamics.
In particular, note that

f(Jξ) = f(ξ(ξT ξ)−1ξT ξ) = f(ξ) = ξ, (43)

so that the network dynamics map each memorized pattern back onto itself2.
It is instructive to expand the pseudoinverse weights in terms of the stored
patterns,

Jij =

P∑
µ=1

P∑
ν=1

ξiµ(ξT ξ)−1
µν ξjν . (44)

This reveals a practical problem with the pseudoinverse learning rule, as the stor-
age prescription for each pattern depends on the other stored patterns through
the inverse pattern correlation, (ξT ξ)−1

µν .
The Hopfield model can be viewed as a solution to this problem that assumes

simple random statistics for ξ in order to simplify the necessary structure of
the learning rule. In particular, suppose that each memory randomly assigns
aM neurons to the 1-state and (1 − a)M neurons to the 0-state. Thus, a
quantifies the fraction of 1-states in the memorized patterns, and we refer to a
as the sparseness parameter. We also assume that the memorized patterns are
statistically independent from each other. These statistics imply that

〈(ξT ξ)µν〉ξ =

M∑
i=1

〈ξiµξiν〉ξ =

M∑
i=1

(aδµν + a2(1− δµν))

= Ma2 +Ma(1− a)δµν , (45)

where 〈·〉 now denotes the average over notebook patterns. In matrix notation,
this implies that

〈ξT ξ〉ξ = Ma(1− a)IP +Ma21P 1TP , (46)

2Note that this argument neglected the threshold present in the notebook dynamics. This
choice reflects the fact that we want the argument to carry over to the linear student neurons
that we will consider in the next section. Nevertheless, pseudoinverse weights also work for
thresholded notebook neurons in the typical case that f(−θ) = 0 and f(1 − θ) = 1.
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where IP is the P × P identity matrix, and 1P is the P -vector of ones. This
form allows us to use the Sherwood-Morrison formula,

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
, (47)

with A = Ma(1− a)IP , u = Ma21P , and v = 1P to obtain

〈ξT ξ〉−1
ξ =

1

Ma(1− a)
IP −

Ma2/(Ma(1− a))21P 1TP
1 +MPa2/(Ma(1− a))

=
1

Ma(1− a)
IP −

1/(M(1− a)2)

1 + Pa/(1− a)
1P 1TP

=
1

Ma(1− a)
IP −

1

M(1− a)2 +MPa(1− a)
1P 1TP

≈ 1

Ma(1− a)
IP −

1

M2βa(1− a)
1P 1TP , (48)

where the final approximation used P = βM , β = O(1), and M � 1. The Hop-
field model approximates the pseudoinverse learning rule by replacing (ξT ξ)−1

by 〈ξT ξ〉−1
ξ . To see what this means, we need to do a bit more algebra:

J ≈ ξ〈ξT ξ〉−1
ξ ξT =

ξξT

Ma(1− a)
− (ξ1P )(ξ1P )T

M2βa(1− a)
. (49)

The Hopfield model also approximates ξ1P by 〈ξ1P 〉 = Pa1M , where 1M is the
M -vector of ones, such that

J ≈ ξξT

Ma(1− a)
− a2P 21M1TM
M2βa(1− a)

=
1

Ma(1− a)
ξξT − βa

1− a
1M1TM . (50)

To compare this to the Hopfield model, we first consider a general Hebbian
weight matrix of the form,

Jij =

P∑
µ=1

B(ξiµ − b)(ξjµ − b), (51)

where B and b are constants that scale and center the learning rule. Again using
the approximation that ξ1P ≈ 〈ξ1P 〉ξ = Pa1M , we find

J = BξξT −Bb1M1TP ξ
T −Bbξ1P 1TM +Bb21M1TP 1P 1TM

≈ BξξT + (−2abBP + b2BP )1M1TM = BξξT + bBP (−2a+ b)1M1TM . (52)

Comparing Eqs. (50) and (52), we see that the two correspond when

B =
1

Ma(1− a)
(53)

13



and

− βa

1− a
= bBP (−2a+ b) =

bP (b− 2a)

Ma(1− a)
=
bβ(b− 2a)

a(1− a)

=⇒ 0 = b2 − 2ba+ a2 = (b− a)2 =⇒ b = a. (54)

Therefore, the pseudoinverse rule can be approximated by the Hebbian rule,

Jij =

P∑
µ=1

(ξiµ − a)(ξjµ − a)

Ma(1− a)
, (55)

which is the weight matrix of the Hopfield model and the first term in Eqn. (12)
of the notebook learning rules.

5.1.2 Notebook-to-student weights

Similar to the Hopfield storage prescription used to store binary indices as fixed
points of the recurrent notebook dynamics, here we assume Hebbian connectiv-
ity between the notebook and student. In particular, we can form the (N+1)×P
matrix Z by vertically stacking the matrices X and Y , such that Z represents
the combined student input-output activity to be stored. We also define the
(N + 1)×M matrix V by vertically stacking the matrices V N→Sx and V N→Sy ,
which represents the mapping from notebook activity to student activity. In this
setting the relevant pseudoinverse learning rule for the weights from notebook
to student neurons is

V = Zξ+ = Z(ξT ξ)−1ξT . (56)

The same approximations used in the previous section lead to

V ≈ ZξT

Ma(1− a)
− (Z1P )(ξ1P )T

M2βa(1− a)
. (57)

Replacing ξ1P by 〈ξ1P 〉 = Pa1M , we find

V ≈ ZξT

Ma(1− a)
− Za1P 1TM
Ma(1− a)

=
Z(ξT − a1P 1TM )

Ma(1− a)
, (58)

or

Vij ≈
P∑
µ=1

Ziµ(ξjµ − a)

Ma(1− a)
. (59)

This is the Hebbian learning rule that we use to connect the notebook to the
student for purposes of pattern reactivation (Eqns. (15)-(16)).
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5.1.3 Student-to-notebook weights

We did not derive the student-to-notebook weights from a pseudoinverse rule. In
particular, the associated pseudoinverse rule would depend on Z+, which must
be computed differently depending on whether P ≤ N + 1 or P > N + 1. In
contrast, we assumed that P ≤M throughout, which allowed a unified expres-
sion for ξ+. Moreover, memory recall means that the notebook will sometimes
be activated by a subset of student neurons, so defining weights based on Z+

may be inappropriate in some circumstances.
Nevertheless, the form of the student-to-notebook weights is justifiable. De-

fine the M × (N + 1) matrix U by horizontally stacking the matrices USx→N

and USy→N , which represents the mapping from student activity to notebook
activity. It’s useful to note that Eqs. (13)-(14) imply

〈(UZ)iµ〉Z =
∑
ν

N+1∑
j=1

〈(ξiν − a)ZjνZjµ〉Z =
∑
ν

(ξiν − a)

 N∑
j=1

1

N
δµν + δµν


= 2(ξiµ − a) (60)

where the expectation is now over student patterns, and we noted that 〈XjµXjν〉X =
1
N δµν and 〈YµYν〉Y = δµν . Therefore, 〈(UZ)iµ〉Z < ξiµ if ξiµ = 0, and 〈(UZ)iµ〉Z >
ξiµ if ξiµ = 1 and a < 0.5. Consequently, these weights are expected to seed
the appropriate pattern in the binary notebook network with sparse memories.
Similarly,

〈(USx→NX)iµ〉X = ξiµ − a, (61)

so 〈(UX)iµ〉X < ξiµ if ξiµ = 0, and 〈(UX)iµ〉X > a if ξiµ = 1 and a < 0.5.
The input neurons are thus also expected to seed the appropriate pattern if
0 < θ < a, or if the threshold is dynamically chosen to maintain the desired
spareness level.

5.2 Notebook memory error

With these Hebbian learning prescriptions in hand, we now characterize their
performance. In this section, we consider the typical memory error by examin-
ing the statistics by which the notebook reactivates stored patterns of student
activity. Previous studies of the Hopfield model [5, 6, 37] imply that large note-
books can accurately recall each random index if the number of stored patterns
does not exceed the capacity of the network Pc = βcM . Here we assume that
M � 1 and P < Pc, such that erroneous index retrieval by the notebook is
rare. Once a notebook memory index is accurately retrieved by the notebook’s
dynamics, the notebook can generate a predicted output using the Hebbian
weights from notebook to student output ( V N→Sy ). The memory error of the
notebook can thus be approximated as the typical error of this prediction. Real
hippocampal networks likely exhibit active forgetting to enhance generalization
or memory capacity [7, 32], and it would be interesting to consider alternate
notebook models that incorporate forgetting effects in future work [28].

15



As in the previous section, let Z be a (N+1)×P matrix that groups together
all input and output neuron responses for all memorized patterns. Then the
notebook reactivated student pattern is

Ẑiµ =

M∑
j=1

Vijξjµ =

M∑
j=1

P∑
ν=1

1

Ma(1− a)
Ziν(ξjν − a)ξjµ. (62)

We first consider how well the notebook reactivates the student on average. In
particular, averaging this expression over all possible notebook indices gives

〈Ẑiµ〉Z,ξ = 1
Ma(1−a)

∑M
j=1

∑P
ν=1 Ziν〈(ξjν − a)ξjµ〉ξ

= 1
Ma(1−a)

∑M
j=1

∑P
ν=1 Ziνa(1− a)δµν = Ziµ. (63)

Therefore, the Hebbian learning rule is unbiased, and it on average reactivates
all student neuron responses accurately.

However, the randomness of notebook indices does cause notebook-driven
student reactivations to fluctuate away from these average values. To determine
the magnitude of notebook memory error quantitatively, first note that the
memory error of the notebook is

Em =
1

P

P∑
µ=1

(Yµ − Ŷµ)2 =
1

P

P∑
µ=1

(Y 2
µ − 2YµŶµ + Ŷ 2

µ ). (64)

Averaging over possible notebook patterns, we find

Em = 〈Em〉ξ =
1

P

P∑
µ=1

(Y 2
µ − 2Y 2

µ + 〈Ŷ 2
µ 〉ξ) =

1

P

P∑
µ=1

Var(Ŷµ). (65)

This variance term can be written

Var(Ŷµ) =

〈
P∑
ν=1

M∑
j=1

Yν(ξjν − a)

Ma(1− a)
ξjµ

P∑
ρ=1

M∑
k=1

Yρ(ξkρ − a)

Ma(1− a)
ξkµ

〉
ξ

− Y 2
µ . (66)

This expression shows that the exact value of the notebook training error de-
pends on the specific realizations of the student outputs.

However, for practical purposes, it will be good enough to average Eq. (66)
over possible student outputs, and noting that 〈YµYν〉Y = δµν , we find

〈Var(Ŷµ)〉Y =
1

(Ma(1− a))
2

P∑
ν=1

M∑
j=1

M∑
k=1

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉Y − 1

=
1

(Ma(1− a))
2

M∑
j=1

M∑
k=1

(
〈(ξjµ − a)ξjµ(ξkµ − a)ξkµ〉Y

+
∑
ν 6=µ

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉Y
)
− 1. (67)
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It is straightforward to evaluate the first expectation as

〈(ξjµ − a)ξjµ(ξkµ − a)ξkµ〉Y
=δjk(1− a)2P (ξjµ = 1) + (1− δjk)(1− a)2P (ξjµ = 1)P (ξkµ = 1|ξjµ = 1)

=δjk(1− a)2a+ (1− δjk)(1− a)2a
aM − 1

M − 1

=δjka(1− a)2 + (1− δjk)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

)
. (68)

Because µ 6= ν in the second expectation of Eq. (67), it straightforwardly
separates into the product of two terms:

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉Y = 〈(ξjν − a)(ξkν − a)〉Y 〈ξjµξkµ〉Y . (69)

First,

〈(ξjν − a) (ξkν − a)〉Y = δjka(1− a)

+ (1− δjk)
(

(1− a)2P (ξjν = 1)P (ξkν = 1|ξjν = 1)

− a(1− a)P (ξjν = 1)P (ξkν = 0|ξjν = 1)

− a(1− a)P (ξjν = 0)P (ξkν = 1|ξjν = 0)

+ a2P (ξjν = 0)P (ξkν = 0|ξjν = 0)
)

=δjka(1− a) + (1− δjk)
(

(1− a)2a
aM − 1

M − 1
− a(1− a)a

(1− a)M

M − 1

− a(1− a)(1− a)
aM

M − 1
+ a2(1− a)

(1− a)M − 1

M − 1

)
=δjka(1− a) + (1− δjk)

(
− a(1− a)2 1

M − 1
− a2(1− a)

1

M − 1

)
=δjka(1− a)− (1− δjk)

a(1− a)

M − 1
. (70)

Second,

〈ξjµξkµ〉Y =δjka+ (1− δjk)P (ξjµ = 1)P (ξkµ = 1|ξjµ = 1)

=δjka+ (1− δjk)a
aM − 1

M − 1
. (71)

Combining these two terms, we find,

〈(ξjν − a)ξjµ(ξkν − a)ξkµ〉Y = δjka
2(1− a)− (1− δjk)a2(1− a)

aM − 1

(M − 1)2
(72)

for µ 6= ν. Plugging these expressions back into the expression for 〈Var(Ŷµ)〉Y ,
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we find

〈Var(Ŷµ)〉Y =
1

(Ma(1− a))
2

M∑
j=1

M∑
k=1

(
δjka(1− a)2

+ (1− δjk)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

)
+
∑
ν 6=µ

(
δjka

2(1− a)− (1− δjk)a2(1− a)
aM − 1

(M − 1)2

))
− 1

=
1

(Ma(1− a))
2

(
Ma(1− a)2

+M(M − 1)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

)
+ (P − 1)Ma2(1− a)− (P − 1)a2(1− a)M(aM − 1)/(M − 1)

)
− 1

=
Ma(1− a)2 +M2a2(1− a)2 −Ma(1− a)2 −M2a2(1− a)2

M2a2(1− a)2

+ (P − 1)
Ma2(1− a)− a3(1− a)M2/(M − 1) + a2(1− a)M/(M − 1)

M2a2(1− a)2

=(P − 1)
M − 1− aM + 1

M(1− a)(M − 1)

=
P − 1

M − 1
. (73)

The proportionality of 〈Var(Ŷµ)〉Y to P − 1 intuitively captures the interfer-
ence of the Hebbian readout of memory µ from the other P − 1 memories that
contribute to V N→Sy .

Combining Eqs. (65) and (73), we find that the expected memory error of
the notebook is simply

〈Em〉ξ,Y =
P − 1

M − 1
, (74)

Remarkably, note that this expression is independent of the notebook’s sparse-
ness. If P = βM and M � 1, this implies that

〈Em〉ξ,Y ≈ β. (75)

We thus see that the expected memorization error of the notebook scales with
the number of memories stored in the system and can become significant when
the loading is large. Note that this expression only makes sense if β < βc,
because we’ve assumed faithful index reactivation within the notebook itself.

5.3 Notebook generalization error

Next we examine the expected error when the notebook is used to predict the
teacher output on a novel example. Because we operate the Hopfield network
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Figure S1: Numerical simulation of the generalization error of the nearest neigh-
bor algorithm, for α = 1 and SNR S = ∞ (red) and S = 0 (blue). As input
dimension N approaches infinity, generalization error in both cases approaches
2, consistent with our analytical derivation.

below capacity, it successfully embeds all patterns as fixed points with relatively
large basins of attraction, and the previous section showed that the student
reactivation error is modest. For simplicity, we therefore model the notebook as
a nearest neighbor algorithm that operates by returning the output associated
with the nearest stored pattern for any given input.

In particular, let xµ, µ = 1, · · · , P be the N -dimensional column vectors of
stored inputs, and yµ, µ = 1, · · · , P be the associated outputs. For a novel input
x ∈ RN , we find the nearest neighbor as

µ∗ = argminµ ‖x− xµ‖
2
. (76)

With the nearest neighbor identified, the prediction is ŷ = yµ
∗

= w̄xµ
∗

+ εµ
∗
.

The expected generalization error is thus

Eg = 〈(y − ŷ)2〉x,x1:P ,w̄,ε,ε1:P

=

〈(
w̄
(
x− xµ

∗
)

+ ε− εµ
∗
)2
〉
x,x1:P ,w̄,ε,ε1:P

=

〈(
x− xµ

∗
)T

w̄T w̄
(
x− xµ

∗
)〉

x,x1:P ,w̄

+2〈(ε− εµ
∗
)w̄(x− xµ

∗
)〉x,x1:P ,w̄,ε,ε1:P + 〈(ε− εµ

∗
)2〉ε,ε1:P , (77)

We used that w̄
(
x− xµ∗)

=
(
x− xµ∗)T

w̄T is a scalar. This form allows us to
evaluate the expectation over teacher weights as 〈w̄T w̄〉w̄ = σ2

w̄I. Also noting
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that the noise is uncorrelated with everything else, we find

Eg = σ2
w̄

〈(
x− xµ

∗
)T (

x− xµ
∗
)〉

x,x1:P

+ 2σ2
e

= σ2
w̄

〈∥∥∥x− xµ∗
∥∥∥2

2

〉
x,x1:P

+ 2σ2
e , (78)

where the prefactor of 2 in the noise term reflects the independent fluctuations of

ε and εµ
∗
. We note that x−xµ ∼ N (0, 2

N I) for all µ, and so zµ =
√

N
2 (x−xµ) ∼

N (0, I). By the Gaussian Annulus Theorem (see e.g., Thm 2.9, pg 15 of [10]),

P
(∣∣∣‖zµ‖ − √N ∣∣∣ ≥ β) ≤ 3e−cβ

2

,

P

(∣∣∣∣∣
√
N

2
‖x− xµ‖ −

√
N

∣∣∣∣∣ ≥ β
)
≤ 3e−cβ

2

,

P
(∣∣∣‖x− xµ‖ − √2

∣∣∣ ≥ β√2/N
)
≤ 3e−cβ

2

, (79)

where c > 0 is a constant independent ofN . By the union bound, the probability
that one or more patterns among the µ = 1, · · · , αN fails to concentrate is no
more than

P

(
αN⋃
µ=1

{∣∣∣‖x− xµ‖ − √2
∣∣∣ ≥ β√2/N

})
≤ 3αNe−cβ

2

. (80)

Therefore the minimum over all patterns will fail to concentrate with probability
no more than

P
(∣∣∣∥∥∥x− xµ∗

∥∥∥−√2
∣∣∣ ≥ β√2/N

)
≤ 3αNe−cβ

2

. (81)

Choosing β = N1/4 we have,

P
(∣∣∣∥∥∥x− xµ∗

∥∥∥−√2
∣∣∣ ≥ √2N−1/4

)
≤ 3αNe−c

√
N , (82)

such that as N →∞, the minimum concentrates near
√

2 with probability one.
Substituting back into the expression for the expected generalization error, in
the high dimensional limit with high probability we have

Eg = 2σ2
w̄ + 2σ2

e . (83)

For our standard scaling where σ2
w̄ + σ2

e = 1, the error is therefore 2 regard-
less of the SNR. We note that this result applies in the high-dimensional limit
where N,P → ∞ and their ratio is α = P/N . In finite size simulations, the
generalization error can modestly differ, as shown in Fig. S1.

In essence, in the high-dimensional regime, the nearest neighbor is typically
very far away from the new sample, such that generalization fails completely.
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In fact, it is so poor that always predicting zero would be better (attaining
generalization error of 1 rather than 2 for our setting). This finding strongly
motivates the need for a trained student, but we note that notebook-mediated
generalization could be better in different settings where, for instance, input
examples arise from a low number of clusters [16].

6 Memorization-optimized Replay Policy

In the memorization-optimized replay policy, each example is stored in the note-
book according to the Hebbian scheme in Eqns. (12)-(16). These patterns can
then be reactivated offline to drive learning. In the simulations reported in the
main text, offline notebook reactivations undergo a two-step retrieval process:

1. A random binary pattern is used to seed the reactivation event. Starting at
this random state, the notebook updates through the recurrent dynamics
9 times synchronously to retrieve a stored pattern. On each update, the
threshold θ is chosen to enforce a sparsity of a (up to ties, which can cause
slightly more neurons to be active). Without this adaptive threshold, a
silent attractor dominates retrieval.

2. The notebook then uses the retrieved pattern from (1) to seed a second
round of pattern completion using a fixed threshold θ = −0.15, which in
combination with the global inhibition parameter γ = 0.6 provides good
retrieval alongside the possibility of retrieving a silent state (see [12] for
detailed derivation of performance as a function of these parameters). This
two step process enables retrieval of patterns that are not forced to have a
fixed sparseness, and a “silent state” attractor can be retrieved when the
seeding pattern lies far away from any of the encoded patterns.

This models a simple form of replay. Supposing that the notebook pattern at
convergence is ξ̃, the student input and target output are then reconstructed
based on the Hebbian connectivity as x̃ = V N→Sx ξ̃ and ỹ = V N→Sy ξ̃. This
provides an {x̃, ỹ} sample from which the student can learn using gradient de-
scent.

The policy is memory-optimized, in the sense that this replay continues in-
definitely, such that all samples stored in the notebook are eventually learned
by the student. This section characterizes the memory and generalization per-
formance of the student resulting from this replay process. If reactivations
perfectly reconstructed the stored examples, this replay strategy would be sim-
ilar to ‘batch’ learning strategies in machine learning, in which the same stored
dataset is repeatedly revisited to update network weights. However, errors in
reactivation could in principle degrade the learning process. In Section 6.1 we
show that although reactivations introduce errors, remarkably, these errors are
correlated in such a way that learning still proceeds like batch learning from
perfectly recalled examples up to a rescaling of the learning rate. Using this
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fact, in Section 6.2 we provide the expected memory and generalization errors,
based on results known in prior work [22, 4].

In this policy, both the notebook and student learn potentially beneficial
information, and in principle either could be used to answer a specific query for
a point x. We take the normative assumption that the best system is selected
to make the prediction. Often, this means that the output for a previously
stored input will be predicted by the notebook, while that for a novel input will
be predicted by the student. However, in Section 6.1 we show that there are
conditions under which the student memory error in fact surpasses the notebook,
and the student would be used to make predictions for previously stored inputs.

6.1 Accurate learning despite errors in reactivation

How do reactivation errors influence learning dynamics in the student? One hint
that learning from reactivations can be effective comes from Fig. 2 of the main
text. Given that the notebook is specifically designed to rapidly store memories,
it often has a lower memory error than the student. Surprisingly, however, Figs.
2a-h of the main paper show that the student’s training error can fall below that
of the notebook. How could it be that the student learns to accurately produce a
memory that was imperfectly memorized by the notebook? Our key theoretical
observation is that although the notebook imperfectly activates the output of
the student, it also imperfectly activates the inputs of the student. These errors
are correlated between input and output neurons in a way that does not harm
student learning. We demonstrate this fact in this section.

Reactivations have subtly different statistics to the original samples. In par-
ticular, when the notebook settles on a pattern ξµ (one column of the matrix ξ)
that was associated with an original sample xµ, yµ from the teacher, this results
in reactivated student activity input and output patterns x̃µ = V N→Sxξµ and
ỹµ = V N→Syξµ, respectively. Horizontally concatenating the input and output
reactivations into the matrices X̃ ∈ RN×P and Ỹ ∈ R1×P , this reactivation
leads the weights in the student network to change (in the reactivated gradient
direction) by the amount,

∆̃µwi = −λ ∂

∂wi

∑
j

wjX̃jµ − Ỹµ

2

= −2λ

∑
j

wjX̃jµ − Ỹµ

 X̃iµ

= −2λ

∑
j

wjX̃iµX̃jµ − X̃iµỸµ

 . (84)

Therefore, the change expected from gradient descent learning with a random
notebook index is

〈∆̃µwi〉ξ = −2λ

∑
j

wj〈X̃iµX̃jµ〉ξ − 〈X̃iµỸµ〉ξ

 . (85)
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To evaluate these expectations, we form the matrix Z̃ by vertically stacking X̃
and Ỹ , then note that

〈Z̃iµZ̃jµ〉ξ =
1

M2a2(1− a)2

P∑
ν=1

M∑
k=1

P∑
ρ=1

M∑
l=1

ZiνZjρ〈(ξkν − a)ξkµ(ξlρ − a)ξlµ〉. (86)

When µ 6= ν 6= ρ, the statistical independence of memories allows us to factor
out 〈ξkν − a〉, which is zero and causes the whole term to vanish. Similarly, we
get no contributions if µ 6= ρ 6= ν. This implies that both the ν and ρ indices
must either pair with each other or with µ, and the only terms that contribute
are thus ν = ρ = µ and ν = ρ 6= µ.

〈Z̃iµZ̃jµ〉ξ =
1

M2a2(1− a)2

M∑
k=1

M∑
l=1

(
ZiµZjµ〈(ξkµ − a)ξkµ(ξlµ − a)ξlµ〉

+
∑
ν 6=µ

ZiνZjν〈(ξkν − a)ξkµ(ξlν − a)ξlµ〉
)
. (87)

Both of these expectations have been calculated en route to calculating the note-
book’s training error. Plugging Eqs. (68) and (72) into the above expression,
we find,

〈Z̃iµZ̃jµ〉ξ =
1

M2a2(1− a)2

M∑
k=1

M∑
l=1

(
ZiµZjµ

(
δkla(1− a)2

+(1− δkl)
(
Ma2(1− a)2/(M − 1)− a(1− a)2/(M − 1)

))
+
∑
ν 6=µ

ZiνZjν

(
δkla

2(1− a)− (1− δkl)a2(1− a)
aM − 1

(M − 1)2

))

=
1

M2a2(1− a)2

(
ZiµZjµ

(
Ma(1− a)2 +M2a2(1− a)2 −Ma(1− a)2

)
+
∑
ν 6=µ

ZiνZjν

(
Ma2(1− a)−Ma2(1− a)

aM − 1

M − 1

))

=ZiµZjµ +
∑
ν 6=µ

ZiνZjν
(M − 1)a− a(aM − 1)

(M − 1)Ma(1− a)

=ZiµZjµ +
∑
ν 6=µ

ZiνZjν
M − 1

. (88)

Therefore,

〈∆̃µwi〉ξ = −2λ

 M∑
j=1

wj

XiµXjµ +
∑
ν 6=µ

XiνXjν

M − 1

−XiµYµ −
∑
ν 6=µ

XiνYν
M − 1


= ∆µwi +

1

M − 1

∑
ν 6=µ

∆νwi (89)
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where ∆µwi is the weight update that would occur if the student were perfectly
reactivated by the notebook pattern µ. Equivalently, ∆µwi is the weight update
that would occur from online learning to the teacher’s example. Importantly,
all contributions to 〈∆̃wi〉 are in the gradient direction of one of the teacher
examples. Rearranging this expression slightly, we find:

〈∆̃µwi〉ξ =

(
1− 1

M − 1

)
∆µwi +

1

M − 1

P∑
ν=1

∆νwi. (90)

Therefore, each notebook reactivation of pattern µ is equivalent to a mini-batch

update for that particular pattern with effective learning rate λ
(

1− 1
M−1

)
,

plus a batch update for all stored patterns with effective learning rate λ
M−1 .

Similarly, the learning expected by sequential notebook reactivation of all P
patterns is

〈∆̃wi〉ξ ≡
P∑
µ=1

〈∆̃µwi〉ξ =

(
1 +

P − 1

M − 1

) P∑
µ=1

∆µwi (91)

This is equivalent to batch learning with an effective learning rate of

λ̃ = λ

(
1 +

P − 1

M − 1

)
(92)

In sum, the notebook’s imperfect reactivation patterns hurt notebook memory
performance, but they do not harm the student’s ability to learn from past
memories if the learning rate is appropriately controlled.

6.2 Student memory and generalization error from replay

As shown in Sections 5.2 and 6.1, notebook reactivations closely recapitulate
stored student activity patterns when run below a critical capacity, and reacti-
vation errors are correlated in such a way as to preserve the relevant statistics
for student learning. In this regime, when replay events are random and the
learning rate is small, the student effectively learns from the whole batch of
samples. Batch learning dynamics differ fundamentally from online learning
dynamics, because in the batch setting the noise associated with each example
is repeatedly revisited. This difference raises the danger of overfitting to the
specific batch of stored data, rather than learning the general rule.

We therefore leverage known solutions to the batch learning dynamics of
student-teacher models in our high-dimensional setting [22, 4]. The average
memory error is (see Section 2 of [4])

EMO
m (t) =

1

α

∫
ρMP (λ)

(
1 + λS
1 + S

+ λσ2
w

)
e−

2λt
τ dλ+

(
1− 1

α

)
1

1 + S
1{α > 1},

(93)
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and the generalization error is

EMO
g (t) =

∫
ρMP(λ)

[(
S

1 + S
+ σ2

w

)
e−

2λt
τ +

1

λ(1 + S)
(1− e− λtτ )2

]
dλ+

1

1 + S
,

(94)
where the superscript MO stands for “memory-optimized,” t here measures time
in units of epochs, such that each stored example will be replayed once as t goes
from 0 to 1, σ2

w denotes the initialization variance of the student weights, i.e.,,
w(0)i ∼ N (0, σ2

w), 1{·} is an indicator function that is 1 when the argument is
true and zero otherwise, and the density ρMP(·) denotes the Marchenko-Pastur
distribution [23, 27], which describes the eigenvalue distribution of the input
correlations XXT in the high-dimensional regime. It has the form

ρMP(λ) =
1

2π

√
(λ+ − λ)(λ− λ−)

λ
+ 1{α < 1}(1− α)δ(λ) (95)

for λ = 0 or λ ∈ [λ−, λ+], and is zero elsewhere. The distribution comprises
a delta function spike at zero, corresponding to zero-variance input directions
that occur when there are fewer samples than the input dimension (i.e.,, α < 1),
and a bulk with upper and lower limits, λ± = (

√
α ± 1)2, that depend on the

load α. We set σ2
w = 0 for most analyses in the paper.

We call this strategy memory-optimized, because Eqn. (93) is strictly de-
creasing in time, so to optimize student memory, replay should be continued
indefinitely. However, Eqn. (94) is non-monotonic. Thus, while sustained re-
play optimizes student memory, this strategy can degrade generalization. Most
problematically, it causes catastrophic overfitting at the student capacity, which
corresponds to the interpolation threshold where the training error can just
reach zero at long times. For a shallow linear student, the capacity is reached
when the number of samples is equal to the input dimension, α = 1. Better
performance can be obtained for larger and smaller α, a finding known as the
double descent phenomenon [23, 22, 4, 8]. The behavior of this strategy for
a range of SNRs and loads α is depicted in Supplementary Fig. S2a,c. While
memorization performance is good throughout this space, generalization suffers
for low SNRs and loads near one.

6.3 Weight norm dynamics

While memory and generalization error are two key measures of learning progress,
we can also ask how the strength of student weights change throughout learning.
This quantity could enable certain experimental links, for instance, as a proxy
for functional connectivity in the context of the Sweegers et al. [35] experiment
discussed in Section 11.

A straightforward modification to the derivation in Section 2.1 of [4] yields
the time-dependent average student weight norm as

〈||w(t)||22〉Z = N
∫
ρMP (λ)

[
σ2
we
−2λt/τ +

(
σ2
w̄ +

σ2
ε

λ

) (
1− e−λt/τ

)2]
dλ,

= N
∫
ρMP (λ)

[
σ2
we
−2λt/τ + 1+λS

λ(1+S)

(
1− e−λt/τ

)2]
dλ. (96)
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Figure S2: Heatmaps of student memorization performance (a, b) and gener-
alization performance (c, d) as a function of SNR and α, when optimized for
student memorization (a, c) or generalization (b, d).

Although we typically consider the case where σ2
w = 0, for large σ2

w, this equation
can describe an initial decrease in norm, followed by an increase in norm as
weights align with the teacher.

6.4 Correlated training data and non-uniform memory re-
activation

Here we numerically explore the effects of introducing input correlations and
biased notebook sampling on the training and generalization error dynamics of
the student.

In Section 6.1, the errors in notebook reactivation were caused by readout in-
terference when retrieving the training patterns. This effectively introduced cor-
relations in the training data set, and we were curious how correlations affected
training dynamics more generally. When S =∞, increasing levels of correlation
mainly made the generalization error decay slower (Fig. S3a). When S = 0.6,
correlated data caused more severe overfitting (Fig. S3b). Interestingly, while
introducing correlations in training data generally increased the severity of over-
fitting, it did not the change our finding that the worst overfitting occurs when
the normalized data quantity equals one (α = 1) (Fig. S3c). These dynam-
ics could potentially be studied analytically by replacing the Marchenko-Pastur
distribution with the eigenvalue distribution of a random matrix ensemble con-
taining uniform input correlations [41].

In Section 6.1, we also assumed that memories were reactivated with uni-
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Figure S3: (a,b) Effect of introducing different levels of correlations among the
training patterns on the training and generalization error dynamics for S =∞
and S = 0.6, respectively. (c) Generalization error as a function of α for both
i.i.d training data and correlated training data (generalization error was mea-
sured at epoch 2000). (d,e) Effect of biased sampling on training and general-
ization error dynamics for S = ∞ and S = 0.6, respectively. Biased sampling
probabilities were chosen using an exponential function. Inset in d shows the
sampling probabilities for training patterns when using the notebook’s random
reactivations (one example shown), uniformly sampling, and biased sampling.
(f) Generalization error as a function of α for both uniformly sampled and bi-
ased sampled data. In all simulations, P = N = 100, and traces are the average
of 50 independent runs.
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form probability. This is a good model for the notebook we implemented (Fig.
S3d, inset, top), but realistic memory-reactivation mechanisms might be more
biased. We simulated non-uniform sampling of memories and found that biased
sampling slowed down the rate of generalization error improvement on noiseless
data with P = N (Fig. S3d). On the other hand, it had a small effect in
slowing down overfitting in the presence of noise (Fig. S3e). Similar to intro-
ducing correlations, biased sampling also did not change where worst overfitting
occurred as a function of normalized data quantity (Fig. S3f). We observed sub-
tle changes in the generalization performance under biased sampling compared
to uniform sampling, as the trend of the change (i.e., increased or decreased rate
of generalization error performance) switched sign as a function of normalized
data quantity.

These results extend our main conclusion (i.e., overfitting is a problem when
learning from a moderate amount of noisy data) to biased reactivation schemes
and alternate noisy data ensembles. They additionally revealed that the severity
of overfitting generally depends on more than the SNR and quantity of data,
with more severe overfitting here appearing when the training data contained
uniform input correlations. Future theoretical analyses could provide a fuller
understanding on what other factors influence the dynamics and final results of
systems consolidation.

7 Generalization-optimized Replay Policy

The generalization-optimized replay policy is similar to the memory-optimized
replay policy. Samples are stored in the notebook and replayed to the student
to drive learning. When it comes time to make a prediction, the system with the
best error is used. The key difference, however, is that replay is not continued
indefinitely. Instead, replay is terminated when generalization error stops im-
proving and starts to worsen due to overfitting. That is, this strategy regulates
replay to maximize generalization error.

7.1 Student memory and generalization error with regu-
lated replay

In detail, this strategy continues replay until the optimal early stopping time
t∗, defined as

t∗ = argmintE
MO
g (t), (97)

where EMO
g (t) is the memorization-optimized generalization error trajectory

(i.e., unregulated trajectory) from Eqn. (94). The student memory and gener-
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alization error therefore have the piece-wise form

EGO
m (t) =

{
EMO
m (t) t < t∗

EMO
m (t∗) t ≥ t∗

, (98)

EGO
g (t) =

{
EMO
g (t) t < t∗

EMO
g (t∗) t ≥ t∗

, (99)

where the superscript GO stands for “generalization-optimized,” and EMO
m (t)

denotes the memorization-optimized memory error trajectory from Eqn. (93).
Crucially, under this regulated strategy, the student memory error can remain
large indefinitely. Conversely, regulation avoids potentially catastrophic over-
fitting. The performance of the student under this strategy is depicted in
Fig. S2b,d as a function of SNR S and load α. Finally, we note that weight
norm dynamics have a similar piece-wise form for this strategy, such that the
dynamics follow Eqn. 96 for t < t∗, at which point they stop.

7.2 Properties of early stopping

To gain a better understanding of this strategy, we can ask how the optimal
stopping time depends on dataset parameters. While there is no closed form
expression for t∗, some intuition can be obtained by computing the optimal
stopping time for one fixed value of λ in the integral of Eqn. (94) (a strategy
that would be exact if the MP distribution were a delta function at a single
value of λ). The optimal stopping time is then (see Sec 2.2 of [4])

t∗ =
τ

λ
log(λS + 1), (100)

which shows that replay can continue longer for higher SNR relationships,
though the relationship is logarithmic.

Early stopping is only one out of a variety of regularization strategies that
can combat overfitting. Another possibility is to explicitly penalize large weight
values. The L2 regularization strategy sets the student weights according to

wL2 = argminw

(
Em(w) +

ω

2
||w||22

)
, (101)

where ω denotes the regularization strength. The optimal L2 regularization
strength for our setting is known to be inversely proportional to SNR, ωopt =
1/S (see [2, 3, 4]). Further, for the specific teacher and student regression
problem we consider here, this regularization is known to be Bayes optimal,
such that no algorithm can outperform it [2, 3]. It therefore can serve as a
normative standard of comparison for early stopping. Prior work has shown
that, in our setting, early stopping closely approximates the effect of explicit
L2 regularization (see, e.g.,, Fig. 5a of [4]), providing a normative basis for the
early stopping strategy.

Finally, we can exploit the similar performance of early stopping and op-
timal L2 regularization to obtain an explicit (but approximate) expression for
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the performance of the generalization-optimized replay strategy after the early
stopping time. In particular, for t > t∗ we have

Eg(t) ≈ EL2
g for t ≥ t∗

=
S

2(1 + S)

(
1− α− 1/S +

√
(1/S + α− 1)2 + 4/S

)
+

1

1 + S
, (102)

where the latter step is the known generalization error of optimal L2 regular-
ization on this problem [2, 3, 4].

Using a similar approach, we can approximate the weight norm at the op-
timal stopping time as the weight norm of the optimal L2 regularized solution
(see Eqn. 66 [4]),〈∥∥∥wL2

opt

∥∥∥2

2

〉
Z

= σ2
w̄

∫
ρMP(λ)

λ

λ+ 1/S
dλ,

=

∫
ρMP(λ)

λS2

(1 + S)(1 + λS)
dλ, (103)

which we note limits to 1 as S → ∞ and 0 as S → 0, such that high-SNR rela-
tionships have larger weight norms than low-SNR relationships at the optimal
stopping time.

8 Example of generalization non-limiting unpre-
dictability

The main text provides several examples of generalization-limiting unpredictabil-
ity, with the canonical example being a teacher with output noise. However, not
all sources of unpredictability are generalization limiting. For example, suppose
that the teacher generates noiseless data,

y = w̄x, (104)

but the student has internal noise in its input neurons that affects its predictions

ŷ = w(x+ η). (105)

Averaging over the input and noise distributions (but not the teacher weights),
the generalization error of the student is

Eg = 〈(y − ŷ)2〉x,η = 〈(y −
∑
i

wi(xi + ηi))
2〉x,η

= 〈y2〉x − 2
∑
i

wi〈y(xi + ηi)〉x,η +
∑
i

∑
j

wiwj〈(xi + ηi)(xj + ηj)〉x,η. (106)
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Assuming that x, y, and η are zero mean random variables, and that η is
uncorrelated with x and y, this is equal to

Eg = σ2
y − 2Cyxw + wT (Cxx + Cηη)w. (107)

Setting the derivative with respect to w equal to zero,

0 =
∂Eg
∂w

= −2Cyx + 2wT (Cxx + Cηη) (108)

we find that the student weights that optimize generalization are

w∗ = (Cxx + Cηη)−1Cxy (109)

In contrast, the teacher weights satisfy

Cyx = w̄TCxx =⇒ w̄ = C−1
xx Cxy. (110)

Since w∗ 6= w̄, the generalization-optimized student is statistically biased,

〈ŷ〉η − y = (w∗ − w̄)Tx 6= 0, (111)

and the generalization error is nonzero. The teacher is unpredictable by the
student.

Nevertheless, this type of unpredictability does not require strongly regu-
lated systems consolidation. For example, suppose that the notebook perfectly
memorizes P input-output patterns of the student. Then, the memory error
averaged over student neuron noise is

〈Em〉η =
1

P

∑
µ

〈(
yµ −

∑
i

wi(xiµ + ηi)

)2〉
η

=
1

P

∑
µ

y2
µ − 2

∑
i

wiyµxiµ +
∑
i

∑
j

wiwj(xiµxjµ + 〈ηiηj〉η)


=

1

P

(
yT y − 2yXTwT + wT (XXT + Cηη)w

)
. (112)

Setting the derivative with respect to w equal to 0,

0 =
∂〈Em〉η
∂w

=
1

P

(
−2yXT + 2w(XXT + Cηη)

)
(113)

we find that the weights minimizing the training error are

ŵ = yXT (XXT + Cηη)−1. (114)

Noting that XXT and yXT are (proportional to) estimates of Cxx and Cxy
given the P teacher examples, we see that this is the same basic form as the
weights that minimize the generalization error.

In terms of the learning dynamics, the role played by eigenvalues of XXT

is now played by eigenvalues of XXT + Cηη, which are lower bounded by the
minimum eigenvalue of Cηη. For white noise, this is just σ2

η. Overfitting was
previously due to eigenvalues near 0, but those have now been shifted up to σ2

η.
The student input noise regularizes the learning process.
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9 Means to regulate systems consolidation

Section 7 explained how generalization performance could be optimized by us-
ing the SNR of the teacher to regulate the amount of systems consolidation.
In biology, the SNR is not known a priori, and the brain must decide for itself
how to regulate consolidation. This section explores several plausible strate-
gies that the brain could use to regulate systems consolidation. We emphasize
strategies that serve to optimize generalization in the teacher-student-notebook
framework.

9.1 Validation set approach

In the teacher-student-notebook framework, the notebook stores P teacher-
generated examples at t = 0. We’ve so far assumed that the notebook reactivates
all P examples with uniform probability to drive student learning. However, it’s
also possible for the notebook to divide its examples into separate training and
validation sets. As before, the notebook could reactivate the training examples
to drive student learning. However, if the validation examples are not reacti-
vated to drive student learning, then they could instead be used to approximate
the generalization error. Alternatively, a validation set can be used to train a
separate, smaller student. A recent machine learning study shows that such a
separately-trained model can be used to construct a score for ranking individual
training sample’s usefulness in improving generalization [29], which in turn can
be used for regulating consolidation.

9.2 Maximum likelihood estimation

The above strategy used separate subsets of examples to drive learning and esti-
mate the generalization error. Such a scheme could allow the brain the regulate
systems consolidation by stopping student learning as soon as the generaliza-
tion error begins to increase. An alternate strategy is to estimate the SNR of
the teacher, S, from the examples it provides, X and y. In this subsection, we
calculate and characterize the maximum likelihood estimator,

Ŝ = argmaxSP (X, y|S), (115)

which is a statistically principled and asymptotically optimal unbiased estimator
of S. It will be convenient to replace the likelihood function, P (X, y|S), with the
log-likelihood function, logP (X, y|S), because the logarithm does not change
the location of maximum,

Ŝ = argmaxS logP (X, y|S), (116)

and it is often mathematically convenient to work with log-transformed func-
tions. For example, by the product rule of probability, we have

P (X, y|S) = P (X|S)P (y|X,S) = P (X)P (y|X,S), (117)
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Figure S4: (a, b, c) Generalization and memorization error dynamics with early
stopping computed according to the ground truth SNR and MLE-estimated
SNR. S =∞, S = 4, and S = 100, respectively. N = P = 100. (d, e, f and g, h,
i) Similar to panels a, b, c, but using the learning speed approach to estimate
the SNR and corresponding early stopping times. Here the model dimensions
were N = P = 100 for panels d, e, f and N = P = 10, 000 for panels g, h, i. In
all panels, 10 independent simulations were performed for estimating the SNR.
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where we noted that P (X) is independent of S by assumption. Therefore,

logP (X, y|S) = log(P (X)) + log(P (y|X,S)), (118)

and

Ŝ = argmaxS log(P (y|X,S)), (119)

where we discarded S-independent additive factors in the last step.
We next derive an expression for P (y|X,S). It is convenient to first note

that P (y|X,S) is the marginal of P (y, w|X,S) over w:

P (y|X,S) =

∫
dNwP (y, w|X,S). (120)

Again using the product rule of probability, we find

P (y, w|X,S) = P (w|X,S)P (y|X,w,S). (121)

Both of these probability distributions are easy to specify. First, elements of w
are i.i.d. distributed as wi ∼ N (0, S1+S ) by assumption, so

P (w|X,S) = P (w|S) ∝ exp

(
−1 + S

2S
wwT

)
, (122)

where the normalization constant was neglected for mathematical conciseness
and will be put back in later. Second, note that elements of y are normally
distributed with mean wX and variance determined by the noise, which is i.i.d.
distributed as ηµ ∼ N (0, 1

1+S ). Therefore,

P (y|X,w,S) ∝ exp

(
−1 + S

2
(y − wX) (y − wX)

T

)
, (123)

where the neglected normalization constant will again be included later. Putting
these two pieces together, we can easily see that P (y, w|X,S) is a zero-mean
multivariate Gaussian distribution with an S-dependent covariance structure.
In particular, the arguments of the exponential factors in Eqs. (122) and (123)
combine to give

P (y, w|X,S) ∝exp

(
−1 + S

2S
wwT − 1 + S

2
(y − wX) (y − wX)

T

)
=exp

(
− 1/2

(
(1 + S)yyT + w

(
1 + S
S

I + (1 + S)XXT

)
wT

− 2(1 + S)yXTwT
))
, (124)

which shows that each term in the exponential is second-order in y and w. This
allows us to use the general Gaussian integral formula to integrate over w,∫

dNw exp

(
−1

2
wAwT +BTwT

)
=

√
(2π)N

detA
exp

(
1

2
BTA−1B

)
, (125)
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with

A =
1 + S
S

I + (1 + S)XXT , B = (1 + S)XyT . (126)

Consequently, P (y|X,S) is again a multivariate normal distribution, this time
with exponential factor given by

P (y|X,S) ∝ exp
(
− 1 + S

2
yyT

+
(1 + S)2

2
yXT

(
1 + S
S

I + (1 + S)XXT

)−1

XyT
)

= exp
(
− 1 + S

2
yyT

+
(1 + S)

2
yXT

(
I/S +XXT

)−1
XyT

)
= exp

(
− 1

2
yC−1yT

)
, (127)

where

C−1 = (1 + S)
(
I −XT

(
I/S +XXT

)−1
X
)

(128)

is the inverse covariance matrix. Putting back in the normalization factors, we
find

P (y|X,S) =
1√

(2π)P detC
exp
(
− 1

2
yC−1yT

)
(129)

and thus

Ŝ = argmaxS

(
−1

2
log detC − 1

2
yC−1yT

)
, (130)

where C is a function of S and X.
It is convenient and conceptually clarifying to rewrite the covariance matrix

in Eq. (128) in terms of the singular value decomposition of X,

X = UΛ1/2V T , (131)

where U and V are orthogonal matrices and Λ is non-negative rectangular di-
agonal matrix. In particular, it implies that

C−1 =(1 + S)

(
I − V Λ1/2UT

(
I/S + UΛ1/2V TV Λ1/2UT

)−1

UΛ1/2V T
)

=(1 + S)V
(
I − Λ1/2 (I/S + Λ)

−1
Λ1/2

)
V T (132)

and

C =
1

1 + S
V
(
I − Λ1/2 (I/S + Λ)

−1
Λ1/2

)−1

V T (133)
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Using the fact that Λab = λaδab is a rectangular diagonal matrix, this expression
can be significantly simplified by recognizing that(

I − Λ1/2 (I/S + Λ)
−1

Λ1/2
)−1

ab
=

(
1− λa

1/S + λa

)−1

δab

=

(
1/S

1/S + λa

)−1

δab = (1 + λaS)δab. (134)

In particular, we see that

C = V
(I + SΛ)

1 + S
V T =

I + SXTX

1 + S
. (135)

We show in the main text that this estimation scheme accurately tracks
the ground truth SNR (Fig. 2l). Figs. S4a-c additionally show that the es-
timated SNR leads to accurate early stopping times, generalization dynamics,
and memorization dynamics.

9.3 Learning speed approach

Finally, we consider a simple heuristic based on the initial rate of improvement
in a task. Intuitively, tasks with easy-to-memorize data points are those with
an underlying pattern that supports generalization (i.e., are high SNR). To
formalize this intuition in our setting, we consider the initial slope of the student
memory error in Eq. (93),

d

dt
EMO
m (0) =

1

α

∫
ρMP (λ)

(
1 + λS
1 + S

+ λσ2
w

)
d

dt
e−

2λt
τ dλ

∣∣∣∣
t=0

= − 2

τα

∫
ρMP (λ)

(
λ+ λ2S

1 + S
+ λ2σ2

w

)
dλ. (136)

For a given α, τ, and σ2
w, this expression shows that the initial slope depends

on the SNR, S. Therefore, replay can be regulated by measuring the initial
slope, a quantity immediately available to the agent, and reading off the asso-
ciated SNR. The bottom panel of Fig. 2m illustrates this relationship for one
set of parameters, which is approximately linear in the logarithm of the SNR,
and Fig. 2n shows that the estimated SNR is reasonably accurate. In Figs.
S4d-i, we additionally used the learning speed approach to estimate early stop-
ping times, and we found that the resulting memorization and generalization
dynamics could closely match those found using the ground truth SNR. We note
that this agreement required that the model be sufficiently high dimensional,
but our model remains small compared to the biological brain. This heuristic
is representative more broadly of a class of approaches that monitor training
trajectories as a way of estimating generalization performance.
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10 Complex teachers

10.1 Linear Student

Here we show that a mismatch between the teacher and student, such that
the teacher is deterministic but more complex than the student, is a form of
generalization-limiting unpredictability that behaves similarly to observing a
teacher with noise. Our derivation follows Appendix C of [4], but we include a
derivation of this important result for completeness.

Suppose the teacher generates inputs independently from some distribution
x ∼ p(x), and labels them using the possibly nonlinear function y = g(x). The
best possible linear student (i.e.,, the student trained on infinite data) will have
weights

ŵopt = CyxC
+
xx (137)

where Cyx =
〈
yxT

〉
x,y

is the input-output correlation matrix, Cxx =
〈
xxT

〉
x

is

the input correlation matrix, and C+
xx denotes its pseudoinverse. We can rewrite

the teacher output as the prediction of this optimal student and a residual,

y = CyxC
†
xxx+ δy, (138)

where the residual, δy, is defined by this expression.
Next, we consider learning the student weights from a finite batch of data

with P examples, given in matrices Y,X with examples in the columns. The
student weights that minimize the training error are

ŵls = Y XT
(
XXT

)+
(139)

= ŵopt + δY XT
(
XXT

)+
(140)

where we substituted Eq. 138 for Y , and δY = Y − CyxC+
xxX is the matrix

of residuals. This formulation clearly separates contributions to the student
weights into an optimal component and an overfitting component. Notably, the

overfitting term δY XT
(
XXT

)†
has the same form as for additive noise. This

noise is generally non-Gaussian, but the training and generalization errors equal
those of a Gaussian teacher with mean and variance matched to δY .

10.2 Nonlinear student

In order to test if our theoretical conclusions generalize beyond the linear student
setting in regression tasks, we extended our numerical experiments to nonlinear
student networks solving real-world classification tasks. More specifically, we
trained deep convolutional neural networks (CNNs) to classify images from the
MNIST [24], CIFAR-10 [21], and Tiny ImageNet [15] data sets. We used a simple
CNN for the MNIST dataset (2 {convolutional + pooling} layers followed by 3
fully connected layers) and ResNet-18 [18] for the CIFAR-10 and Tiny ImageNet
datasets (see Fig. S5 associated code for simulation details). For CIFAR-10 and
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Figure S5: Deep Convolutional Neural Networks (CNN) trained on MNIST,
CIFAR-10, and Tiny ImageNet show qualitative similar behavior of overfitting
and memorization-generalization trade-off, compared to simpler linear models.
(a-c) Deep CNNs can overfit to training data in all three datasets. (d-f) Overfit-
ting can be prevented by early stopping. Gray dashed lines mark the non-zero
training loss when performing early stopping. (g) Example training examples
that are corrected classified (consolidated) (for g only) versus incorrectly clas-
sified (non-consolidated) after early stopping. For h and i, the text box at the
bottom right corner of the image shows the ground truth label.
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Tiny ImageNet training, data augmentations including random crop, rotation,
and horizontal flip were introduced during training. Unaltered examples were
used for evaluating training and testing performances.

Interestingly, we found that Go-CLS theory’s essential conclusion still holds
for these nonlinear teacher and student cases (Fig. S5). In particular, over-
trained networks could achieve full memorization of the training data (100%
training accuracy), but these models showed overfitting (Fig. S5a-c), reflected
by the increased validation loss after reaching a minimum. Similar to the linear
student network, early stopping was implemented by detecting when the val-
idation loss stopped improving for 8-15 epochs, thereby preventing overfitting
and resulting in a non-zero training loss (Fig. S5d-f). This reiterates the main
message of Go-CLS theory: neural networks trained for perfect memory perfor-
mance suffer in generalization, and generalization can be improved by regulating
the consolidation process according to some regularization scheme (such as early
stopping, dropout, or weight decay).

A novel aspect of these real-world data sets is that individual examples can
have different noise characteristics. Examining the training examples that were
correctly classified (consolidated) versus incorrectly classified due to early stop-
ping (non-consolidated) provides interesting hints about the nature of the data
that can harm generalization if fully consolidated. Taking the MNIST task as
an example, the consolidated digits are easily recognizable as ‘canonical’ exam-
ples of each class (Fig. S5g, left), with variations that typically did not cause
ambiguity (e.g., 7 vs 7 with a slash through it). By contrast, non-consolidated
digits exhibited several distinct forms of unpredictability. First, there are clearly
mislabeled data in the MNIST dataset (digits with red boxes). These digits act
as noise during training, mirroring the “noisy teacher” discussed in the main
paper (Fig. 5b). Second, many digits seemed to be written in ambiguous ways
or atypical ways (e.g., examples of 0 with a slash through it). This suggests that
more information is sometimes needed to determine the right label (i.e., about
the writer’s penmanship style), making these examples akin to the “partially
observable teacher” (Fig. 5d). Similarly mislabeled and ambiguous data are
also abundant for the unconsolidated images in CIFAR-10 and Tiny ImageNet
datasets (S5h, i). These data sets additionally contain non-consolidated images
that contain multiple distinct objects within the same scene. For example, one
image contains both a cat and a hourglass, but the network’s classification of
“Egyptian cat” is counted as incorrect.

11 Comparison of Go-CLS theory to past exper-
imental results

Go-CLS theory generates a diversity of amnesia curves that might help memory
researchers explain the similar diversity found experimentally (Fig. S6). Re-
searchers usually classify hippocampal amnesia dynamics according to whether
memory deficits are similar for recent and remote memories (flat retrograde am-
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nesia), more pronounced for recent memories (graded retrograde amnesia), or
absent for both recent and remote memories (no retrograde amnesia) (Fig. S6a).
Since real world experiences are composed of many elements that differ in their
degree of predictability (Fig. 5j), our theory predicts that different components
of human memory will consolidate to different degrees (Fig. 5k). In human
memory research, patients with selective hippocampal damage indeed show ret-
rograde amnesia reflecting diverse dynamics of systems consolidation [42, 17].
Some patients show graded retrograde amnesia consistent with the standard
theory, while others either have flat retrograde amnesia or no retrograde am-
nesia [42] (Fig. S6b). Similarly diverse retrograde amnesia curves have been
seen in rodent memory tasks (Fig. S6c-f). For example, hippocampal lesions
can result in either graded or flat retrograde amnesia in different individuals
performing the same task [39, 34, 40] (Fig. S6c-e), and individual animals can
exhibit different types of amnesia on different tasks [40] (Fig. S6e,f).

Go-CLS theory recasts this wide range of experimental observations through
the tuning of two parameters (Fig. 3e), the predictability of experience and the
amount of prior consolidation. It is not yet possible to unambiguously specify
these parameters for arbitrary real-world experiences and experimental memory
tasks, but the empirical patterns are plausibly consistent with Go-CLS theory.
For example, famous faces and facts about public events are generally reliable
components of many life experiences, and one need not conjure up a specific
past experience to remember what Barack Obama looks like or that the COVID-
19 pandemic stunned the global economy. Memories of famous faces and facts
about public events may thus represent content that is highly predictable across
experiences, in which case Go-CLS would predict that they can be consolidated.
Indeed, many patients can recall remote facts and famous faces without a func-
tioning hippocampus [42] (Fig. S6b). In contrast, autobiographical memories
combine idiosyncratic details about specific experiences in one’s life that may
not generalize to other experiences. For example, one often needs to think back
to the original experience to remember the cake served at their child’s birthday
party or the songs played at their wedding. Because many incidental influ-
ences shape how complex real-life events unfold, remembering autobiographical
memories may require the recall of content that is intrinsically unpredictable.
Go-CLS predicts that unpredictable content will not be consolidated, and most
patients cannot recall these memories without a hippocampus [42] (Fig. S6b).
Along similar lines, the Morris water maze task consistently requires the hip-
pocampus [40, 11, 31] (Fig. S6f), perhaps suggesting that rodents need to recall
past experiences to reconstruct the detailed arrangement of environmental cues
and platform positions [30, 33], both chosen arbitrarily by the experimenter.
Rigorously assessing these post hoc interpretations will require theoretical and
experimental progress on the algorithms used for predictability estimation.

Go-CLS theory can also generate diverse time courses for time-dependent
generalization that mimic experimental diversity [39, 38, 14, 9]. For example,
some mice showed increased fear responses to similar but not identical contexts
in fear-conditioning experiments (“generalizers”, Fig. S6g, red bars), while oth-
ers maintained distinct behavioral responses over time (“discriminators”, Fig.
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Figure S6: Caption continued on next page.
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Figure S6: Diverse findings in memory research. (a) Schematic of retrograde am-
nesia curves. (b) Reports of retrograde amnesia in human patients with selective
hippocampal damage show diverse dynamics. Figure adapted from Yonelinas
et al., 2019 [42]. (c, d) Lesioning hippocampus in rodents can produce both
graded and flat retrograde amnesia. Figure adapted from Kim & Fanselow,
1992 [20], Sutherland et al., 2008 [34]. Lesioning the hippocampus can result in
graded (e) or flat (f) retrograde amnesia in the same animal performing different
tasks (contextual fear conditioning and Morris water maze, respectively). Fig-
ure adapted from Winocur et al., 2013 [40]. (g) Discriminators can differentiate
the original fear-conditioning context with another similar but novel context,
whereas generalizers show similar amount of fear response to both contexts. (h)
Silencing the hippocampus in mice 15 days after contextual fear conditioning
differentially impact fear memory of the original context, depending on whether
the animal show time-dependent fear generalization. panels g and h are adapted
from Wiltgen et al., 2010 [39]. (i, j) Regulated systems consolidation can re-
produce similar correlation between time-dependent generalization and reduced
hippocampal dependence of memories. High SNR (1000) and low SNR (0.6)
simulations based on analytical solutions are used to model the “generalizers”
and “discriminator”. 2000 total epochs are simulated with N = P = 100,
notebook size M = 5000, and learnrate = 0.005. (k) Face-location association
task with rules vs no rules show different time-dependent change in functional
connectivity between cortical areas. Figure adapted from Sweegers et al., 2014
[35]. (l) Regulated systems consolidation shows similar connectivity changes
over time, as reflected in the norm of the student’s weights. Student weight w is
drawn i.i.d. from N (0, 0.5), where the weights’ non-zero initial condition reflect
the brain’s preexisting connectivity between these two regions. The student
then learns from a high SNR teacher (SNR = 2) or a low SNR teacher (SNR
= 0.05), while the weight norm is monitored through time (normalized to the
initial norm). Note that a decrease in weight norm is expected on the low-SNR
learning task, as a large weight norm generates substantial output variance that
is uncorrelated with the teacher’s noisy output. 2000 total epochs are simulated
with N = P = 100, notebook size M = 2000, and learnrate = 0.015.

42



S3g, blue bars) [39]. Strikingly, only the discriminators required their hip-
pocampus for memory recall of the original context (Fig. S6h). Although other
interpretations are possible, it’s intriguing that Go-CLS theory predicts that
memory transfer and generalization improvement should be similarly correlated
(Fig. 3f, S6i, S6j). In this interpretation, “discriminators” might judge fear
conditioning to be an unpredictable experience that should not consolidate be-
cause this would cause maladaptive generalization. Their memories would thus
be left in original form and be susceptible to strong retrograde amnesia (Fig.
S6i, j, blue bars). In contrast, “generalizers” might infer that the experience is
predictable, which would then lead to consolidation, weak retrograde amnesia,
and learned generalizations (Fig. S6, red bars). This variability across individu-
als is possibly due to differences in each animal’s regulation process (Fig. 2i-m)
or feature encoding (Fig. 5i).

An experiment closely related to Go-CLS theory was performed by Sweegers
et al. [35]. In their task design, healthy human participants had to associate
specific faces with positions on a computer screen (Fig. S6k, left). Half of the
locations were assigned faces through an unpredictable random process, whereas
the other locations were assigned faces according to a hidden but fully reliable
rule. The authors then used functional magnetic resonance imaging (fMRI) to
assess how systems consolidation changed the functional connectivity between
several brain areas during memory recall. They specifically asked whether func-
tional connectivity patterns revealed statistical interactions between the asso-
ciation type (faces assigned to rule locations versus no-rule locations) and time
(recall at recent versus remote time points). We subsequently refer to these
statistical interactions as rule/time interactions.

Sweegers et al. found selective cortical recruitment that is consistent with
the general premise of Go-CLS theory. More specifically, they detected sta-
tistically significant rule/time interactions in the functional connectivity from
the hippocampus to a region containing parts of the anterior cingulate cortex
(ACC) and medial prefrontal cortex (mPFC) [35]. This suggests that the time
course of system consolidation depends on the predictability of the consolidated
information. A post hoc analysis revealed similar rule/time interactions in the
functional connectivity from this ACC/mPFC region to the fusiform face area
(FFA). These findings collectively indicate enhanced ACC/mPFC connectivity
for the rule locations at the remote time point, consistent with the idea that
systems consolidation is regulated to recruit neocortical computations when the
predictability of experience is high.

Intriguingly, Sweegers et al. also described a trend in their data that could
quantitatively link their experimental paradigm to Go-CLS theory. In par-
ticular, when they investigated how functional connectivity from the fusiform
face area (FFA) differed at recent and remote time points, they found that its
connectivity to right parietal cortex increased for the rule-based locations and
decreased for the no-rule locations (Fig. S6k, right) [35]. This result is ex-
pected from Go-CLS theory (Fig. S6l). The right parietal cortex is involved in
spatial processing, and we interpret its functional connectivity from FFA in the
teacher-student-notebook model as student weights used to predict neural activ-
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ity coding location from neural activity coding faces. Our theory predicts that
the predictability of the face-location relationship determines whether systems
consolidation drives neocortical learning that links FFA to right parietal cortex.
Indeed, these connections strengthened only when the face-location relationship
was predictable. This empirical difference can be quantitatively captured by
regulated systems consolidation (Fig. S6l). However, the authors did not test
the statistical significance of this trend, because earlier analyses failed to detect
any rule/time interactions in the functional connectivity from FFA. As such,
the authors were worried that subsequent statistical tests would have inaccu-
rately inflated p-values. It would be very interesting to see whether this trend
is significant in a replication of Sweegers et al.

Predictable rules may similarly enhance consolidation in real-world situa-
tions. For example, a well-known study from Maguire et al. studied a licensed
London taxi driver with bilateral hippocampal damage and found that this pa-
tient was only able to navigate London using its main arteries [26]. Consistent
with the premise of Go-CLS, the authors suggested that the hippocampus is
required for navigating “roads in a very unpredictable and irregular layout” but
not those in a “predictable, regular (grid-like) layout” [26].

12 Experimentally testable prediction of Go-CLS

In this section, we provide some predictions of the Go-CLS theory and outline
a framework for designing experiments to test these predictions. The core fea-
ture of these testable predictions is that subjects performing any task should
consolidate information that is highly predictable, but not information that is
unpredictable. Thus, any experimental design requires a way to vary the pre-
dictability of an input-output task and to measure the amount of consolidation
that occurs during learning. Having accomplished this, it should be possible
to design experiments that probe the mechanistic implementation of regulated
consolidation, provided that the initial experiments are indeed consistent with
Go-CLS. In theory, experiments can be done on any species capable of learn-
ing input-output tasks with variably predictable relationships. Here, we focus
on mammalian species with hippocampal and neocortical brain regions (e.g.,,
humans, non-human primates, rodents, etc.), as consolidation is presumed to
occur through interactions between these two brain regions. Below, we provide
a general recipe for designing such tasks. We presume that the details of ex-
perimental design will be determined by domain experts who wish to perform
these types of experiments.

12.1 Testing the relationship between predictability and
consolidation

The essential component is a behavioral task consisting of an input-output rela-
tionship designed by the experimenter and learned by the subject through expe-
rience. To design such a task, the experimenter must first choose inputs (e.g.,,
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visual cues), outputs (e.g.,, sound frequencies), an action to indicate the output
(e.g.,, movement to target), a relationship between the inputs and outputs that
can take predictable and unpredictable forms, and a reward (or removal of aver-
sive stimulus) that serves as the driver for the subject to learn the input-output
relationship. Predictable here means that if the subject sees either an old or a
novel cue, it can use a rule learned from past trials to make a good prediction
about how to respond correctly. The unpredictable version of the task lacks
a systematic input-output relationship, and the only strategy for good perfor-
mance is to memorize which cues are rewarded and which ones are not. Thus,
we refer to the predictable and unpredictable versions of the task as rule-based
and memory-based tasks, respectively. In addition to these two versions of the
task, levels of generalization performance should be quantifiable by testing the
performance on novel experiences following the same generative process. This
is a critical piece of information on whether the animal is indeed consolidating
predictable information in the manner we have originally designed.

Furthermore, there must be ways to infer the extent of systems consolida-
tion. A key method is to determine if performance is impaired by hippocampal
dysfunction (preferably reversibly) at remote time points. Our theory predicts
the extent of memory preservation after hippocampus dysfunction should be
correlated with the predictability of experience. It is important to ensure that
the rule-based and memory-based tasks initially require similar hippocampal
involvement, or else consolidation may not be required. This can be done by
checking that hippocampal dysfunction impairs both task versions at recent time
points. Manipulations such as lesions and reversible silencing (chemical, opto-
genetic, chemogenetic) can be applied to experimental animals (e.g.,, rodents)
at different time points post-learning. This is more difficult in humans because
of the constraints associated with using invasive or genetic tools for hippocam-
pal perturbation, but it might be possible with functional imaging methods.
For example, following systems consolidation of rule-based (highly predictable)
experience (i.e.,, in a well-trained subject), memory recall is predicted to not
require the hippocampus, and memory recall may thus engage the hippocampus
more weakly. Strong neocortical activation must occur while the subject per-
forms the task, and we expect higher within-neocortex functional connectivity.
In contrast, weaker within-neocortex functional connectivity would be expected
during performance of a memory-based (unpredictable) version of the task than
the rule-based version, which relies more on reactivation of hippocampal memo-
ries to make predictions. Alternatively, perturbations of the hippocampus could
be potentially achieved in humans through fMRI-guided transcranial magnetic
stimulation (TMS) [36].

In the following, we provide two example experiments following the above-
prescribed recipe:

Example 1: Visual gratings presented at various angles are used as the in-
puts and colored reward ports are used as outputs. Animals can indicate their
choice by licking at a particular reward port (Fig. S7a). A relationship with
varying degrees of predictability can be introduced to link the input and out-
put. For example, the high predictability version of the relationship could be
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Figure S7: Example experiments for testing Go-CLS. (a, b) Illustrations of a
rule-based and a memory-based input-output task. (c) Task design for a face-
location task used in Sweegers et al., 2014 [35].

46



that angles from 0° to 45° correspond to licking at the blue reward port, angles
from 45° to 90° correspond to licking at the yellow reward port (Fig. S7a).
For a task with low predictability, the mapping between angles and reward
ports could be selected randomly (i.e.,, no systematically predictable relation-
ship between angle and reward port, but the mapping could be memorized)
(Fig. S7b). Our theory predicts that, over time, the hippocampus is no longer
required to solve the rule-based (highly predictable) version of the task due to
full consolidation (i.e.,, hippocampal silencing will not impair the correct per-
formance of either the learned examples or the novel examples following the
same rule). On the other hand, in the task with randomly established mapping,
silencing the hippocampus would impair the animal’s ability to recall previously
memorized grating-to-reward-port mappings. Note that specific choices of such
input/output pairs and their mapping rules would require considerations of the
species-specific biology and ethology. For example, humans and non-human pri-
mates might be able to perform the angle-based task well, whereas mice might
not have the visual acuity to differentiate nearby angles [1].

Example 2: An experiment performed by Sweegers et al. (Fig. S7c) is con-
sistent with our task design recipe. Specifically, the inputs are human faces with
certain features, the output is one of six locations on the screen to which the ex-
perimental subject needs to move a joystick to indicate the choice. The mapping
was designed to be either highly predictable, mapping certain features to certain
locations, or unpredictable, consisting of a random mapping between features
and locations. The authors in this study measured systems consolidation using
the strength of cortico-cortical coupling for remotely acquired associations com-
pared to recent ones, indicated by functional connectivity (see Supplementary
Material 11). fMRI-guided TMS could potentially be used in future studies
to perturb the hippocampus for a more causal investigation of the relationship
between task predictability and hippocampus dependence.

12.2 Experiments probing implementational mechanisms
of Go-CLS

If experiments like the ones described above yield results that are consistent
with the Go-CLS theory (i.e.,, show clear correlation between the level of sys-
tems consolidation and the task predictability), implementational mechanisms
for how systems consolidation is regulated can then be studied. Experimental
tools for investigating possible mechanisms will differ by species. In humans,
non-invasive tools such as fMRI, electroencephalography (EEG) or magnetoen-
cephalography (MEG) will be the predominate methods for monitoring brain
activity. In animal model systems, finer-scale measurements can be performed in
combination with the behavioral experiments described in the previous section.
For example, electrical recordings using electrode arrays (e.g.,, tetrode arrays or
neural pixel probes) or cellular-resolution calcium imaging can be used to record
neural activity. The tools available in any of these species permit experiments to
monitor changes in the way representations of the task change over time during
learning in the hippocampus, neocortex, or both. Spontaneous neural activity
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during resting periods can also be recorded in any of these species to decode
task-related representations [25] and monitor correlated changes in offline activi-
ties and the extent of consolidation. For model systems like rodents, optogenetic
or chemogenetic tools can be used to causally identify different brain regions in-
volved, perhaps even prior to recording/imaging, in order to focus those efforts
on the most pertinent brain regions. Manipulations can be timed to interfere
with learning during training sessions or during offline periods when consolida-
tion is expected to occur. Similar experiments in humans could potentially be
done through fMRI guided TMS or deep brain stimulation.

Once critical brain regions and appropriate manipulation times are identi-
fied, further refinement of experimental protocols can be used to dig deeper into
mechanisms. For example, hippocampal sharp wave ripples (SWRs) associate
with offline replay of prior experiences and have been shown to have a causal role
in mediating systems consolidation [13]. It would therefore be natural to mon-
itor these replay events (e.g.,, through electrophysiology in rodents or MEG or
fMRI in humans [25]) after the subject learns either the rule-based or memory-
based tasks. Replay content can then be decoded to see if rule-based experiences
are replayed more than memory-based experiences. If so, this would be consis-
tent with replay regulation as a mechanism for content-dependent regulation of
systems consolidation.

If rule-based experiences are indeed preferentially replayed, it would then be
possible to study the underlying mechanisms that selectively bias these replay
events. One possibility is that brain regions outside of the hippocampus send
inputs to the hippocampus to bias the content of replay, based on predictabil-
ity. For example, in mice, the medial prefrontal cortex (mPFC) can influence
hippocampal activity indirectly through the thalamic nucleus reuniens. mPFC
has been implicated as a crucial brain region in rule-learning and cognitive
control, and it is plausible that mPFC contains the predictability information
needed to bias replay content. Two predictions follow from this hypothesis.
First, neural activity in mPFC would be fundamentally different during offline
replay of rule-based versus memory-based experiences. Second, silencing tha-
lamic nucleus reuniens or mPFC (e.g.,, by chemogenetics) would disrupt the
regulation of replay in a manner dependent on the predictability of experience.
Other brain regions (e.g.,, ventral tegmental area) could be studied in a similar
manner. Once such brain regions are identified in rodents, more detailed mech-
anistic experiments can be performed to map the cellular level connectivity, cell
types, neurotransmitters, receptors, and other molecular processes involved in
the regulation of systems consolidation.

On the other hand, it is also possible that hippocampal replay content and
frequency are similar for experiences with differing predictability. In this case,
an alternative hypothesis would be that regulation of systems consolidation oc-
curs outside of the hippocampus. For example, replay events could be regulated
so that neocortical regions respond differently depending on predictability of
the content. This hypothesis is theoretically appealing because memories are
composed of many relationships that differ in their predictability. To test this
hypothesis, experimental techniques such as wide-field or mesoscopic calcium
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imaging (rodents) or fMRI (humans) can be used to monitor cortical-wide ac-
tivity during periods of offline replay. Differential activation of the neocortical
regions between the rule-based and the memory-based tasks would be informa-
tive about whether systems consolidation is regulated at the neocortical level.
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