Supplementary information

Colistin resistance mutations in *phoQ* can sensitize *Klebsiella pneumoniae* to IgM-mediated complement killing

Sjors P.A. van der Lans¹, Manon Janet-Maitre^{2,3}, Frerich M. Masson¹, Kimberly A. Walker⁴, Dennis J. Doorduijn¹, Axel B. Janssen^{1,5}, Willem van Schaik^{1,6}, Ina Attrée², Suzan H. M. Rooijakkers¹ and Bart W. Bardoel^{1*}

¹Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, The Netherlands.

²Bacterial Pathogenesis and Cellular Responses group, UMR5075, Institute of Structural Biology, University Grenoble Alpes, France.

³Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

⁴Department of Microbiology and Immunology, University of North Carolina, USA.

⁵Department of Fundamental Microbiology, University of Lausanne, Switzerland.

⁶Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, United Kingdom.

*Corresponding author: <u>B.W.Bardoel-2@umcutrecht.nl</u>

Inner membrane permeabilization of Kp444, Kp879, Kp307, Kp365, Kp982, Kp709 and Kp880 in time. Bacteria were incubated in the presence of 10% NHS, 10% NHS in which C5 conversion was inhibited by addition of 20 μ g/ml OMCI and 20 μ g/ml Eculizumab (C5 inhibition), or 10% heat inactivated NHS (HiNHS), at 37 °C in the presence of 1 μ M SYTOX green nucleic acid stain, and inner membrane permeabilization (SYTOX fluorescence intensity) was detected every 2 minutes for 90 minutes in a microplate reader. Data represent mean \pm standard deviation of three independent experiments.

(a) Inner membrane permeabilization of Kp209 and Kp209_CSTR in the presences of (a) 10% NHS composed of sera from different pools of donors, or (b) 10% serum from different individual donors. (a&b) Bacteria were incubated at 37 °C in the presence of 1 μ M SYTOX green nucleic acid stain, and inner membrane permeabilization (SYTOX fluorescence intensity) was detected every 2 minutes for 90 minutes in a microplate reader. Data represent mean \pm standard deviation of three independent experiments.

RNA was isolated from log phase Kp257 and Kp257_CSTR, and converted to cDNA. The relative expression of the *arnD* and *mgtE* genes compared to the *rpoB* control gene was determined by real-time PCR for both Kp257 and Kp257_CSTR. Real-time PCR was performed in triplicates. Data represent mean \pm standard deviation of at least two independent biological replicates.

(a) Capsule production of Kp209 and Kp209_CSTR, and the Kp209_CSTR Tn::*phoQ* mutants was determined by measuring uranic acid content. Absorbance was measured at 520 nm, the uronic acid content calculated using a glucuronolactone standard curve and normalized to the culture density at 600 nm. Data represent mean \pm standard deviation of three independent experiments. (F) Statistical analysis was performed using a paired one-way ANOVA with a Tukey's multiple comparisons test. Significance is shown as ****p<0.0005. (b) SDS-PAGE silver stain of Kp209 and Kp209_CSTR LPS. Bacterial lysates were digested with protein K to remove all proteins and loaded on an SDS-PAGE gel. The LPS lipid A could, based on size, be distinguished from the O-antigen, which can have various lengths. Image is a representative of two independent experiments. Image is a representative of two independent experiments. Criginal gel is presented in supplementary Figure S2c. (c) Original gel of the SDS-PAGE silver stain containing of Kp209 and Kp209_CSTR LPS, indicated with dashed lines.

(a&b) Total IgG (a) and IgM (b) binding to Kp209 and Kp209 CSTR in normal human serum (NHS). (c&d) IgG and IgM binding to Kp209 (c) and E. coli MG1655 (d) in NHS depleted using E. coli MG1655, Kp209 or Kp209_CSTR (ΔE. coli NHS, ΔKp209 NHS, and ΔKp209_CSTR NHS, respectively). (e&f) Inner membrane permeabilization of *E. coli* MG1655 (e) and Kp209_CSTR (f) in the presence of 1% NHS, ΔE . coli NHS, ΔKp209 NHS, or ΔKp209_CSTR NHS (f) ΔKp209_CSTR NHS was supplemented with physiological concentrations of IgM (+IgM; 15 µg/ml in 1% NHS) isolated from individual serum donors. (g) IgM binding to Kp209 and Kp209_CSTR in IgM isolated from NHS, or isolated IgM depleted using *E. coli* MG1655, Kp209 or Kp209 CSTR (Δ*E. coli* IgM, ΔKp209 IgM, and ΔKp209 CSTR IgM, respectively). (h) IgM binding to Kp209 and Kp209_CSTR with IgM isolated from NHS (dotted), IgM depleted with Kp209 (grey) or Kp209_CSTR (orange). Slitted line corresponds to the buffer control. Geometric mean fluorescent intensity (gMFI) and number of events normalized to mode are depicted on the X- and Yaxis, respectively. The graph is representative for three independent repeats. (i) IgM biding to E. coli MG1655 in IgM isolated from NHS, ΔE. coli IgM, ΔKp209 IgM, or ΔKp209 CSTR IgM. (a-d&g-i) IgG binding was performed in 0.3% NHS. IgM binding was performed in 10% (depleted) NHS or 45 μg/ml (depleted) IgM isolated from NHS. Binding was detected using anti-hu-IgG-AF647 or anti-hu-IgM-FITC by flow cytometry. Flow cytometry data are represented by gMFI values of bacterial populations. Data represent mean \pm standard deviation of three independent experiments. (**e&f**) Bacteria were incubated at 37 °C in the presence of 1 µM SYTOX green nucleic acid stain, and inner membrane permeabilization (SYTOX fluorescence intensity) was detected after (e) 60 or (f) 90 minutes. Data represents mean ± standard deviation of a minimal of two independent experiments. (a&b) Statistical analysis was performed using a nonlinear regression with a variable slope comparing the logEC50 via sum-of squares F test, (c,d,g&i) a paired one-way ANOVA with a Tukey's multiple comparisons on Log₁₀-transformed gMFI data, (e) or a paired one-way ANOVA with a Tukey's multiple comparisons test on SYTOX fluorescence intensity data.

• Kp209

Kp209_CSTR

i

1000

f

Kpn209S ID	Name/prediction	Log ₂ (FC)	P _{adj}		
Upregulated genes (Log ₂ (FC)>1, P _{adj} <0.05)					
Kpn2095_01234	mgtE.1	5.25	1.06E-195		
Kpn2095_03326	mgtC	4.15	3.81E-90		
Kpn2095_03165	-	3.87	3.69E-57		
Kpn209S_03486	iolT	3.79	1.12E-45		
Kpn2095_01244	arnC	3.51	9.15E-146		
Kpn2095_03613	-	3.42	1.46E-40		
Kpn2095_01243	arnB	3.42	5.53E-98		
Kpn2095_01954	-	3.39	5.43E-42		
Kpn2095_01095	clcB	3.38	2.77E-69		
Kpn2095_03674	-	3.35	1.09E-39		
Kpn2095_03723	yabl	3.28	1.08E-51		
Kpn209S_00443	mgtA	3.24	1.48E-51		
Kpn209S_01245	arnA	3.22	5.16E-78		
Kpn2095_04650	ctpF	3.16	2.08E-61		
Kpn209S_02782	-	3.15	2.28E-52		
Kpn2095_01246	arnD	3.11	2.67E-90		
Kpn209S_04711	scrB	3.04	1.29E-21		
Kpn2095_04649	mdtA	3.04	7.99E-46		
Kpn209S_04702	btuF	3.03	2.00E-42		
Kpn2095_01247	arnT	3.00	8.63E-102		
Kpn209S_02647	pmrD	3.00	1.73E-56		
Kpn2095_03320	татВ	2.98	1.40E-25		

Supplementary table SI1 Differentially expressed genes in Kp209_CSTR compared to Kp209

Kpn209S_04708	scrK	2.91	9.08E-19
Kpn2095_03612	-	2.91	2.84E-23
Kpn209S_01631	ribB	2.91	1.21E-49
Kpn209S_04552	pagP	2.83	3.30E-52
Kpn2095_02224	-	2.81	9.56E-50
Kpn209S_04703	hmuU	2.76	1.72E-35
Kpn2095_00310	-	2.75	1.24E-28
Kpn2095_02223	-	2.72	2.16E-52
Kpn2095_02797	-	2.66	2.38E-45
Kpn209S_03487	fruB	2.62	1.69E-11
Kpn2095_01249	arnF	2.60	2.38E-43
Kpn209S_04337	ybjG	2.56	1.08E-51
Kpn209S_04704	fhuC	2.53	5.59E-30
Kpn209S_03568	-	2.50	1.38E-15
Kpn209S_02225	-	2.48	2.67E-29
Kpn2095_04648	bepG	2.42	3.12E-32
Kpn2095_04492	kdpA	2.38	8.00E-22
Kpn2095_02460	apbE	2.36	4.22E-44
Kpn209S_04416	bioB	2.34	4.79E-28
Kpn2095_04298	тасА	2.34	1.63E-55
Kpn209S_04087	phoP	2.34	1.41E-29
Kpn209S_05121	-	2.34	1.16E-22
Kpn209S_02783	-	2.34	1.54E-13
Kpn2095_03672	zntB	2.32	1.10E-19
Kpn2095_02461	ada	2.27	1.97E-46

Kpn2095_01787	fimA	2.27	6.99E-06
Kpn2095_01248	arnE	2.27	9.90E-21
Kpn2095_03301	maeA	2.22	1.23E-42
Kpn209S_03166	slyB	2.17	2.38E-19
Kpn2095_01782	fimH	2.15	2.94E-05
Kpn2095_04297	тасВ	2.12	5.55E-33
Kpn2095_04415	bioF	2.11	1.50E-17
Kpn2095_00268	тdoB	2.11	1.69E-32
Kpn2095_04710	sacX	2.10	3.80E-05
Kpn2095_02462	alkB	2.06	9.26E-22
Kpn2095_03599	speG	2.06	2.33E-35
Kpn2095_00627	nhaK	2.05	5.59E-43
Kpn2095_01786	fimC	2.05	8.39E-05
Kpn2095_04088	phoQ	2.04	2.00E-24
Kpn2095_01785	fimD	2.03	9.59E-05
Kpn2095_04814	yhel	1.98	9.73E-24
Kpn2095_04414	bioC	1.98	9.80E-15
Kpn2095_01784	fimF	1.96	1.91E-04
Kpn2095_01788	fim	1.96	1.97E-04
Kpn2095_04709	scrY	1.95	2.35E-04
Kpn2095_03142	mdtK	1.93	3.93E-16
Kpn2095_02206	рдрС	1.89	4.07E-19
Kpn2095_04101	dmdB	1.88	2.68E-16
Kpn209S_04100	betB	1.87	8.48E-13
Kpn2095_01783	fimG	1.86	5.10E-04

Kpn2095_03183	ydgT	1.86	2.63E-17
Kpn209S_03598	-	1.85	5.05E-17
Kpn209S_00017	yaeQ	1.79	3.31E-27
Kpn209S_01781	-	1.74	1.55E-03
Kpn209S_02799	ftsl	1.72	5.67E-09
Kpn2095_04413	bioD	1.69	2.68E-08
Kpn2095_04493	kdpB	1.66	1.54E-10
Kpn2095_03300	-	1.61	5.59E-06
Kpn209S_04249	dpaL	1.60	7.22E-04
Kpn2095_03185	ydgJ	1.60	8.07E-16
Kpn2095_03327	zapE	1.58	1.39E-14
Kpn2095_00693	-	1.56	5.13E-17
Kpn2095_04813	mdlB	1.56	5.91E-14
Kpn209S_01938	ppnN	1.54	9.77E-13
Kpn209S_04677		1.52	9.18E-05
Kpn209S_04467	ybgC	1.50	3.59E-12
Kpn2095_03728	ompN	1.49	9.90E-05
Kpn209S_04757	fetA	1.49	3.69E-15
Kpn2095_01476	mlaF	1.48	1.74E-16
Kpn2095_03182	ydgK	1.47	1.84E-08
Kpn2095_03933	pfeA	1.44	6.22E-09
Kpn209S_01523	osmY	1.41	1.08E-17
Kpn209S_01538	gatY	1.40	8.90E-03
Kpn2095_04466	tolQ	1.38	6.13E-11
Kpn2095_01477	mlaE	1.36	3.59E-16

Kpn209S_03932	усіВ	1.33	8.40E-10
Kpn2095_01121	-	1.33	2.00E-07
Kpn209S_04756	fetB	1.32	1.22E-12
Kpn2095_01524	diaA	1.31	9.16E-15
Kpn2095_02488	lpxT	1.31	9.59E-05
Kpn209S_00015	nlpE	1.30	6.10E-15
Kpn2095_01790	-	1.29	6.40E-09
Kpn2095_04812	glnK	1.25	2.66E-03
Kpn2095_00337	-	1.25	1.87E-08
Kpn2095_01636	tolC	1.25	7.20E-11
Kpn2095_04729	lpxL	1.24	6.57E-09
Kpn209S_01478	mlaD	1.24	6.74E-14
Kpn209S_04846	yajR	1.22	1.74E-07
Kpn209S_04464	-	1.20	4.50E-08
Kpn2095_02092	-	1.20	1.52E-05
Kpn2095_01480	mlaB	1.19	3.77E-13
Kpn2095_04338	deoR	1.19	1.50E-08
Kpn209S_04465	tolR	1.18	5.96E-08
Kpn2095_00016	arfB	1.18	6.49E-13
Kpn209S_03847	-	1.17	1.63E-02
Kpn2095_04469	cydX	1.12	1.16E-02
Kpn2095_00761	tatA	1.11	8.31E-11
Kpn2095_03299	-	1.11	4.30E-02
Kpn2095_05125	итиС	1.11	1.37E-03
Kpn2095_01479	mlaC	1.11	2.31E-12

Kpn209S_04468	-	1.08	7.62E-05
Kpn2095_04470	cydB	1.05	1.10E-07
Kpn2095_01122	-	1.04	1.31E-05
Kpn2095_00758	tatD	1.04	4.59E-08
Kpn2095_04712	cra_	1.03	1.59E-07
Down regulated genes	Log ₂ (FC)<-1, P _{adj} <0.05)		
Kpn2095_04410	-	-3.28	2.33E-35
Kpn2095_04407	eptA	-2.78	2.52E-23
Kpn2095_02806	уоаЕ	-2.60	7.03E-34
Kpn2095_00354	-	-2.47	7.68E-24
Kpn2095_00355	-	-2.26	1.78E-21
Kpn2095_04408	pmrA	-2.16	3.29E-16
Kpn2095_00356	-	-1.97	4.50E-08
Kpn2095_02517	oprB	-1.81	1.16E-06
Kpn2095_04409	pmrB	-1.80	7.02E-12
Kpn2095_04419	proY	-1.72	1.04E-05
Kpn2095_04252	yedS	-1.70	1.25E-19
Kpn2095_04420	hutH	-1.69	8.22E-05
Kpn2095_03684	сусА	-1.67	2.39E-05
Kpn2095_00357	-	-1.66	1.30E-06
Kpn2095_04421	hutU	-1.64	2.94E-05
Kpn2095_02966	rutC	-1.60	7.18E-04
Kpn2095_02520	bglB	-1.59	4.59E-08
Kpn2095_01312	feoA	-1.57	8.04E-05
Kpn209S_02514	yohK	-1.57	6.19E-05

Kpn2095_00358	ufaA	-1.56	9.23E-07
Kpn2095_03046	-	-1.46	3.37E-03
Kpn2095_02515	-	-1.44	5.42E-06
Kpn2095_03019	-	-1.42	2.42E-03
Kpn2095_03686	astB	-1.40	1.28E-03
Kpn209S_03685	astE	-1.38	4.42E-03
Kpn2095_02519	bglF	-1.34	2.49E-08
Kpn209S_01311	feoB	-1.33	2.72E-03
Kpn2095_02189	grcA	-1.32	4.25E-03
Kpn209S_02830	dadX	-1.32	5.04E-05
Kpn2095_00849	zinT	-1.30	2.80E-06
Kpn209S_03595	por	-1.30	7.66E-03
Kpn2095_04342	-	-1.28	1.74E-02
Kpn2095_03687	astD	-1.28	7.21E-03
Kpn2095_03635	ttdT	-1.27	2.02E-03
Kpn2095_01194	-	-1.27	1.74E-07
Kpn2095_00616	acs	-1.25	7.97E-04
Kpn2095_02967	dadA	-1.24	9.09E-03
Kpn2095_02984	-	-1.18	7.67E-03
Kpn2095_00254	-	-1.18	1.80E-02
Kpn2095_01240	nikA	-1.16	7.75E-04
Kpn2095_00625	cidA	-1.16	9.95E-04
Kpn2095_02511	mglC	-1.14	8.95E-03
Kpn2095_02084	nrdH	-1.13	9.03E-03
Kpn2095_03634	namA	-1.11	2.34E-03

Kpn2095_05120	scrK	-1.10	4.96E-04	
Kpn2095_04178	putA	-1.10	5.78E-04	
Kpn2095_02491	ихиА	-1.09	5.87E-04	
Kpn2095_02422	nuoG	-1.08	5.10E-07	
Kpn2095_02421	nuoF	-1.08	5.66E-05	
Kpn2095_05135	-	-1.08	9.26E-06	
Kpn2095_01195	bcsQ	-1.07	4.63E-04	
Kpn2095_00362	-	-1.07	1.05E-02	
Kpn209S_05141	-	-1.06	5.51E-03	
Kpn2095_01175	kdgK	-1.06	3.85E-02	
Kpn2095_04476	sdhB	-1.06	7.56E-03	
Kpn2095_03607	bioD	-1.05	9.26E-03	
Kpn2095_02450	glpQ	-1.05	1.37E-04	
Kpn2095_04789	ykgO	-1.05	6.90E-03	
Kpn209S_03594	uspG	-1.01	2.78E-02	
Kpn2095_02049	srlE	-1.01	1.79E-02	

Supplementary table SI2. Real-time PCR primers

Primer	Sequence (5'→ 3')	Т _м (°С)	Amplicon size (bp)	Reference
arnD-F	AACTACTGACCATGGCGGCG	61.5	116	12*
arnD-R	GCCAGCCAGTTCACCACGAA	62.5	110	12*
mgtE-F	TGGTGTGCATTACCCTGTG	57.0	100	This study
mgtE-R	ATAAACGGCGCGGAAACTA	56.3	100	This study
rpoB-F	GATCCGTGGCGTGACTTATT	55.0	110	54
rpoB-R	GCCCATGTAGACTTCTTGTTCT	54.6	110	54

*Reference 12 used the alternative gene name pgbP for arnD