Ramifications of *POU4F3* variants associated with autosomal dominant hearing loss in various molecular aspects

Sang-Yeon Lee, Min Young Kim, Jin Hee Han, Sang Soo Park, Yejin Yun, Seung-Cheol Jee, Jae Joon Han, Jun Ho Lee, Heeyoung Seok*, Byung Yoon Choi*

	Total Reads	Reads (%, >Q30)	Processed Reads	Mapped Reads	
BHR (healthy control)	123,269,416	95.57	120,420,070	114,749,528	
CBY (healthy control)	125,464,050	95.53	122,755,224	119,522,107	
JHW (healthy control)	112,964,020	94.98	110,362,694	105,478,893	
LSY (healthy control)	123,936,098	95.91	122,656,222	119,509,523	
SB218 (hearing loss)	131,504,578	95.59	128,694,112	123,853,837	
SB307 (hearing loss)	131,529,466	95.92	129,397,722	125,782,025	
SB438 (hearing loss)	107,493,944	95.7	105,568,228	102,527,644	
SB347 (hearing loss)	114,897,400	95.62	112,532,770	107,327,803	

Table S1. Profiles of eight RNA-sequencing libraries

Table S2. A	A summar	y of the	public data	used in	this	study
-------------	----------	----------	-------------	---------	------	-------

SRR ID	Source Tissue	Organism	Age	Total Reads	Mapped Reads	Reference	
SRR6798475	Cochlear inner hair cell	mouse	Adult	7,332,016	6,657,566		
SRR6798476	Cochlear inner hair cell	mouse	Adult	229,368	2,085,153		
SRR6798477	Cochlear inner hair cell	mouse	Adult	12,585,587	11,397,869	Yi Li et al, Scientific Data	
SRR6798479	GRR6798479Cochlear outer hair cellGRR6798481Cochlear outer hair cell		Adult	14,468,752	12,296,204	180199 (2018)	
SRR6798481			Adult	12,215,142	10,377,025		
SRR6798482	Cochlear outer hair cell	mouse	Adult	7,161,499	6,087,056		
SRR1534779	Cochlea	mouse	Postnatal day 0	117,562,038	23,321,842	Scheffer D et al. The Journal of	
SRR1534787	Cochlea	mouse	Postnatal day 4	29,941,458	20,392,791	Neuroscience, April 22, 2015,	
SRR1534792	Cochlea	mouse	Postnatal day 7	36,343,531	23,813,133	35(16):6366–6380	
SRR15597783	Testis	mouse	Adult	33,528,710	27,553,478	Han G, Cho C	
SRR15597784	Testis	mouse	Adult	45,471,010	37,779,187	Series GSE175633 (2021)	

Cohort	Gene Name	Genomic Position:	Transcript No	HGV	/S	Zygosity/ Inheritance	Insilico P	redictions	Alternative Allele Frequency		y Clinvar	
	Traine	Change (GRCh37/ hg19)	110.	Nucleotide change	Amino Acid change	Innernance	CADD Phred	REVEL	KRGDB (1722 individuals)	GMAF (gnomAD)		
SB218- 423	DIAPH1	5- 140953563 T-TGGA	NM_005219 .4	c.1851_1853d upTCC	p.Pro618d up	Het / Autosomal dominant	6.028	NA	Absent	Absent	Likely Benign	
	GPR98	5- 90106642 C-T	NM_032119 .3	c.15565C>T	p.Pro5189 Ser	Het / Autosomal recessive	17.21	0.086	Absent	Exome(0.0000 04012)	No data	
	HSD17B 4	5- 118814538 G-A	NM_001199 291.2	c.519G>A	p.Met173Il e	Het / Autosomal recessive	25.6	0.777	Absent	Exome(0.0000 03987)	No data	
	POU4F3	5- 145719552 G-GA	NM_002700 .2	c.564dupA	p.Ala189fs	Het / Autosomal dominant	NA	NA	Absent	Absent	No data	
	PTPN11	12- 112926983 C-G	NM_002834 .3	c.1599+4C>G		Het / Autosomal dominant	6.33	NA	Absent	Exome(0.0000 03979)	No data	
	SLC26A 4	7- 107323901 C-T	NM_000441 .1	c.920C>T	p.Thr307M et	Het / Autosomal recessive	28.4	0.872	Absent	Exome(0.0000 7569) Genome(0.000 09555)	Uncertain Significance	
	TUBB4B	9- 140138040 A-AGT	NM_006088 .5	c.*36_*37dup TG		Het / Autosomal dominant	5.708	NA	Absent	Exome(0.0002 952) Genome(0.000 2229)	No data	

Table S3 in-silico prediction analysis for candidate variants in each family.

Cohort	Gene	Genomic Transcript		ranscript HGVS Z		Zygosity/	Insilico P	Insilico Predictions Alternative Allele Frequency			Clinvar
	Name	Position: Change (GRCh37/ hg19)	N 0.	Nucleotide change	Amino Acid change	- Inheritance	CADD Phred	REVEL	KRGDB (1722 individuals)	GMAF (gnomAD)	

SB307- 610	DNMT1	19- 10271082 G-A	NM_001130 823.1	c.1021C>T	p.Arg341C ys	Het / Autosomal dominant	23.2	0.068	Absent	Exome(0.0000 03977) Genome(0.000 1273)	No data
	POU4F3	5- 145719733 T-C	NM_002700 .2	c.743T>C	p.Leu248P ro	Het / Autosomal dominant	32.0	0.950	Absent	Absent	No data
Cohort	Gene Nomo	Genomic Bosition:	Transcript	HG	VS	Zygosity/ Inhoritanco	Insilico P	redictions	Alternative Al	lele Frequency	Clinvar
	Ivaine	Change (GRCh37/ hg19)	110.	Nucleotide change	Amino Acid change	Inneritance	CADD Phred	REVEL	KRGDB (1722 individuals)	GMAF (gnomAD)	
SB347- 679	ADCY1	7- 45724654 C-T	NM_021116. 2	c.2060C>T	p.Ala687V al	Het / Autosomal recessive	23.0	0.107	Absent	Absent	No data
	HARS2	5- 140075180 A-AC	NM_012208 .3	c.489dupC	p.Ile164fs	Het / Autosomal recessive	23.4	NA	Absent	Exome(0.0000 8748)	Uncertain Singificance
	POU4F3	5- 145719942 G-A	NM_002700 .2	c.952G>A	p.Val318M et	Het / Autosomal dominant	31.0	0.936	Absent	Absent	Uncertain Significance
	KLHL18	3- 47376288 G-C	NM_025010 .4	c.877G>C	p.Val293L eu	Het / Autosomal recessive	26.8	0.8	Absent	Exome(0.0000 08009)	No data

Cohort	Gene	Genomic	Transcript	HG	VS	Zygosity/	Insilico P	redictions	Alternative A	llele Frequency	Clinvar
	Name	Position: Change (GRCh37/ hg19)	No.	Nucleotide change	Amino Acid change	– Inheritance	CADD Phred	REVEL	KRGDB (1722 individuals)	GMAF (gnomAD)	
SB438- 852	CDH23	10- 73157033 C- CCGAGG	NM_022124 .5	c35 31dupAGGC G		Het / Autosomal recessive	17.14	NA	Absent	Exome(0.3943) Genome(0.392 1)	No data

GPR98	5- 90072351 T-C	NM_032119 .3	c.12485T>C	p.Ile4162T hr	Het / Autosomal recessive	23.8	0.179	Absent	Exome(0.0000 4820) Genome(0.000 03185)	Uncertain Singificance
POU4F3	5- 145719869	NM_002700 .2	c.879C>A	p.Phe293L eu	Het / Autosomal	23.5	0.913	Absent	Absent	No data
	C-A				dominant					
SIX2	2-	NM_016932	c.853A>C	p.Asn285H	Het /	24.9	0.458	Absent	Absent	No data
	45233332	.4		is	Autosomal					
	T-G				dominant					

Table S4 Detailed information of molecular study

Plasmid construction, cell culture, and transfection

A human *POU4F3* cDNA clone (ORIGENE, CAT# RC211206) served as a template for *in vitro* mutagenesis. These *POU4F3* cDNA-loaded plasmids were subcloned into the pCMV expression vector using oligonucleotides that introduced Mlul and Asisl restriction sites into the 5' and 3' of the cDNA. As described previously,¹ sitedirected mutagenesis was performed to create plasmid construct encoding mutant *POU4F3*. Specifically, in the *POU4F3* p.Ala189Serfs*26 plasmid, 376 bp of the cDNA sequence from the in-frame stop codon to the Myc-DDK codon was deleted, and ligation was subsequently performed. Human embryonic kidney 293T cell (HET293T) line was obtained from American Type Culture Collection (ATCC; Manassas, VA, USA). HEK293T cells were transfected with constructs encoding wild-type and mutant proteins fused to C-terminal Myc-DDK tags using Lipofectamine 3000 transfection reagent (Invitrogen). After transfection for 48 hours, cells were fixed in 4% paraformaldehyde for 15 minutes, permeabilized in phosphate-buffered saline (PBS) containing 0.3% Triton X-100 for 10 minutes, and then blocked in PBS containing 10% donkey serum for 1 hour at 37°C in a humid atmosphere.

Immunohistochemistry

The transfected cells were fixed in 4% paraformaldehyde for 15 min, followed by PBS washing, and the process was repeated three times. The HEK293T cells were incubated at 24°C with primary antibodies (anti-Myc [mouse, cell signaling, #2276,1:4000] or anti-DDK [goat, cell signaling, #14793,1:800, 2 h]) (Sigma Aldrich Corp., St. Louis, MO, USA)] for 2 h and Rhodamine phalloidin (Invitrogen, R415, 1:100) for 1 h. They were then washed three times with PBS (4°C), followed by consecutive incubation with secondary antibodies (anti-Myc; 488 goat anti-mouse, Invitrogen, A-11017, 1:400 for 2 h or anti-DDK; goat-anti-mouse Alexa680, Invitrogen, Seoul, Korea; 1:400 for 2 h) and Rhodamine phalloidin (Invitrogen, R415) 1:100 staining for 1h. After washing three times with PBS, the samples were mounted with DAPI (Vector Laboratories Inc., Burlingame, CA) at room temperature for 90 min. The samples were examined with a laser scanning confocal microscope (Zeiss LSM 510, Carl Zeiss, Germany). The number of cells expressing POU4F3 either in the nucleus or the cytoplasm were measured using the Image J software.

Western blot

The cell line was cultured in DMEM (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) at 37°C and humidified air of a 5% CO₂ incubator. The cells were transiently transfected with PCMV6-myc-DDK entry, PCMV6-POU4F3 wild type-myc-DDK, PCMV-POU4F3 A189S frameshift mutant-myc-DDK, PCMV-POU4F3 L248P-myc-DDK, PCMV-POU4F3 F293L-myc-DDK, and PCMV-POU4F3 V318M-myc-DDK expressing plasmids using jetPRIME reagents (Polyplus-transfection SA, Illkirch-Graffenstaden, France), according to the manufacturer's instructions. Whole proteins were separated using 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 0.45 μ m polyvinylidene difluoride (PVDF) membranes (Millipore; Billerica, MA, USA). The membranes were incubated with 5% skim milk to block nonspecific binding at room temperature for 1 h. Membrane blots were incubated against Myc-tag from Cell signaling Technology (Danvers, MA, USA) and β -actin from Santa Cruz biotechnology (Santacruz, CA, USA). The membranes with bound primary antibodies were incubated with anti-mouse secondary antibodies that were conjugated horseradish peroxidase (HRP) (Santacruz) for 1 h at room temperature. The protein band was detected using chemiluminescence (ATTA, Tokyo, Japan). X-ray films (Agfa, Mortsel, Belgium) were used for detection. β -actin antibodies were used as loading controls. The intensity of bands was measured using the Image J software.

Reverse transcription-Polymerized Chain Reaction (RT-PCR)

To verify *POU4F3* expression in LCLs, reverse transcription PCR was conducted following RNA extraction from these cells. The resulting amplicon size corresponded to the anticipated 246 bp, and subsequent Sanger sequencing with ClustalW alignment analysis revealed alignment with *POU4F3*. Furthermore, to validate *POU4F3* expression in HEK293 cells, reverse transcription PCR was performed post-RNA extraction to ascertain the expected size. The observed amplicon size was also 246 bp, and following Sanger sequencing, ClustalW alignment analysis confirmed alignment with *POU4F3*.

Real-time quantitative reverse transcription-Polymerized Chain Reaction (RT-qPCR)

For validation of the RNA sequencing, expression levels of selected genes were evaluated using RT-qPCR. Total RNA was extracted from the lymphoblastoid cell line using RNeasy Mini Kit (Qiagen Inc., Hilden, Germany). cDNA was synthesized using the PrimeScript Reverse Transcriptase-reagent Kit (TaKaRa, RR037A) according to the manufacturer's protocols. RT-qPCR was performed using a Light-Cycler 480 Instrument II, using the Light Cycler 480 probes master kit (Roche; Indianapolis, IN, USA) and SYBR Premix Ex Taq II (TaKaRa, RR420A). The following primers were used for MYO6 genotyping: forward (5'-CCTGACCACTTAGCAGAGTTGG-3') and reverse (5'-TTTAATGCAGGCTTCAGCTCGATA -3'). The following primers were used for BMP2 TGTATCGCAGGCACTCAGGTCA-3') genotyping: forward (5'and reverse (5'-CCATCCGTTTCTGGTACTTCTTC -3'). The following primers were used for AHI1 genotyping: forward (5'-GCTCAGTAGACACAGAACCTGG-3') and reverse (5'-CTCCTGCATTTAGTGAGAAGAGG-3'). The relative gene expression was calculated using the 2-ddCt analysis method with GAPDH as the endogenous control.

Luciferase assay

HEK293T cells were transfected with the -711 bp upstream SNAP-25 promoter region (**Fig. S2**), including KpnI (GGTAC/C) and XhoI (C/TCGAG) sites, cloned into the pGL4.12[luc2CP] vector (Promega) with pCMV6 vector (Myc-DDK), pCMV6-wt POU4F3 cDNA, pCMV6-p.Ala189Serfs*26 POU4F3 cDNA, pCMV6-p.Leu248Pro POU4F3 cDNA, pCMV6-p.Phe293Leu POU4F3 cDNA, and pCMV6-p.Val318Met POU4F3 cDNA. Forty-eight hours later, the cells were lysed with luciferase cell lysis buffer (200 μ L) and luciferase activities were measured under minimal ceiling effect conditions, according to the manufacturer's protocol (Promega, Madison, WI, USA). Experiments were performed in duplicate, and measurements were performed three times to identify Luciferase activity.

Table S5 RNA sequencing and bioinformatic analysis

The RNA sequencing library was prepared and sequenced by Macrogen (Seoul, Korea). Further analyses were done by the Genomics Core Facility in Seoul National University Hospital (Seoul, Korea). RNA sequencing libraries were generated in accordance with the manufacturer's protocols (TruSeq Stranded TotalRNA LT sample prep kit; Illumina). After confirming library size, approximately 400-500 bp, paired-end sequencing was performed. Average total reads were 121,382,372 with over 95% of Q30 reads. For mapping and alignment, raw data were trimmed using the Trimmomatic program to remove adaptor sequences². In addition, a window size of 4, mean quality of 15, and minimum length < 36 bp were set for trimming. Trimmed reads were mapped against the reference genome (GRCh37) using the HISAT2 program³. Over 95% of the processed reads were mapped and aligned using the Stringtie program to acquire transcript quantification⁴. In some cases, raw reads were analyzed using the Kallisto program as indicated.⁵ Detailed information about the sequencing summary is presented in Table S2. Individual samples were further analyzed to achieve the DEG list using the DESeq2 program⁶ with RLF normalization and nbinomWaldtest to list fold change over 2, and a p-value < 0.05. For the correlation analyses, normalized reads were used to calculate the Spearman's coefficient. DEGs were further analyzed using Hierarchical and K-mean clustering with Euclidean distance and average linkage, and visualized as a heatmap using either Morpheus or the Multiple Experiment Viewer software (MeV, v4.9.0)⁷. The Protein-Protein Interaction (PPI) analysis was performed using the Search Tool Retrieval of Interacting Genes/Proteins (STRING) v11.5 database⁸. Using the DEG list, g: profiler⁹ or DAVID¹⁰ ontology analyses were performed to examine the GO terms of biological process, cellular component, molecular function, and the KEGG pathway. Enriched GO terms were further analyzed using ReviGo¹¹ or QuickGo¹².

References

- 1 Lee, S. Y. *et al.* Novel genotype–phenotype correlation of functionally characterized LMX1A variants linked to sensorineural hearing loss. *Human Mutation* **41**, 1877-1883 (2020).
- 2 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114-2120 (2014).
- 3 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. *Nature methods* **12**, 357-360 (2015).
- 4 Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature biotechnology* **33**, 290-295 (2015).
- 5 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. *Nature biotechnology* **34**, 525-527 (2016).
- 6 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 1-21 (2014).
- 7 Saeed, A. *et al.* TM4: a free, open-source system for microarray data management and analysis. *Biotechniques* **34**, 374-378 (2003).
- 8 Szklarczyk, D. *et al.* STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic acids research* **47**, D607-D613 (2019).
- 9 Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g: Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. *Nucleic acids research* **35**, W193-W200 (2007).
- 10 Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nature protocols* **4**, 44-57 (2009).
- 11 Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. *PloS one* **6**, e21800 (2011).
- 12 Binns, D. *et al.* QuickGO: a web-based tool for Gene Ontology searching. *Bioinformatics* **25**, 3045-3046 (2009).