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PANoptosis pathway gene sets encompassing pyroptosis,
apoptosis, and necroptosis were identified from the MSigDB
database. We analyzed the perturbations and crosstalk in the
PANoptosis pathway in prostate adenocarcinoma (PRAD),
including gene mutation, transcription, methylation, and clin-
ical features. By constructing a PANoptosis signature, we
accurately predicted the prognosis and immunotherapeutic
response of PRAD patients. We further explored the molecular
features and immunological roles of the signature, dividing pa-
tients into high- and low-score groups. Notably, the high-score
group correlated with better survival outcomes and immuno-
therapeutic responses, as well as a higher mutation frequency
and enrichment score in the PANoptosis and HALLMARK
pathways. The PANoptosis signature also enhanced overall
antitumor immunity, promoted immune cell infiltration, upre-
gulated immune checkpoint regulators, and revealed the cold
tumor characteristics of PRAD. We also identified potential
drug targets based on the PANoptosis signature. These findings
lead the way in identifying novel prognostic markers and ther-
apeutic targets for patients with PRAD.

INTRODUCTION
Aging increases the risk of morbidity due to prostate adenocarcinoma
(PRAD).1 In the United States, the number of PRAD cases is expected
to reach 268,490 in 2022, and the number of deaths ranks second
among patients with cancer.2 Radical prostatectomy, radiotherapeu-
tic treatment, and androgen deprivation therapy are recommended
for patients with low- or intermediate-risk PRAD.3,4 Furthermore,
immunotherapy, including immune checkpoint inhibitor therapy
and chimeric antigen receptor T cell therapy, could improve the anti-
tumor effect and overall survival (OS) in patients with advanced
PRAD.5,6 However, despite the considerable efficacy of the therapeu-
tic methods used, PRAD manifests as a “cold tumor,” with decreased
antigen expression, defective tumor suppression, and poor immuno-
logical infiltration.7 As a result, some subtypes of patients with PRAD
are less responsive to immunotherapy, progress to drug resistance,
cancer recurrence, and metastasis and are prone to a poor prognosis.8

Therefore, exploiting novel interventions and improving manage-
ment to improve patient prognosis is urgent. Apart from developing
innovative treatments, using effective biomarkers, targets, and signa-
tures might help overcome the obstacles of PRAD. Among them, tar-
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geting cell death pathways is a feasible option. Cell death is vital for
organismal homeostasis in humans. Pyroptosis, apoptosis, and nec-
roptosis are important programmed cell death (PCD) pathways.
Mounting evidence indicates extensive interactions between these
pathways,9–12 and PANoptosis (named after pyroptosis, apoptosis,
and necroptosis) exhibits key genetic and molecular characteristics
of the three PCD pathways.9–11,13 Triggered by Z-DNA binding
protein 1 (ZBP1) and mediated by the PANoptosome complex,9,14

PANoptosis is activated in various infectious diseases, such as
influenza A virus infection. Although evidence for the effects of
PANoptosis on PRAD is scarce, the three PCD pathways have been
implicated in tumors. For instance, apoptosis maintains membrane
integrity, preventing the leakage of cellular contents and subsequent
tissue injury and inflammation.15 Some studies have reported that py-
roptosis inhibits tumorigenesis and tumor progression and regulates
the tumor microenvironment (TME).16,17 Others have shown that
pyroptosis may create a microenvironment that drives tumor pro-
gression.16,18 Necroptosis plays an important role in the antitumor
TME,19 but necroptosis of tumor cells may also promote tumor
metastasis.20 Therefore, PANoptosis is correlated with tumor charac-
teristics and the prognosis of patients with tumors. Studies have sepa-
rately examined the predictive value of pyroptosis-, apoptosis-, and
necroptosis-related models in specific tumor types with heteroge-
neous effectiveness,21–23 but studies on the effect of PANoptosis on
patients with tumors are lacking.

In our study, the PANoptosis signature was delineated with bioinfor-
matics analysis. Using this PANoptosis signature, we evaluated the
potential correlation between PANoptosis and PRAD characteristics
and its predictive value for therapeutic response and prognosis. Our
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Figure 1. Perturbations and crosstalk in the PANoptosis pathway in PRAD

(A) The GSEA enrichment plot shows differential enrichment between tumor and control groups in “REACTOME_PYROPTOSIS, HALLMARK_APOPTOSIS,

KEGG_APOPTOSIS, REACTOME_APOPTOSIS, and KEGG_NECROPTOSIS.” (B) Network of proteins belonging to three death modalities. A_N, proteins involved in

apoptosis and necroptosis; A_P, proteins involved in apoptosis and pyroptosis; A_N_P, proteins involved in apoptosis, pyroptosis, and necroptosis.
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findings could provide innovative targeted therapies for treating pa-
tients with PRAD.

RESULTS
Perturbations and crosstalk in PANoptosis in PRAD

To examine the perturbations in apoptosis, pyroptosis, and necroptosis
in tumors, we compared differentially enriched pathways between tu-
mors and adjacent normal tissues using gene set enrichment analysis
(GSEA) on five PANoptosis pathways (REACTOME_PYROPTOSIS,
HALLMARK_APOPTOSIS, KEGG_ APOPTOSIS, REACTOME_
APOPTOSIS, and KEGG_NECROPTOSIS) (Figure 1A). Similarly,
we analyzed differences in enrichment in patients aged between R60
and <60 years. The results indicated that five PANoptosis pathways
were more abundant in adjacent normal tissues or patients aged
R60 years, although statistical significance was observed only in the
HALLMARK_APOPTOSIS pathway (Figure S1A).

Next, we constructed an interaction network to examine the crosstalk
between apoptosis, pyroptosis, and necroptosis using the STRING
database. The network graph showed that each cell death pathway
was unlikely to be independent of other pathways, supporting the
concept of a unified death network (Figure 1B). Notably, apoptosis,
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Figure 2. Genomic alterations in the PANoptosis pathway in PRAD

(A) Mutational landscape of the top 25mutated genes in PANoptosis. (B) Dumbbell diagram shows the top 25 PANoptosis pathway genes significantly upregulated in tumors.

(C) Heatmap of methylation of PANoptosis pathway genes in tumors and controls. (D) Heatmap showing the top 50 differentially expressed genes in the PANoptosis pathway

in tumor and control samples.
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pyroptosis, and necroptosis were interconnected by a set of genes,
such as ZBP1, RIPK1, CASP6, CASP1, CASP8, and FADD. These re-
sults confirmed the existence of perturbations and crosstalk of
PANoptosis in PRAD. Therefore, we evaluated the PANoptosis pat-
terns in various aspects of PRAD.

Status of genemutation andmethylationof PANoptosis pathway

genes in PRAD

We visualized mutation data of TCGA-PRAD. The top 25 mutations
of PANoptosis pathway genes are shown (Figure 2A). The most com-
mon mutations included cytosine mutations, which indicates that
cytosine is unstable, possibly due to the facile oxidation of its amino
groups. In addition, the overall mutation rate of PANoptosis pathway
genes was not high, and the mutation frequency was <2% for all,
except TP53 and ATM, which had 11% and 4%mutation frequencies,
respectively. A dumbbell diagram showed that the top 25 PANoptosis
pathway genes were significantly upregulated in tumors (log2FC > 0,
378 Molecular Therapy: Nucleic Acids Vol. 33 September 2023
p < 0.05) (Figure 2B). Moreover, a Circos plot was used to visualize
the distribution of the top 25 significantly upregulated genes on chro-
mosomes (Figure S1B).

Next, we analyzed alterations in the methylation state of PANoptosis
genes, and the heatmap graph (Figure 2C) showed differences in
methylation levels of the top 30 PANoptosis pathway genes between
tumors and controls. From the heatmap, we clearly observed that pa-
tients with tumors could be separated into two subgroups (Table S5).
Kaplan-Meier (KM) survival curves revealed no significant differ-
ences in OS between the subgroups (Figure S2A). However, we found
that the expression levels of most immune checkpoint regulators were
higher in cluster 1 (Figure S2B).

Clinical relevance analysis of the PANoptosis pathway

Gene expression profiling data and clinical information from patients
with PRAD were downloaded from The Cancer Genome Atlas



Figure 3. Analysis of the clinical relevance of PANoptosis

(A) qPCR for PANoptosis keymolecules. (B) Prostate cancer tissue specimenswere analyzed by immunohistochemical staining using the anti-ZBP1 antibody. (C–G) Different

clinical features with high and low expression of ZBP1. ZBP1, Z-DNA binding protein 1; SVI, seminal vesicle invasion; GS, Gleason score; PSA, prostate-specific antigen.
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(TCGA) database. We compared PANoptosis pathway gene expres-
sion levels between the tumor and normal adjacent tissues and found
the top 50 genes in the heatmap (Figure 2D). Then, we grouped the
patients based on age (ages R60 and <60 years) and examined
gene expression differences between these groups. Figure S3A shows
the expression levels of PANoptosis pathway genes (SEPTIN4,
PDGFRB, HMOX1, BGN, DNAJC3, and LMNB1). The top 6 genes
had the smallest p value and were significantly differentially expressed
between patients aged R60 and <60 years (other genes are shown in
Figure S3B). In addition, the patients were divided into different
groups based on clinical parameters, including race (Asia vs. White
vs. Black), seminal vesicle invasion (yes vs. no), and TP53mutational
status (mutation vs. wild type), to analyze differences in PANoptosis
pathway gene expression. The results are shown in Figures S4A–S4C.
Thus, we conclude that associations exist between the expression of
PANoptosis pathway genes and variations in clinical features.

Further investigation was conducted using samples from PRAD and
benign prostate hyperplasia (BPH) patients at West China Hospital
of Sichuan University. PRAD and BPH samples were analyzed by
nucleic acid extraction and PCR, and the expression levels of key
molecules in PANoptosis, including ZBP1, RIPK1, CASP6, CASP1,
CASP8, and FADD, were identified. The results showed that the
expression of ZBP1 and CASP1 in PRAD tissues was significantly
lower than that in the BPH group, while the expression levels of
CASP6 and RIPK1 were not different between the two groups
(Figures 3A and S3C). qRT-PCR results indicated that the cycle
threshold values of CASP8 and FADDwere higher than 30; therefore,
further analysis was not conducted. Next, we used the anti-ZBP1 anti-
body for immunohistochemistry (IHC). Patients were divided into
high- and low-ZBP1-expressing groups based on the positive staining
score (Figure 3B). Different clinical features were observed in the two
groups (Figures 3C–3G). High ZBP1 expression was significantly
associated with lower pathologic T. A similar trend was found for
other clinical features (seminal vesicle invasion, pathologic Gleason
score, age, and baseline prostate-specific antigen [PSA]), although
these differences did not reach statistical significance (p = 0.076,
0.076, 0.153, and 0.265, respectively). Overall, high expression of
ZBP1 was more likely related to better clinical features.

Based on these results, we evaluated overlapping genes from the
differentially methylated site, differentially expressed transcriptome,
and mutated datasets. Nine overlapping genes were obtained by
taking the intersection of 142 differentially methylated sites,
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Figure 4. PANoptosis signature predicts the prognosis and immunotherapy response of patients with PRAD

(A) The differences in survival probability between the high- and low-signature score groups. (B) Prognostic prediction of PANoptosis signature scores in the TCGA cohort.

(C) Survival outcomes in melanoma patients treated with anti-PD-1 monotherapy (PMID30753825). (D and E) Correlation between the PANoptosis signature score and

clinical response to cancer immunotherapy in patients with melanoma treated with anti-PD-1 monotherapy (PMID30753825). (F) Survival outcomes in melanoma patients

treated with combined anti-PD-1 and anti-CTLA-4 therapy. (G and H) Correlation between the PANoptosis signature score and clinical response to cancer immunotherapy

in patients treated with combined anti-PD-1 and anti-CTLA-4 therapy. CR, complete response; PR, partial response; PD, progressed disease; SD, stable disease. CR/PR,

patient with CR or PR; SD/PD, patient with SD or PD.
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68 differentially expressed transcriptome genes, and the top 100
mutated genes. Methylation status, differential expression, and gene
mutations are shown in Figures S5A–S5C, respectively.

PANoptosis affects the prognosis of patients with PRAD

Patients were separated into high- and low-expression groups accord-
ing to the median expression levels of PANoptosis pathway genes.
Using survival data from the TCGA database, we compared OS be-
tween groups. Eight PANoptosis pathway genes showed differences
in OS between high- and low-expression groups, and the KM survival
curves were ranked based on their p values (Figure S6). Specifically,
patients with high expression of TP53, HSP90AA1, PSMD5,
PSMD3, and GAS2 had significantly worse OS than those with low
expression, whereas patients with high expression of APP, CASP4,
and VDAC3 had a more favorable OS.

Although there was only a statistical significance in HALLMARK_
APOPTOSIS by GSEA analysis, the crosstalk between the three
modes of death was found, which indicated they were unlikely to
be independent of the others. Moreover, characterization of the
380 Molecular Therapy: Nucleic Acids Vol. 33 September 2023
PANoptosis pathway including mutation, transcription, methyl-
ation, and clinical relevance presents difference in PRAD and con-
trols, especially its expression pattern is closely related to prognosis,
which is of great significance for studies on PANoptosis. Therefore,
we constructed a PANoptosis signature using data from 52 patients
who developed biochemical recurrence (BCR) (from the TCGA
database). The PANoptosis signature score was obtained by calcu-
lating the mean enrichment scores of pyroptosis, apoptosis, and
necroptosis. After that, 52 BCR patients were divided into a high
signature score group and a low signature score group based on
the median score.

PANoptosis signature shows predictive value for PRAD

prognosis

We took advantage of survival data collected by TCGA and plotted
KM survival curves for the training cohort. The results revealed
that patients with low signature scores had significantly lower odds
of survival than patients with high signature scores, suggesting that
patients with high scores have better clinical outcomes in the training
cohort (Figure 4A).
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The risk model was then validated using another three sets of valida-
tion datasets. The validation cohort GSE21034 was grouped by me-
dian score, and a significant difference was observed in OS between
the high- and low-score groups (Figure S7A). In addition, the same
trend was found in the validation cohorts PRAD-FR_seq_RFS and
GSE54460 when patients were grouped by the optimal grouping
method (Figures S7B and S7C).

Next, we performed univariable and multivariable Cox regression
analyses to determine whether the signature score was an indepen-
dent prognostic factor affecting survival. Univariate Cox propor-
tional hazard regression analysis showed that the signature
score had a hazard ratio < 1 in the TCGA cohort and was signif-
icantly associated with BCR in the TCGA cohort. Moreover, the
signature score remained an independent protective predictor of
BCR risk after adjusting for other prognostic factors (Figure 4B).
In the validation cohort, the results were consistent in the univar-
iate analysis and multivariable analysis for no information on
other clinical features (Figures S7D–S7F). From these results, we
propose that the PANoptosis signature can predict the prognosis
of PRAD. Moreover, the PANoptosis signature score is a protec-
tive factor and is positively related to the survival outcome of
patients.

In addition, we compared clinical features between the high- and low-
score groups by using clinical information from the TCGA database
and cohort GSE21034 and found no significant differences in clinical
features between the two groups (Figure S8).

PANoptosis signature predicts immunotherapeutic response

To determine the predictive ability of the tumor PANoptosis
signature score in predicting benefit from immunotherapy, we
collected immunotherapeutic response data from a melanoma
cohort (PMID30753825). Patients with melanoma in this cohort
were treated with anti-PD-1 monotherapy (n = 63) or combined
anti-PD-1 and anti-CTLA-4 therapy (n = 57). After calculating
the PANoptosis signature score, patients were divided into high-
and low-score groups. KM curve analysis revealed that patients
treated with anti-PD-1 monotherapy who had high signature scores
had better survival outcomes (Figure 4C). A similar result was found
in patients treated with combined anti-PD-1 and anti-CTLA-4 ther-
apy (Figure 4F), but the differences were not significant (p = 0.052).
Subsequently, we evaluated the PANoptosis signature score in the
partial response (PR)/complete response (CR) and stable disease
(SD)/progressive disease (PD) groups. The PANoptosis signature
was shown to have a higher score in the PR/CR group than in the
SD/PD group (Figures 4D and 4G). Similarly, when patients treated
with combined anti-PD-1 and anti-CTLA-4 therapy were divided
into high- and low-score groups, PR or CR in the high-score group
accounted for 89.29%, and PR or CR in the low-score group ac-
counted for only 25% (Figure 4H). The same trend was observed
in patients treated with anti-PD-1 monotherapy (Figure 4E). Our
PANoptosis signature has good predictive value for the immuno-
therapeutic response.
Characteristics of the PANoptosis model regarding genomic

alterations and enrichment pathways

We used single-nucleotide variant (SNV) and copy-number variation
(CNV) data from TCGA database to evaluate genomic alterations be-
tween different signature score groups. Mutations in all PANoptosis
pathway genes in TCGA-PRAD are shown in Figures 5A and S9A.
In patients with BCR, the high- and low-score groups had a 92.31%
rate of overall PANoptosis gene mutation, but the mutation rate of
TP53 was higher in the low-score group. In all TCGA patients with
PRAD, the mutation rate was only 8.15%, which is much lower
than that in patients with BCR. More results of mutation differences
between the high- and low-score groups are shown in Table S6. The
Genomic Identification of Significant Targets in Cancer (GISTIC)
score (G scores) of genomic segments of high- and low-signature
score groups plotted along chromosomes are shown in Figures S9B
and S9C, respectively. Amplifications are in red and deletions are in
blue. The frequency difference in copy-number amplification and
copy-number deletion between groups is shown in Figure 5B. We
found that the mutation frequency was significantly higher in the
high-signature score group.

Single-sample GSEA (ssGSEA) was used to calculate HALLMARK
enrichment scores. Then, the HALLMARK pathway enrichment
score was compared between the high- and low-score groups. A sig-
nificant difference was observed between the groups in almost all
HALLMARK pathways, and the HALLMARK pathways were more
enriched in the high-signature score group (Figure 5C).

GSEA was used to analyze enrichment differences in three
death modes between groups. HALLMARK_APOPTOSIS, KEGG_
NECROPTOSIS, KEGG_APOPTOSIS, REACTOME_PYROPTOSIS,
and REACTOME_APOPTOSIS showed significant enrichment of
differences between the high- and low-signature score groups.
These results indicated that apoptosis, pyroptosis, and necroptosis
were significantly inhibited in the low-PANoptosis signature score
group compared with the high-PANoptosis signature score group
(Figure 5D).

Then, we evaluated the ZBP1-mediated PANoptosis pathway. The
expression levels of 11 genes from the classic ZBP1-mediated
PANoptosis pathway were compared between the high- and low-score
groups. Our results revealed that the expression level of most genes was
significantly higher in the high signature score group (Figure S10A).
Subsequently, Spearman’s analysis indicated that 10 genes from the
classic ZBP1-mediated PANoptosis pathway were significantly posi-
tively related to the PANoptosis signature score (Figure S10B). These
results indicated that the PANoptosis signature was tightly related to
the ZBP1-mediated PANoptosis pathway.

PANoptosis boosts tumor-specific immunity in PRAD

ImmuneScore, StromalScore, EstimateScore, and TumorPurity
were calculated with ESTIMATE. The boxplots showed that the
ImmuneScore, StromalScore, and EstimateScore were significantly
higher in the high-score group, whereas the TumorPurity score was
Molecular Therapy: Nucleic Acids Vol. 33 September 2023 381
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Figure 5. Genomic alterations and pathway enrichment in the PANoptosis signature

(A) Themutational landscape of PANoptosis pathway genes altered between high- and low-risk patients with PRAD in the TCGA cohort. (B) The frequency difference in copy-

number amplification and copy-number deletion. (C) The enrichment score of hallmark pathways in the high- and low-risk score groups. (D) GSEA of enrichment differences

in the three death modes between the high- and low-risk score groups. G scores, The Genomic Identification of Significant Targets in Cancer score; *p% 0.05, **p% 0.01,

***p % 0.001, ****p % 0.0001.
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significantly lower (Figure 6A). To further understand and charac-
terize the immune microenvironment in relation to the PANoptosis
signature score, the profile of TME cell infiltration models was eval-
uated. ssGSEA was used to quantify the relative abundance of 28 im-
mune cell infiltrates. We found significant differences in immune cell
infiltration in the subgroups (Figure 6B). A high PANoptosis signa-
ture score correlated with infiltration of immune cells, such as CD4,
CD8, and natural killer cells, in the TME, which promote tumor im-
munity. However, the infiltration of regulatory T (Treg) cells, which
suppress tumor immunity,24 was also positively correlated with the
PANoptosis signature score.

Immune checkpoints regulate the level of immune activation. Our re-
sults revealed that the expression levels of some immune checkpoints,
such as CCL2, CD274, CD4, CXCR4, and LAG3, were significantly
higher in the high-score group than in the low-score group (Fig-
ure 6C). To better understand the role of the PANoptosis signature
in tumor immune escape, we evaluated tumor immunogenicity,
382 Molecular Therapy: Nucleic Acids Vol. 33 September 2023
including tumor mutation burden (TMB), neoantigen load, homolo-
gous recombination deficiency (HRD), loss of heterozygosity (LOH),
and cancer/testis antigens (CTAs). Significant differences were seen
between the two score groups only at the CTA level (Figure S11),
indicating that the tumor cells could recognize more antigens and
thus initiate an immune response in the high-score group. Overall,
the PANoptosis signature plays significant roles in PRAD tumor im-
munity because it promotes immune cell infiltration, increases the
expression of immune checkpoint regulators, and promotes tumor
immunogenicity.

PANoptosis provides potential therapeutic targets for the

effective treatment of PRAD

We evaluated differentially expressed genes between signature score
groups and performed pathway enrichment analysis. Then, by using
the drug response data obtained from the Genomics of Drug Sensi-
tivity in Cancer database, we acquired the half-maximal inhibitory
concentration (IC50) values of some drugs used in PRAD based on



Figure 6. Immunological role of the PANoptosis signature in PRAD

(A) An ImmuneScore, StromalScore, and EstimateScore in the high- and low-score groups. (B) Enrichment scores of 28 immune cell infiltrates in the high- and low-score

groups. (C) Expression levels of immune checkpoint regulators in the high- and low-score groups in the TCGA cohort. *p% 0.05, **p% 0.01, ***p% 0.001, ****p% 0.0001;

ns, not significant.
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PANoptosis signature gene expression (Figure S12). Spearman’s cor-
relations between the expression of PANoptosis signature genes and
drug sensitivity are shown in Figure 7A. Notably, CASP4 strongly
positively correlated with sensitivity to several drugs, such as
BMS_345541, UNC0638, and cabozantinib. BAK1 and GSDMD
were strongly positively correlated with sensitivity to BHG712, and
IRF1 was strongly positively correlated with sensitivity to tivozanib.
Sankey diagrams were used to visualize the relationship between
PANoptosis genes, drugs, and drug-related pathways (Figure 7B).
For PANoptosis genes, we targeted nine drugs and seven pathways
involved in drug action. Our results demonstrated that sepantronium
bromide plays a role in tumor suppression through apoptosis regula-
tion by targeting a series of PANoptosis genes. In addition, these
PANoptosis genes act as drug-targeted genes through various
signaling pathways.

Profile analysis of the PANoptosis signature in prostate cells

To further evaluate the profile of the PANoptosis signature in PRAD,
we performed single-cell transcriptome analysis using data obtained
from the Gene Expression Omnibus (GEO) database. Based on
PRAD samples from single-cell datasets (GSE141445 and
GSE157703), t-distributed stochastic neighbor embedding (t-SNE)
clustering of cells, and cell group annotation were performed
(Figures 8A and 8B). Moreover, we calculated the PANoptosis signa-
ture score in various cell types and found that the PANoptosis signa-
ture score varied across cell types (Figures 8C and 8D). Notably, in the
two cohorts, the PANoptosis signature score was high in CD8+
T cells, B cells, and dendritic cells, indicating that these cells had
more severe PANoptosis.

DISCUSSION
Up to 20%–40% of patients with localized PRAD develop recurrent
disease within 10 years,25 and nearly all patients with advanced
PRAD develop castration-resistant prostate cancer, despite most hav-
ing initially robust responses to androgen deprivation therapy.26,27

Many efforts have been made to improve the efficacy of PRAD
treatment, such as immunotherapy, which has emerged as a viable
treatment option. However, PRAD is not highly responsive to
Molecular Therapy: Nucleic Acids Vol. 33 September 2023 383

http://www.moleculartherapy.org


Figure 7. Predictive value of PANoptosis signature-based therapeutics in PRAD

(A) Correlations between the PANoptosis signature score and drug sensitivity. The value of the correlation coefficient is represented by the intensity of blue or red, as indicated

on the color scale. (B) The Sankey diagram demonstrates the relationship between PANoptosis genes, drugs, and drug-related pathways.
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immunotherapy because of its molecular characteristics and the key
role that various signaling pathways play in the development of
drug resistance and immunosuppression.5,28 Therefore, the prognosis
of advanced castration-resistant prostate cancer remains lethal, and
there is an urgent need to develop biomarkers that predict patient
prognosis and provide new therapeutic targets for treating PRAD.
Recently, the concept of PANoptosis was introduced. PANoptosis is
mediated by the PANoptosome complex and features all the charac-
teristics of pyroptosis, necroptosis, and apoptosis.9 PANoptosis plays
a crucial role in the development of cancer, particularly in tumor
immunity.29–31 Beretta and Zaffaroni summarized the molecular
mechanisms involved in necroptosis and discussed the therapeutic
potential for prostate cancer.32 Westaby et al. discussed the latest ap-
proaches for targeting the intrinsic apoptosis pathway for treating
prostate cancer.33 However, these studies did not integrate the three
modes of death in prostate cancer. Our study is the first to evaluate
the features of PANoptosis in PRAD. In this study, we illustrated
the role of PANoptosis in the development and progression of
PRAD. The PANoptosis signature was constructed to identify its
prognostic value and develop new therapeutic strategies for PRAD.

The deregulation of apoptosis plays a crucial role in tumorigenesis.
Our results indicate that the HALLMARK_APOPTOSIS pathway
was significantly activated in adjacent normal tissues compared
with tumor tissues. Although there were no significant differences be-
tween other death pathways, the same trends were observed. Our
interaction network showed that each cell death pathway was unlikely
384 Molecular Therapy: Nucleic Acids Vol. 33 September 2023
to be independent of other pathways, supporting the concept of a uni-
fied death network. Previous studies have demonstrated the potential
mechanisms of interactions.11,12,34 For instance, apoptosis and nec-
roptosis are closely linked through caspase-8 activity, which is a
typical activator of extrinsic apoptosis, but it also inhibits necroptosis
signaling through the cleavage of RIPK1 and RIPK3.35,36 Both
pyroptosis and necroptosis are inflammatory processes. MLKL,
the terminal effector of necroptosis, can disrupt the membrane and
activate the NLRP3 inflammasome, which induces pyroptosis.37

Both apoptosis and pyroptosis involve the activation of members of
the caspase family of proteases, and they may be linked by
caspase-1, caspase-8, etc. Therefore, the introduction of the concept
of PANoptosis is meaningful because, when any program is blocked,
others can complete cell death.

Mutation analysis of PANoptosis pathway genes in PRAD indicated
that the overall mutation rate of PANoptosis pathway genes in
PRAD was not high, which was consistent with the characteristics
of prostate cancer as a cold tumor, with a relatively low mutation
rate. PANoptosis pathway genes showed different expression models
and prognostic impacts. Interestingly, most PANoptosis genes appear
to be associated with better clinical features and survival outcomes;
however, we could not provide a unifying explanation for all the
genes. Therefore, further experiments were performed to integrate
PANoptosis pathway genes and assess them more accurately. Partic-
ularly, considering the importance of some molecules, we used
PRAD tissue and BPH tissue from West China Hospital to identify



Figure 8. Profile of the PANoptosis signature in PRAD using single-cell transcriptomic analysis

(A and B) A t-distributed stochastic neighbor embedding (t-SNE) view of two scRNA-seq profiles (GSE141445 and GSE157703). (C and D) PANoptosis signature score in

various cell types using data from the GSE141445 and GSE157703 cohorts.
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expression patterns, and anti-ZBP1 IHC was performed using pros-
tate cancer tumor tissue samples. We experimentally validated that
the expression levels of CASP-1 and ZBP1 were lower in PRAD tis-
sues, and that the expression of ZBP1 positively correlated with better
clinical features. There is evidence to suggest that CASP1 participates
in cell survival signaling by serving as a scaffold to impact complex I
assembly.38,39 ZBP1 is a member of a large multiprotein complex
along with CASP1, CASP8, RIPK1, and other molecules, which drives
PANoptosis.40 Through bioinformatics analysis and experimental
validation, it was determined that ZBP1 and CASP1 function together
in PANoptosis processes in PRAD. In addition, methylation data
revealed that patients with tumors could be separated into two sub-
groups. Subsequently, we found that the expression levels of most im-
mune checkpoint regulators were higher in cluster 1, although the
mechanism involved is unclear.

We constructed a PANoptosis signature in this study. We found that
patients with higher PANoptosis signature scores had better survival
outcomes. We confirmed that the PANoptosis signature was an inde-
pendent predictor for the prognosis of PRAD. From a clinical stand-
point, the PANoptosis signature can be helpful for a more accurate
prognosis, identifying patients with a poor prognosis and providing
proactive interventions.

PANoptosis may stimulate the TME to achieve antitumor effects.29,41

Specifically, apoptosis is commonly weakened in the TME42 and,
although it is not immunogenic, it can activate antitumor immunity
under certain conditions, such as caspase deficiency.43,44 Necroptosis
can promote dendritic cell maturation and enhance the antitumor
ability of CD8 T cells.45,46 In addition, pyroptosis, as an immunogenic
form of cell death, plays an antitumor role by producing proinflam-
matory cytokines to facilitate the infiltration of immune cells in the
TME.47 In our study, the high PANoptosis signature group acquired
significantly higher ImmuneScore, StromalScore, and EstimateScore
and lower tumor purity, indicating that the high-score group
had higher overall immunity. This result was consistent with the
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enrichment scores of immune cell infiltrates. The PANoptosis signa-
ture increased immune infiltration in the tumor, increasing antitumor
immunity. In addition to the infiltration of effector T cells, activated
T cells, and other antitumor immune cells, the infiltration of Treg cells
also increased. Treg cells can inhibit the proliferation of effector
T cells, secrete cytokines, and participate in the immune escape of
some tumors. PANoptosis likely presents the characteristics of immu-
nogenic cell death and produces proinflammatory cytokines, such as
IL-1B and IL18, to promote the infiltration of immune cells into the
TME. During this process, Treg cells, regulated by IL-10 and TGF,
may increase infiltration. Moreover, a high PANoptosis signature
score increased the expression of immune checkpoint regulators.
Thus, PANoptosis promotes tumor immunity in PRAD. Importantly,
a high PANoptosis signature score can improve the immune response
to immunotherapy, and the PANoptosis signature score can predict
the response of patients to immunotherapy. Combining all findings,
improving the PANoptosis signature score seems to enhance anti-
tumor immunity, improve the response rate of patients to immuno-
therapy, and improve the prognosis of patients. Thus, the PANoptosis
signature score may provide a new direction for the treatment of pros-
tate cancer.

An increasing number of antitumor drugs has been used to target the
PANoptosis pathway with good efficacy.33,48–50 In this study, we eval-
uated the association between the PANoptosis signature and drug
sensitivity and identified PANoptosis-related pathways and drugs
that target these pathways. We identified potential therapeutic targets
for prostate cancer based on the PANoptosis signature.

Finally, single-cell transcriptome analysis suggested that the
PANoptosis signature score was high in CD8+ T cells, B cells, and
dendritic cells. Theoretically, the activation of the PANoptosis signa-
ture will achieve more immune cell infiltration and a better immuno-
therapeutic effect. However, when the immune cell itself has a rela-
tively high PANoptosis signature score, the immune efficacy will
decrease. This finding may provide new insights into why PRAD
acts as a cold tumor and does not respond well to immunotherapy.
Therefore, strategies to effectively inhibit PANoptosis in those im-
mune cells can enhance the immunotherapy of PRAD.

In conclusion, we evaluated the genomic, transcriptomic, and clinical
features of the PANoptosis signature in PRAD. By constructing
the PANoptosis signature, the prognosis and immunotherapeutic
response of patients can be predicted. Our findings provide novel tar-
gets in the PANoptosis pathway for synergistically enhancing immu-
notherapeutic efficacy.

MATERIALS AND METHODS
Data source and preprocessing

Clinical data and values of fragments per kilobase of transcript per
million mapped reads from patients with PRAD were obtained
from the TCGA database : http://cancergenome.nih.gov/51 using
the TCGAbiollinks package in R. Gene IDs were converted using
an ID conversion file (gencode.v38.annotation.gtf). If more than
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one Ensembl_ID matched the same Symbol_ID, the median value
was selected for subsequent analyses. We obtained RNA-seq data of
481 primary tumor tissue samples and 51 adjacent normal tissue sam-
ples from the TCGA-PRAD dataset, and finally a total of 481 samples
with both gene expression data and survival information was used
for analysis. Of these patients, 52 developed BCR and were used for
PANoptosis signature building. Tumor expression profiles and
clinical information are shown in Table S1.

We collected five pathways downloaded from the MSigDB (V7.4)
(GSEA | MSigDB: gsea-msigdb.org)52 database for analysis, including
REACTOME_PYROPTOSIS, HALLMARK_APOPTOSIS, KEGG_
APOPTOSIS, REACTOME_APOPTOSIS, and map04217 pathway
(KEGG_NECROPTOSIS). The union of all gene sets for the five path-
ways was identified as the PANoptosis pathway gene set (Table S2).
GSE21034, GSE54460, GSE141445, and GSE157703 were downloaded
from the GEO database: https://www.ncbi.nlm.nih.gov/geo/,53 and the
PRAD-FR-seq_RFS dataset was downloaded from the ICGCData Por-
tal: https://dcc.icgc.org/.54 In addition, an immunotherapy cohort of
melanoma (PMID30753825) was obtained from Gide et al.’s study.55

Samples lacking survival information were excluded during data pro-
cessing and analysis. The no-load probe and probes with more than
one gene were removed and, if multiple probes corresponded to one
gene, average expression levels of those probes were obtained.
GSEA

PANoptosis genes included genes involved in apoptosis, pyroptosis,
and necroptosis. GSEA is a computational method that determines
whether a priori defined sets of genes show statistically significant,
concordant differences between two biological states. GSEA was
used to analyze differences in PANoptosis-related signaling pathway
gene enrichment in tumors and adjacent normal tissue samples. Next,
we evaluated enrichment differences in PANoptosis-related pathways
between groups with clinical features, such as age (age R60 years vs.
age <60 years). The gseaplot2 package in R was used to visualize
significantly enriched PANoptosis pathway genes.
PANoptosis-related gene interaction networks

Based on the genes involved in the PANoptosis pathway, the STRING
database was used to construct the interaction network to evaluate the
crosstalk of three death modes, namely, cell pyroptosis, cell apoptosis,
and cell necrotizing apoptosis, in tumors.
PANoptosis pathway mutation analysis and methylation

analysis

For genes involved in the PANoptosis pathway, we assessed the
frequency of mutation and the location of genes with CNV on the
chromosome. We generated a waterfall plot dumbbell chart to
show the status of gene mutation and CNV and constructed a Circos
plot to represent the chromosomal distributions of genes. SNV data
and CNV data were obtained from the TCGA database using
TCGAbiollinks (Table S3). Prostate cancer mutation data in the
TCGA database are in the form of a Mut2ation Annotation Format
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file. We used the maftools package in R for annotation analysis and
visualization.

The pancancer methylation panel targets were selected for hyperme-
thylated CpG sites in tumor vs. normal tissue based on TCGA
data. TCGA-PRAD methylation data were downloaded from the
TCGA Data Portal, and the methylation levels of genes involved in
PANoptosis were analyzed between the tumor and normal groups.
We further divided patients into two subgroups according to the
methylation results. Then, we compared the survival outcomes be-
tween subgroups and evaluated the associations between immune
checkpoints and subgroups.

Association between PANoptosis pathway genes and clinical

feature groups and tumor prognosis

The patients were grouped based on different clinical features,
including race (Asian vs. White vs. Black), seminal vesicle invasion
(yes vs. no), TP53 mutational status (mutation vs. wild type), and
age (age R60 years vs. age <60 years). We evaluated the differential
expression of PANoptosis pathway genes between different groups.
Similarly, we compared gene expression levels between tumor and
normal adjacent tissues.

The patients were divided into high- and low-score subgroups based
on the median PANoptosis pathway gene expression value, and then
survival analysis was performed on the OS of subgroups using gene
expression data and survival data from the TCGA database. The
KM method and log rank test were used to evaluate differences in
survival between patients with low or high levels of expression of
PANoptosis pathway genes.

Integrated analysis of mutation, transcription, and methylation

of PANoptosis pathway genes

We set the threshold for |log2FC| > 0.585 and adj. A p value < 0.05 was
used to identify differential gene expression at the transcript level, and
68 genes were included. A total of 142 differentially methylated sites
and the top 100 mutant genes were obtained according to previously
described methods. Then, 9 overlapping genes were obtained by ac-
counting for their intersection in the analysis.

Development of the PANoptosis signature for PRAD

ssGSEA was used to calculate the enrichment score of each
sample. Mean enrichment scores for pyroptosis, apoptosis, and
necroptosis were identified as PANoptosis signature scores.56–59

The risk score for each patient was calculated using the following
formula.

Score = mean

 
NESP +

Xn

i = 1
NESAi + NESN

!

where NES is the ssGSEA enrichment score, P is pyroptosis, A is
apoptosis, N is necroptosis, i is apoptosis, and n is the number of
apoptosis pathways.
For model construction, we used gene expression and survival data
from 52 patients with BCR. The PANoptosis signature score of
each patient was calculated based on the formula, and then patients
were divided into high- and low-score groups according to the me-
dian score. The survminer package in R was used for survival analysis
of BCR in the high- and low-score groups. The KMmethod was used
to generate the survival curve, and the log rank test was used to
compare differences between groups. Univariate and multivariate an-
alyses were performed using Cox’s regression model, and the inde-
pendent prognostic value of the PANoptosis signature score was
determined in combination with other clinical features. p < 0.05
was considered statistically significant. For validation of the ability
to predict prognosis, two independent cohorts (GSE54460 and
PRAD-FR_seq_RFS) were used, and the same formula was used to
calculate scores in the validation cohorts.

Assessment of differences in clinical features and

immunotherapeutic responses between PANoptosis signature

score groups

The patients were grouped into high- and low-score groups, and we
compared different clinical features (race, PSA level, BCR status, sem-
inal vesicle invasion, TP53mutational status, and age) between them.

We collected the immunotherapeutic response data for the melanoma
cohort (PMID30753825).55 After calculating the PANoptosis signa-
ture scores, patients were divided into high- and low-score groups
to plot survival curves and visualize the relationship between the
PANoptosis signature score and response to immunotherapy. Pa-
tients with immunotherapeutic responses were divided into CR, PR,
SD, and PD groups. Significance was tested using Fisher’s exact test.

Assessment of genomic alterations and HALLMARK pathways

SNV and CNV data were summarized and plotted as oncoplots. The
significance of the differences in the related analysis of CNV and mu-
tations between different PANoptosis signature score groups was as-
sessed using the chi-squared test. GISTIC was used for CNV focal
cluster visualization.60 After inputting the GISTIC score file and
two list files of significantly amplified and deleted genes, the G scores
of genomic segments could be plotted along chromosomes.

The HALLMARK enrichment score was calculated based on ssGSEA
to evaluate differences in HALLMARK pathway enrichment scores
between groups. Based on the PANoptosis pathway, GSEA was
used to analyze the differences in the enrichment of pyroptosis,
apoptosis, and necroptosis in the high- and low-score groups.

Association between factors in the pathway mediated by ZBP1

and the PANoptosis signature score

The classic pathway for PANoptosis is mediated by ZBP1.30 Here,
the expression levels of genes from the classic ZBP1-mediated
PANoptosis pathway were compared between the high- and low-
score groups using the Wilcoxon rank-sum test. Subsequently, Spear-
man’s analysis was used for correlation analysis between the genes
and the PANoptosis signature score.
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Analysis of immune infiltrates and tumor immune escape

CIBERSORT61 and ssGSEA were used to quantify the relative
abundance of 28 immune cell infiltrates.62 The ESTIMATE package
was used to calculate the ImmuneScore, StromalScore, and
EstimateScore. Subsequently, immune cell infiltration, ImmuneScore,
StromalScore, and EstimateScore were compared between high- and
low-score groups using the Wilcoxon rank-sum test.

Immune checkpoint molecules and tumor immunogenicity are
involved in intrinsic immune escape.63 Immune checkpoints play
an important role in the tumor immune system, and immune check-
point inhibitors—one of the most promising agents in immuno-
therapy—are widely used in treating some tumor types.64,65 Twenty
inhibitory immune checkpoints with therapeutic potential were
selected, and the differences in their expression levels between the
high- and low-score groups were assessed. In addition, differences
in tumor immunogenicity, including TMB, neoantigen load, HRD,
LOH, and CTA, were compared between the high- and low-score
groups.

PANoptosis signature predicts therapeutic opportunities in

PRAD

Differentially expressed genes between the high- and low-PANoptosis
signature score groups were calculated with DESeq2 and subjected to
pathway enrichment analysis. Drug response data were downloaded
from the Genomics of Drug Sensitivity in Cancer database: https://
www.cancerrxgene.org/, the sample’s IC50 was estimated by ridge
regression, and accuracy was predicted using the pRRophetic package
in R. Subsequently, the correlations between the expression of
PANoptosis signature genes and drug sensitivity were calculated us-
ing Spearman’s rank correlation tests. Moreover, correlations be-
tween differentially expressed genes and drug-related targets were
calculated. To identify the targeted pathway or drug associated with
PANoptosis, drug-target pathways were overlapped with the results
of enrichment analysis of differential gene expression.

Filtering out the PANoptosis effector cell single-cell

transcriptome

Single-cell RNA sequencing profiles were obtained from two available
datasets, GSE141445 and GSE157703. The complete annotation of
each dataset is available at Tumor Immune Single-Cell Hub: http://
tisch.comp-genomics.org.66 To evaluate the cellular origin of
PANoptosis dysregulation, we calculated the PANoptosis signature
score of each cell following a method described previously.

Single-cell transcriptome data were analyzed using the Seurat package
in R, which mainly consists of the following steps: construction of ob-
ject, standardization of data, clustering and dimensionality reduction,
search for marker genes, etc. Finally, the cell clustering results from
Seurat were annotated using the SingleR package in R. The principle
of these algorithms is as follows: Spearman’s correlation coefficient
between variable Gen in a single cell and each sample in the reference
dataset was calculated using multiple iterations. The 80th percentile
of the correlation coefficient of multiple reference samples in the
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same cell type was used as the annotation score for this cell type.
Reference cell types annotated with a maximum score difference of
0.05 or less were retained until only two cell types remained, and
the cell type with the highest correlation score was retained and anno-
tated for this cell type.

During the use of Seurat CreateSeuratObject to build Seurat objects,
the minimum number of cells was 3, and the minimum number of
features was 200 for the initial filtering of genes and cells. Moreover,
nFeature was (200, 6,000) and nCount was (300, 40,000) to perform
data filtering again. After preliminary dimension reduction (PCA) of
the data, the first 10 PCs were selected for t-SNE dimension reduc-
tion, and FindClusters was performed at a resolution of 0.5. Finally,
DimPlot and FeaturePlot were used to visualize the results.

We used CreateSeuratObject of Seurat to create data objects, and
thresholds were set for a minimum of 3 cells and 200 features for pri-
mary filtration of genes and cells. Then, we filtered data using nFea-
ture = (200, 6,000) and nCount = (300, 40,000). After dimensionality
reduction by PCA, the top 10 PCs were chosen for t-SNE dimension
reduction, and a resolution of 0.5 was used for clustering using
FindCluster. DimPlot and FeaturePlot were used for visualization.

Quantitative real-time PCR

Total RNA was extracted using TRIzol reagent (Invitrogen) and then
reverse-transcribed into cDNA using a Transcriptor First Strand
cDNA Synthesis kit (Thermo Scientific, cat. no. K1622). Quantitative
real-time PCR was performed using a QuantiNova SYBR Green PCR
kit (QIAGEN, cat. no. 208054). The b-actin gene was used to
normalize the expression of various genes. The primers used to detect
mRNA levels are listed in Table S4.

Immunohistochemical staining

Human prostate cancer tissues were obtained from West China
Hospital, and immunohistochemical staining was performed to
detect ZBP1 expression. Antigen was recovered with citrate buffer af-
ter dewaxing and hydration of tissue sections.

The endogenous enzyme was blocked using 3% peroxide at room
temperature for 10 min. Rabbit anti-ZBP1 antibody (1:100, Affinity
cat. no. DF14090) was used for incubation at 4�C overnight, and
staining was developed by DAB.

The patients were divided into two groups according to high and low
expression levels of ZBP1, and then clinical characteristics were
compared between these two groups.

Statistical analysis

All statistical analyses were performed using R software, v.4.1.2. We
used Wilcoxon rank-sum tests for independent group comparisons.
Categorical variables were compared by using the chi-squared test
or Fisher’s exact test. Spearman’s analysis was used for correlation
studies between quantitative variables. Survival curves were analyzed
using the log rank test (generated using the KM method). Statistical
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significance is represented as follows: *p% 0.05, **p% 0.01, ***p%

0.001, ****p % 0.0001; NS, not significant.
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Figure S1. Perturbations and status of gene mutation in the PANoptosis pathway in PRAD. A 

The GSEA enrichment plot shows differential enrichment between age ≥60 years and age <60 years 

groups in “REACTOME_PYROPTOSIS, HALLMARK_APOPTOSIS, KEGG_APOPTOSIS, 

REACTOME_APOPTOSIS, and KEGG_NECROPTOSIS.” B Distribution of PANoptosis pathway 

genes on each chromosome is presented on the Circos plot. 

 

 

Figure S2. Survival and expression level of immune checkpoint regulators in subgroups of 

patients differentiated by methylation levels. A Survival probability between the subgroups. B 
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The expression level of immune checkpoint regulators. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P 

≤ 0.0001, ns: not significant. 

 

 
Figure S3. Expression levels of PANoptosis pathway genes and key molecules of PANoptosis. 

A, B Differential expression of PANoptosis pathway genes in patients aged ≥60 and <60 years. B 

qPCR for PANoptosis key molecules. ns: not significant. 
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Figure S4. Clinical Relevance of PANoptosis. A Expression levels of PANoptosis pathway genes 
in various races in PRAD. B Expression levels of PANoptosis pathway genes in patients with and 
without seminal vesicle invasion. C Expression levels of PANoptosis pathway genes in patients with 
and without TP53 mutation. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. 
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Figure S5. Overlapping of differentially methylated site genes, differentially expressed 

transcriptome genes, and mutated genes. A The methylation status of the nine overlapping genes. 

B Heatmap of transcriptome differential expression. C Mutational landscape of nine overlapping 

genes. ****P ≤ 0.0001. 

 

 

Figure S6. Expression of PANoptosis pathway genes and overall survival in patients with 
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PRAD. The Kaplan–Meier survival curves show eight genes whose expression is associated with 

overall survival.  

 

 

Figure S7. Validation of PANoptosis signature. A-C Kaplan–Meier survival curves show the 

differences in survival probability between high- and low-signature score groups in the validation 

cohorts (GSE21034, PRAD-FR_seq_RFS, and GSE54460). D-F Univariable and multivariable 

Cox’s regression analysis for the value of prognostic prediction of PANoptosis signature score in 

the validation cohort. 
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Figure S8. Clinical features in high- and low-PANoptosis signature score groups. A-F Age, 

TP53, seminal vesicles invasion, BCR status, race, and PSA value in high- and low-PANoptosis 

score groups in the TCGA cohort. G, H Age and clinical stage in low-PANoptosis score groups in 

the validation cohort (GSE21034). BCR, biochemical recurrence; PSA, prostate-specific antigen. 

 

 

Figure S9. Genomic alterations between high- and low-PANoptosis signature score groups. A 

The mutational landscape of PANoptosis pathway genes altered between high- and low-risk patients 

with PRAD in the TCGA cohort. B, C G-scores of genomic segments plotted along chromosomes, 

red for amplifications and blue for deletions. G-scores, The Genomic Identification of Significant 

Targets in Cancer score. 



 7 

 

 

Figure S10. ZBP1-mediated PANoptosis pathway in PRAD. A Expression differences of 11 

genes from the classic ZBP1-mediated PANoptosis pathway in high- and low-score groups. B 

Correlations between PANoptosis signature score and the expression level of genes involved in 

ZBP1-mediated PANoptosis. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001, ns: not 

significant. 
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Figure S11 The role of the PANoptosis signature in tumor immune escape. TMB, HRD, LOH, 

CTA, and neoantigen load in the high- and low-score groups. HRD, homologous recombination 

deficiency; LOH, loss of heterozygosity; TCR, T cell receptor; ***P ≤ 0.001, ns: not significant. 

 

 
Figure S12. IC50 of drugs used in PRAD based on PANoptosis signature score. IC50, half-

maximal inhibitory concentration. 

 

 

Table S1 Tumor expression profiles and clinical information. 
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Table S2 PANoptosis pathway gene sets 

 

Table S3 Single nucleotide variant (SNV) data and copy-number variation (CNV) data. 

 

Table S4 Primer sequences for qPCR 
Gene Forward Reverse 
ZBP1 AACATGCAGCTACAATTCCAGA AGTCTCGGTTCACATCTTTTGC 
RIPK1 GGGAAGGTGTCTCTGTGTTTC CCTCGTTGTGCTCAATGCAG 

CASP1 GCCTTCACCATTCATGTGGAT TTGCTCCGGGTAAAGAGACAG 
CASP6 ATGGCGAAGGCAATCACATTT GTGCTGGTTTCCCCGACAT 
CASP8 TTTCTGCCTACAGGGTCATGC GCTGCTTCTCTCTTTGCTGAA 
FADD GCTGGCTCGTCAGCTCAAA ACTGTTGCGTTCTCCTTCTCT 
β-Actin GCGAGTACAACCTTCTTGC TATCGTCATCCATGGCGAAC 

 

Table S5 Patients with tumors were separated into two subgroups by analyzing alterations in the 

methylation state of PANoptosis genes. 

 
Table S6 Mutation differences between the high- and low-score groups. 
 


	Construction of PANoptosis signature: Novel target discovery for prostate cancer immunotherapy
	Introduction
	Results
	Perturbations and crosstalk in PANoptosis in PRAD
	Status of gene mutation and methylation of PANoptosis pathway genes in PRAD
	Clinical relevance analysis of the PANoptosis pathway
	PANoptosis affects the prognosis of patients with PRAD
	PANoptosis signature shows predictive value for PRAD prognosis
	PANoptosis signature predicts immunotherapeutic response
	Characteristics of the PANoptosis model regarding genomic alterations and enrichment pathways
	PANoptosis boosts tumor-specific immunity in PRAD
	PANoptosis provides potential therapeutic targets for the effective treatment of PRAD
	Profile analysis of the PANoptosis signature in prostate cells

	Discussion
	Materials and Methods
	Data source and preprocessing
	GSEA
	PANoptosis-related gene interaction networks
	PANoptosis pathway mutation analysis and methylation analysis
	Association between PANoptosis pathway genes and clinical feature groups and tumor prognosis
	Integrated analysis of mutation, transcription, and methylation of PANoptosis pathway genes
	Development of the PANoptosis signature for PRAD
	Assessment of differences in clinical features and immunotherapeutic responses between PANoptosis signature score groups
	Assessment of genomic alterations and HALLMARK pathways
	Association between factors in the pathway mediated by ZBP1 and the PANoptosis signature score
	Analysis of immune infiltrates and tumor immune escape
	PANoptosis signature predicts therapeutic opportunities in PRAD
	Filtering out the PANoptosis effector cell single-cell transcriptome
	Quantitative real-time PCR
	Immunohistochemical staining
	Statistical analysis

	Data and code availability
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


