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1. Simulations details and analysis

All simulation data in the main manuscript was generated by the group of David E. Shaw and originally published by Lindorff-
Larsen et. al. (1). The simulations were performed using the Anton special-purpose computer (2), a modified CHARMM
force-field (3), and a modified TIP3P water model, with an integration time step of dt = 2.5 fs. Protein configurations were
saved to file every 200 ps, reducing the time resolution of the trajectory data relative to the simulation time discretization.
Effects due to low time-resolution discretization are discussed in Section 7. We only consider 8 out of the 12 proteins presented
in the original publication, as BBA, BBL, Protein B, and Homeodomain either do not exhibit distinct energy barriers separating
folded and unfolded states when projected onto the Q reaction coordinate, or have barriers that are less than 1 kBT. Each
protein was simulated at a unique temperature, identified as the appropriate melting temperature, which was chosen to
maximize the number of folding and unfolding events. Table S1 shows relevant system parameters, including the total
simulation time for each protein tsim, the simulation temperature T , the number of amino acid residues N , the total number of
folding events Nf and unfolding events Nu, all of which are taken from in the original publication (1). Additionally, we show
properties of the free energy barriers, including the barrier heights faced by the folded and unfolded states, U f

0 and Uu
0 , the

distances from the unfolded and folded states minima to the barrier tops, Lf and Lu, and the effective reaction coordinate massm.

Table S2 shows the time scales measured in our analysis, including the first-moment memory times τmem, inertial times τm, dif-
fusion times in the folded and unfolded domains, τ f

D and τu
D, and mean first-passage times for folding and unfolding extracted from

MD simulations, τMD,f
MFP and τMD,u

MFP , as well as the extracted mean transition-path times for folding and unfolding τ f
MTP and τu

MTP.

Table S1. Table of relevant system parameters and properties

tsim [µs] T [K] N Nf Nu U f
0 [kBT ] Uu

0 [kBT ] Lf Lu m (×109) [unm2]
Chignolin 106 300 10 39 38 6.0 1.6 0.042 0.53 0.17
Trp-Cage 208 290 20 12 12 3.9 3.1 0.075 0.22 0.31

Villin 125 360 35 34 34 2.0 1.6 0.043 0.17 0.62
WW Domain 1137 360 35 12 11 6.3 2.7 0.14 0.29 0.77

NTL9 2936 355 39 17 14 6.7 2.3 0.16 0.23 1.9
Protein-G 1154 350 56 12 13 4.5 2.3 0.10 0.16 2.3
α3D 707 370 73 12 12 3.2 1.7 0.090 0.14 3.4

λ-Repressor 643 350 80 10 12 2.1 2.1 0.047 0.24 3.7
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Table S2. Table of relevant time scales extracted from MD trajectories. All time scales are given in units of µs.

τmem τm (×10−5) τ f
D τu

D τMD,f
MFP τMD,u

MFP τ f
MTP (×10−2) τu

MTP (×10−2)
Chignolin 0.042 5.4 0.31 0.002 0.18 0.18 1.1 0.06
Trp-Cage 0.35 0.46 1.3 0.15 2.1 0.26 2.0 0.60

Villin 0.072 1.2 0.50 0.033 1.2 0.03 2.7 0.20
WW Domain 4.2 0.24 9.0 2.1 2.6 6.6 4.9 3.1

NTL9 0.44 0.48 7.1 3.4 2.2 37.8 1.2 6.6
Protein-G 0.33 0.32 6.4 2.4 9.5 10.1 12.0 8.3
α3D 3.7 0.15 15.5 5.9 5.1 4.3 16.0 6.9

λ-Repressor 0.19 0.48 15.1 0.57 27.0 0.23 108.0 1.3

In Table S3, we compare our analysis results with those of Lindorff-Larsen et. al. Two important differences should be
noted. Firstly, we use a slightly different reaction coordinate, which contains a sigmoidal function contribution for each residue
pair, but with different exponents. Whereas the exponent of Best et. al, and which we use, is β(sij(t)− γs0

ij) (see materials
and methods), Lindorff-Larsen et. al. use 10(sij(t)− (s0

ij + 1)). Secondly, our method for calculating reaction times differs
from that of Lindorff-Larsen et. al., who define the mean waiting time in the unfolded state as the folding reaction time and
vice versa. Additionally, their definition of folded and unfolded states, based on the dual cut-off method of Northrup et. al. (4),
further affects their calculation of transition path times. Therefore, we cannot directly equate our evaluations of reaction times
and transition path times with those reported by Lindorff-Larsen et. al.. Throughout our paper, we only discuss folding and
unfolding events as those that pass from their respective state minimum to the barrier top. To compare to Lindorff-Larsen et.
al., we modify our analysis to consider a folding transition as one that connects the unfolded state minimum to the folded state
minimum, and an unfolding transition is one that connects the folded state minimum to the unfolded state minimum. Thus, for
the comparison in Table S3, we introduce τ fold and τunfold as our folding and unfolding reaction times, as extracted from MD
simulations, that connect the state-minima, and τTP and as the transition path times. The results from Lindorff-Larsen et. al.
are labelled the same way, except that they appear with the sub-script LL. This redefinition of folding and unfolding reactions
applies only to the values presented in Table S3 and has no relevance elsewhere in our analysis. Overall, our results, including
free-energy profiles and our determined native states, are in good agreement with those presented by Lindorff-Larsen et. al..

Table S3. Comparison of reaction and transition path times to those of Lindorff-Larsen et. al. (1), and those reported for experiments. The
different reaction times are described in the text. All times are presented in units of µs. Comparison to experimental values are done for
folding times τ fold

exp .

τ fold
LL τunfold

LL τTP
LL τ fold τunfold τTP τ fold

exp
Chignolin 0.6 2.2 0.04 0.4 1.9 0.012 -
Trp-Cage 14 3 0.22 12.0 2.3 0.097 -

Villin 2.8 0.9 0.27 3.1 0.4 0.074 1.4 µs (300 K) (5)
WW Domain 21 80 0.5 38.0 44.0 0.35 5.7 µs (363 K) (6)

NTL9 29 175 0.9 20.0 104.0 0.58 730 µs (298 K, pH=5.4) (7)
Protein-G 56 37 1.8 63.0 28.0 0.62 57 µs (295 K) (8)
α3D 27 31 0.9 32.0 25.0 0.91 12.5 µs (370 K, pH=2.2) (9)

λ-Repressor 49 13 3.1 33.0 8.6 1.4 10 µs (350 K) (10)
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The experimental folding times τ fold
exp in Table S3 are taken from the same sources as those quoted by (1). The temperatures

and, where relevant, the pH are also given, in order to distinguish from the simulation values. In the following, we provide
some additional experimental details.

• Villin: Folding rate is given as 0.7 µs−1, measured using laser temperature-jump experiments (5).

• WW Domain: The refolding time of the GTT variant is reported to be 5.7 µs at 363 K, measured using temperature
jump experiments (6).

• NTL9: The NTL9 simulations are for the K12M variant. (7) used jump stopped-flow measurements to determine the
folding and unfolding rates of various NTL9 mutants over a range of urea concentrations. In (1), it is stated that the
folding time is 730 µs, evaluated by extrapolating to 0 M urea for the K12M variant. Note that in these experiments, the
pH and the temperature are significantly different from the values used in the simulation.

• Protein G: Simulations were performed for the N37A/A46D/D47A mutant of the NuG2 protein. (8) et. al. used
stopped-flow experiments at 295 K to measure folding plus unfolding rates over a range of GuHCl concentrations. For
NuG2, they quote two values for folding rates: kf = 160 s−1 at 2.5 M GuHCl and kf = 1050 s−1 at 1.5 M GuHCl.
Extrapolation to 0 M gives a folding rate of approximately kf = 17500 s−1, and hence a folding time of approximately 57
µs.

• α3D: Zhu et. al. provide a model for folding and unfolding times of α3D, parametrized by measurements from temperature
jump experiments. For a temperature of 370 K, we can read off a folding time of 12.5 µs. This data is only available at a
low pH of 2.2.

• λ-repressor: From Yang et. al. (10), the λD14A variant has a folding rate of 0.1 µs−1 at 350 K., measured using
laser-induced temperature-jump experiments.
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2. Free energy profiles for all proteins

Chignolin Trp-Cage

Villin WW Domain

NTL9 Protein G

�3D �-repressor

QfQbQu QfQbQu

QfQbQu QfQbQu

QfQbQu QfQbQu

QfQbQu QfQbQu

Fig. S1. Free energy profiles for the fraction of native contacts reaction coordinate, evaluated for the eight proteins. The unfolded Qu, barrier Qb, and folded Qf states are
indicated for each protein. Free energy profiles are calculated as U(Q) = −kBT log[ρ(Q)], where ρ(Q) is the probability density for a given trajectory. Probability densities
are calculated using normalized histograms, with 750 bins between Qmin and Qmax for each protein.
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3. The generalized Langevin equation and memory-kernel extraction

For each protein, we project the all-atom trajectories onto the fraction of native contacts reaction coordinate Q(t) and hence
describe the trajectory of Q(t) in terms of an approximate 1D GLE

mQ̈(t) = −
t∫

0

Γ(t− t′)Q̇(t′)dt′ −∇U
[
Q(t)

]
+ FR(t). [1]

The GLE is approximate in the sense that the memory kernel Γ(t) is independent of position, as described in a recent publication
(11). FR(t) is the random force term, which has a zero mean 〈FR(t)〉 = 0, and satisfies the fluctuation-dissipation theorem
〈FR(t)FR(t′)〉 = kBTΓ(t− t′). U(Q) is the potential of mean force, which is extracted uniquely for each protein according to
U(Q) = −kBT log

[
ρ(Q)

]
, where ρ(Q) is the probability density over Q(t). The total friction on a reaction coordinate is given

by the converged plateau value of the integrated memory kernel,

γ = G(t→∞) =
∫ ∞

0
Γ(t)dt, [2]

where G(t) =
∫ t

0 Γ(t′)dt′ is the running integral of the memory kernel.
To extract Γ(t) for each system, we use the running integral extraction scheme for generalized potentials. The details of this

extraction scheme can be found in references (12) and (13). In short, we correlate Eq. 1 with the initial position of the reaction
coordinate Q(0),

m
〈
Q(0)Q̈(t)

〉
= −

t∫
0

〈
Γ(t− t′)Q(0)Q̇(t′)dt′

〉
−
〈
Q(0)∇U

[
Q(t)

]〉
+
〈
Q(0)FR(t)

〉
, [3]

and with the initial velocity of the reaction coordinate Q̇(0),

m
〈
Q̇(0)Q̈(t)

〉
= −

t∫
0

〈
Γ(t− t′)Q̇(0)Q̇(t′)dt′

〉
−
〈
Q̇(0)∇U

[
Q(t)

]〉
+
〈
Q̇(0)FR(t)

〉
. [4]

Due to the orthogonality relations used to derive the GLE in Eq. 1, both
〈
Q(0)FR(t)

〉
= 0 and

〈
Q̇(0)FR(t)

〉
= 0. Thus, we

can write Eqs. 3 and 4 in terms of the position-velocity and velocity-velocity correlation functions CQQ̇(t) =
〈
Q(0)Q̇(t)

〉
and CQ̇Q̇(t) =

〈
Q̇(0)Q̇(t)

〉
, respectively, as well as the correlations between the reaction coordinate and the PMF gradients

CQ∇U (t) =
〈
Q(0)∇U

[
Q(t)

]〉
, and the velocity of the reaction coordinate and the PMF gradients CQ∇U (t) =

〈
Q̇(0)∇U

[
Q(t)

]〉
m
d

dt
CQQ̇(t) = −

∫ t

0
Γ(t′)CQQ̇(t− t′)dt′ − CQ∇U (t), [5]

m
d

dt
CQ̇Q̇(t) = −

∫ t

0
Γ(t′)CQ̇Q̇(t− t′)dt′ − CQ̇∇U (t). [6]

We integrate Eq. 6 in the time domain and obtain an equation in terms of G(t) =
∫ t

0 Γ(t′)dt′,

mCQ̇Q̇(t)−mCQ̇Q̇(0) = −
∫ t

0
G(t− t′)CQ̇Q̇(t′′)dt′′ + CQ∇U (t)− CQ∇U (0). [7]

Using the identity that d
dt
CQQ̇(t) = CQQ̈(t) = −CQ̇Q̇(t), we evaluate Eq. 5 at t=0, and obtain mCQ̇Q̇(0) = CQ∇U (0). It

follows that
CQ̇Q̇(t)
CQ̇Q̇(0)

CQ∇U (0) = CQ∇U (t)−
∫ t

0
G(t− t′)CQ̇Q̇(t′′)dt′′. [8]

Eq. 8 can be discretized using the trapezoidal rule for numerical integration. Using G(0) = 0, we arrive at the following
numerical extraction scheme, which we use to extract the discrete representation of G(t) directly from the trajectory of a given
reaction coordinate,

Gi =



0, i = 0

2
∆tCQ̇Q̇0

[
C∇UQ1 − C

∇UQ
0

C
Q̇Q̇
0

CQ̇Q̇1

]
, i = 1

2
∆tCQ̇Q̇0

[
C∇UQi − C

∇UQ
0

C
Q̇Q̇
0

CQ̇Q̇i −∆t
∑i−1

j=1 GjC
Q̇Q̇
i−j

]
, i > 1.

[9]

CQ̇Q̇i and C∇UQi are the discretized representations of the velocity-velocity correlation function and the correlations between
the reaction coordinate and the gradients of the PMF, respectively.
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4. Memory kernels for all proteins

We extract the memory kernels for each protein for the fraction of native contacts reaction coordinate using the method given
in Eq. 9. The results for the extractions are shown in Fig. S2. We expect that, due to the intrinsically low time resolution of
the MD data, there exist decay modes that cannot be resolved by our extraction methods.

Trp-Cage

Villin

Domain

WW-

NTL9 Protein G

�3D

Chignolin

�-
repressor

Fig. S2. Time-dependent memory kernels extracted via Eq. 9 for the 8 proteins. The main panel for each protein shows the full memory kernel. The inserts show the segment
of the memory kernel that is used for the fit of the exponential series to the data, in addition to the result for the fitting (red curve). For Chignolin, the exponential series contains
two terms. For all other proteins, there are three terms in the series.

In the inset for each panel, we show results for a three-component exponential fit to the memory kernels, and the corresponding
region of fitting (note that for the case of chignolin, we only fit two exponential components). The fitting parameters are shown
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in Table S4, along with the total friction γ and the 1st-moment memory time τmem for each protein. The total friction follows
from γ =

∑M

i=1 γi.

Table S4. Table of fitting parameters for the memory kernels of the eight proteins. Memory kernels are given by Γ(t) =
∑M

i=1 γiexp(−t/τi)/τi,
where M = 2 for Chignolin, and M = 3 for all other proteins. Time scales τi are given in units of ns and amplitudes are in units of
[1×106unm2ns−1].

γ1 (×105) τ1 (×103) γ2 (×103) τ2 (×101) γ3 (×103) τ3 γ (×105) τmem (×103)
Chignolin 0.0318 0.041 0.0798 0.01 - - 0.032 0.042
Trp-Cage 0.609 0.39 4.8 1.7 2.22 2.9 0.68 0.36

Villin 0.408 0.092 10.5 0.95 2.2 1.4 0.53 0.072
WW Domain 2.98 4.5 16.1 13.0 5.1 10.6 3.2 4.21

NTL9 3.55 0.49 28.7 4.2 10.1 3.3 3.9 0.45
Protein-G 5.88 0.41 113.5 4.3 22.4 2.8 7.3 0.33
α3D 19.6 4.3 239.0 6.3 53.6 4.9 22.6 3.73

λ-Repressor 5.42 0.26 148.5 2.8 60.3 2.2 7.6 0.19
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5. Effects of reaction-coordinate normalisation on friction and effective mass scaling

In Fig. 1E of the main manuscript, we show that for the fraction of native contacts reaction coordinate Q, the friction scales
according to γ/kBT ∼ N2.8, where N is the number of residues. Q is a reaction coordinate that depends on the sum of
individual atomic distances and is, furthermore, normalized by the number of native contacts Nnc. To investigate the role of
normalisation on the N -scaling of the total friction γ, and the effective mass m of a reaction coordinate, we consider a linear
reaction coordinate that is the sum of n Cartesian distances:

s(t) =
n∑
i=1

di(t), [10]

where di(t) = |di(t)| is the distance between two atomic positions, such as the distance between two Cα atoms in a protein
chain, and s(t) is the sum of all such distances. Note that the index i here implies a pair and there are n such pair separation
distances. s is the non-normalized form of the reaction coordinate. We write the normalized form according to the following
rescaling: s̃ = s/n.

We know from Ayaz et. al. (11) that the generalized mass for a reaction coordinate corresponding to the scalar distance
between two positions md is constant, satisfying the equipartition theorem 〈ḋ2

i 〉 = kBT/md. We note that this is for a single pair
distance and that md is assumed to be the same for all pairs. Summing over all pairs results in

∑n

i=1〈ḋ
2
i 〉 = nkBT/md. The col-

lective coordinate s(t) has collective mass ms, satisfying 〈ṡ2〉 = kBT/ms. From Eq. 10, 〈ṡ2〉 = 〈
∑n

i=1

∑n

j=1 ḋiḋj〉 =
∑n

i=1〈ḋ
2
i 〉,

resulting in ms = md/n, where we have used that there is no off-diagonal velocity correlation. For the normalized collective vari-
able s̃, the collective mass satisfies 〈 ˙̃s2〉 = kBT/m. Thus,m = msn

2 = mdn. Since the number of native contacts n scales roughly
linear in the number of residues N , as shown in Fig. S3A, we predict a linear scaling of the effective mass with number of residues.

The mean squared displacement (MSD) of the collective coordinate s is, in the appropriate diffusive regime,
〈(
s(t)−s(0)

)2〉 =
2Dst, where Ds is the diffusion coefficient for s. From Eq. 10, we can write:

n∑
i=1

n∑
j=1

〈(
di(t)− di(0)

)(
dj(t)− dj(0)

)〉
=

n∑
i=1

〈(
di(t)− di(0)

)2〉 = 2nDdt, [11]

where we again assume no correlation between different distances. Thus, we see that Ds = nDd, where Dd is the diffusion
coefficient of the individual distances, and hence γs = γd/n, in line with the result for ms in terms of md. Likewise, we can
calculate D = Ds/n

2, where D is the diffusion coefficient for the normalized s̃, such that γ = γsn
2 = γdn.

Taken together, these results tell us that normalisation of a reaction coordinate that is linear in atomic distances results in
an increase in both friction and mass by n2. In the absence of normalisation, we expect the mass and friction to scale as 1/n,
and so normalisation would result in linear scaling. In Fig. 1 of the main manuscript, we see that both friction and mass scale
super-linearly with the number of residues in the protein chain. The Q reaction coordinate is normalized by the number of
native contacts Nnc, which we show in Fig. S3A scales approximately linearly with N . The strong super-linearities observed for
the friction and the weak super-linearity observed for the mass in the main manuscript (γ/kBT ∼ N2.8 and m ∼ N1.5) result
from non-linearities in the Q reaction coordinate and, in the case of friction, from the reptation-like reconfiguration dynamics
of the protein chain (14, 15). By evaluating the friction and mass for other reaction coordinates, we can see how these effects
manifest differently depending on the choice of the reaction coordinate. In Figs. S3B and C, we show the friction and mass
respectively for Q, and three additional reaction coordinates (see section 11). We see a range of scaling relations. Importantly,
for the case of the end-to-end distance, which is a linear reaction coordinate that does not depend on N , we see constant mass,
as expected, but approximately linear scaling of friction. This latter result cannot be due to non-linearities in the reaction
coordinate and is therefore solely due to the connectivity of the peptide chain that leads to reptation-like chain reconfiguration
dynamics, as was previously seen for the reconfiguration dynamics of homopolymer globules (15).
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Fig. S3. Scaling of mass and friction with the length of protein chain. A) Number of native contacts Nnc as a function of the number of residues in each protein. A power law fit
∼ αNβ reveals almost linear scaling with α = 1.0 and β = 1.1. B) Scaling of total friction as a function of the number of residues for a range of reaction coordinates. Scaling
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6. Additional analysis of folding times, friction, and barrier heights

Fig. S4A compares the folding and unfolding times extracted from the MD simulations to the experimental results presented
by Plaxco et. al. for a set of single domain proteins (16). We fit linear functions to the combined folding and unfolding times
extracted from the MD simulations (red dashed line), the results presented by Plaxco et. al. (blue dashed line), and the two
data sets combined (black dashed line) on a log-linear scale. We calculate the Pearson’s correlation coefficient (r) and the
corresponding p-values to assess the degree of correlation between the MD data, the Plaxco data, and the combined data set.
The details of the calculation are described in Section 8 below. For the Plaxco data, we calculate the same r and p-value as the
authors (16). Both the r and p values for the MD data show a higher degree of correlation than the Plaxco data, although
the correlation is weak and not statistically significant at a conventional level of significance (i.e., pMD

MFP > 0.05). For the MD
folding processes only, i.e. neglecting unfolding (black plus symbols in Fig. S4A), we measure r = 0.87 and p = 0.002. We also
show the exponential fits for folding only (exponent 0.053), and for unfolding only (exponent 0.025). When we combine the
experimental and the MD simulation folding and unfolding data sets we find a high degree of correlation, characterized by
rall = 0.75 and pall < 0.0001. We keep in mind, however, that this latter results combines simulation and experimental results.
The small panel shows MD folding and unfolding times evaluated for transitions from minimum to minimum. We show the r
and p-values for the combined set of folded and unfolding, and also just for the folding times. We also include the exponential
fits for the combined folding and unfolding (exponent 0.053, thick dashed line), as well as for folding only (exponent 0.046) and
unfolding only (exponent 0.03).
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Fig. S4. A) Comparison of MD folding times with a set of experimental folding times measured for a set of single domain proteins. The red plus symbols and black circles
represent folding and unfolding times from MD simulation, as presented in Fig. 1H of the main manuscript. Blue squares are taken from Plaxco et. al. (16). The Pearson’s
correlation coefficient (r) and p-value are obtained by evaluating a test statistic t = (r − r0)/(

√
1− r2/(n− 2)), where r0 = 0 is the null hypothesis and n is the number

of data points in a given sample (see SI Section 8). The small panel shows folding and unfolding times for transitions from minimum to minimum. Exponential fits are shown
for combined folding and unfolding (thick dashed line), as well as for folding only and unfolding only. B) and C) show that friction and mobility (inverse diffusivity) are highly
correlated with chain length. The data is presented on a log-log scale since a power-law dependence is expected (15). The black lines indicate a linear fit to the log-log
transformed data, giving a power-law exponent of 2.8 in both B) and C). D) and E) show that there is no correlation between the free energy barrier heights and protein chain
length. The black lines indicate a linear fit to log-linear data, resulting in exponential scaling factors of -0.004 and -0.2 for D) and E), respectively.

In Figs. S4B-E, we examine the correlations between both friction and free energy barrier height with the length of protein
chains. As shown in Fig. 1E, we observe a high correlation between mobility (inverse diffusivity γ/kBT ) and chain length,
which we confirm with the r and p-values. Furthermore, we demonstrate that high correlation is also evident in the friction
coefficients γ. However, we note that the free energy barrier heights, expressed either as U0 or the Arrhenius factor eU0/kBT ,
do not display any correlation with chain length, and instead appear to decrease for larger N .
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7. Investigating discretisation effects with alanine-9 homo-peptide chain simulation

The data analyzed in this paper have low time resolution since the protein configurations were saved at time intervals of
∆t =0.2 ns, despite the original simulations being performed with time steps of dt =2.5 fs. Thus, five orders of magnitude of
time resolution are not accessible for our analysis. To test the reliability of our results with this low-resolution representation,
we compare it to a system with full-time-resolution data over long simulation times. We use a previously published trajectory
of the 9-residue homo-alanine peptide (Ala9) (12) and investigate the accuracy of the memory time τmem by systematically
discretizing a range of sub-sampled time steps ∆t. The Ala9 system is simulated using Gromacs with the Amber03 force field
and 4023 explicit SPC/E water molecules, where the simulation time step is dt = 1 fs, and the total simulation time is 10
µs. We use the standard HB4 reaction coordinate for α-helix forming chains, which is the average separation between the nth

residue nitrogen and nth+4 residue oxygen for n = 2, 3, and 4.

We evenly sub-sample low-resolution trajectories at intervals of ∆t = 0.01, 0.1, 1, 10, 100, and 200 ps to generate data.
Running integrals of the memory kernels are extracted for each discretization, as described in Section 3. Fig.S5A shows the
running integrals G(t) for the fully resolved data (∆t = 0.001 ps) and four other discretizations, while Fig.S5B displays the
corresponding Γ(t) functions. Due to the accurate extraction of the G(t) plateau-value, the extraction method produces reliable
total friction γ over the entire range of discretization, as evident from Fig. S5C. Here, we compare γ evaluated in two ways.
The first method fits an exponential series to Γ(t) extracted from the simulations (Section 4) and reverts this Γ(t) back to
a running integral to determine the long-time limit of the running integral as γ. The second method calculates the average
of the originally-extracted running integral (no exponential fit) over the plateau region for t > 2000 ps. The first method is
representative of how γ is evaluated in the main manuscript, while the second method is purely complementary and provides
an error estimate, which we here show as the standard deviation. Both methods are in agreement, implying that even under
low resolution, we can evaluate the total friction using kernel extraction techniques.
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Fig. S5. Ala9 discretisation and memory time extraction. A) Memory kernel running integrals G(t) extracted from HB4 reaction coordinate trajectories at different time-series
resolutions ∆t, with discretisations spanning five orders of magnitude. B) Corresponding memory kernels Γ(t). The inset is a magnification of the long-time tail. C) Total
friction on the HB4 reaction coordinate, evaluated via the memory kernel extraction, as a function of discretisation. The red points with error bars show the average of G(t) for
each discretisation, taken in the range 2 µs ≤ t ≤ 4 µs. The error bars show the standard deviations for G(t > 2000 ps). The black points show the plateau values for
G(t), taken as the running integral of Γ(t), with a fitted single exponential long-time tail. D) Memory times τmem, evaluated via the 1st-moment of the memory kernel, as a
function of rescaled discretisation step size, rescaled by the memory time evaluated for the fully resolved data τmem(∆t = 1fs) = 420 ps.
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In Fig. S5D, we plot the memory times (τmem) as a function of the discretization step size. The data is rescaled by the
memory time, evaluated for the fully resolved trajectory with ∆t = 1 fs. We also rescale the step size by the memory time of
the trajectory at full resolution, τmem(∆t = 1 fs), to estimate the relative error expected for a discretized system. For the 8
fast-folding proteins, the fully resolved system has a step size of 2.5 fs. We observe a 20% reduction in the accuracy of the
memory times for time-series discretization spanning four orders of magnitude. The accuracy drops more rapidly for lower
resolutions. Based on the range of memory times observed for the 8 proteins and a step size of 0.2 ns, we expect a range
of 1×10−5 < 0.2 ns/τmem(∆t = 2.5 fs) < 1×10−3. We can conclude that the memory times presented in this paper for the
low-time-resolution trajectories are inaccurate by at most 10%.
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8. Prediction errors for barrier crossing times

We measure the deviation of three model predictions from observed MD values across all proteins. Fig. S6 shows these three
model predictions compared to mean first-passage times from MD data. These plots are the same as Figs. 3A, B, and D in the
main manuscript, here presented on a linear-linear scale. Deviations between folding times and theoretical predictions are
greater for proteins with slower reaction times. For the fastest reactions, deviations cannot be visually resolved as they appear
as a single data point at τMD

MFP,i ≈ 0 and τ theo
MFP,i ≈ 0. This demonstrates that a comparison of linearly scaled MFPT data is

meaningless as it is dominated by the proteins with the longest folding times.

Fig. S6. Comparison of simulated protein folding and unfolding times τMD
MFP with predictions on different levels of theory, plotted on a linear scale (same data as is presented in

the main manuscript Fig. 3A, B, and D). Presented on the linear scale, we see that deviations between the extracted MD mean first passage times τMD
MFP,i and the various

theoretical predictions τ theo
MFP,i are greater for proteins that fold and unfold slowly. The RMSD (Eq. 12) is dominated by these slow-folding proteins.

A common method for assessing the difference between observed experiment values and a predicted model is to compute the
root-mean-square deviation (RMSD), as follows:

RMSD =

√√√√ 1
N

N∑
i=1

(
τMD

MFP,i − τ theo
MFP,i

)2 =

√√√√ 1
N

N∑
i=1

(
τMD

MFP,i − τ theo
MFP,i

τMD
MFP,i

)2

(τMD
MFP,i)2. [12]

We combine folding and unfolding times into one set with N = 16. Figure S7A shows the distributions of τMD
MFP,i − τ theo

MFP,i
for three theories. The Markovian model (τMar

MD ) has a few outlying data points that contribute significantly to the RMSD.
The last term in Eq. 12 shows that if we express the RMSD in terms of relative deviations, then each relative deviation is
multiplied by a factor of (τMD

MFP,i)2. We use a logarithmic scaling scheme to account for relative contributions of data that
spans multiple orders of magnitude. This gives us the root-mean-square logarithmic deviation (RMSLD), given by

RMSLD =

√√√√ 1
N

N∑
i=1

(
Log(τMD

MFP,i)− Log(τ theo
MFP,i)

)2 =

√√√√ 1
N

N∑
i=1

(
Log
(
τMD

MFP,i − τ theo
MFP,i

τMD
MFP,i

+ 1
))2

. [13]

The last form in Eq. 13 shows that by calculating the RMSLD, we are actually calculating the logarithmic transformation of
the relative deviations. The distributions of τMD

MFP,i − τ theo
MFP,i and log(τMD

MFP,i)− log(τ theo
MFP,i) for the three different theories, along

with the corresponding RMSD and RMSLD values, are shown in Fig. S7B.

We can quantify the correlations observed in Fig. 3 of the main manuscript and Fig. S6 using the Pearson’s correlation
coefficient rCC, and likewise the Pearson’s correlation coefficient for logarithmically transformed data rLogCC. The Pearson’s
correlation coefficient rCC is given by

rCC =

∑N

i=1

(
τMD

MFP,i −
〈
τMD

MFP,i
〉)(

τ theo
MFP,i −

〈
τ theo

MFP,i
〉)√∑N

i=1

(
τMD

MFP,i −
〈
τMD

MFP,i

〉)2√∑N

i=1

(
τ theo

MFP,i −
〈
τ theo

MFP,i

〉)2 . [14]

This is a measure of the normalized bivariate correlation between the set of τMD
MFP,i and τ theo

MFP,i values. For the logarithmically
transformed data we calculate

rLogCC =

∑N

i=1

(
Log(τMD

MFP,i)−
〈
Log(τMD

MFP,i)
〉)(

Log(τ theo
MFP,i)−

〈
Log(τ theo

MFP,i)
〉)√∑N

i=1

(
Log(τMD

MFP,i)−
〈
Log(τMD

MFP,i)
〉)2√∑N

i=1

(
Log(τ theo

MFP,i)−
〈
Log(τ theo

MFP,i)
〉)2 . [15]
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Table S5. Comparison of various measures of prediction error for the four barrier-crossing-time models. Root-mean-squared deviations
(RMSD) and root-mean-squared logarithmic deviations (RMSLD) are given by Eqs. 12 and 13, respectively. The Pearson’s correlation co-
efficient (rCC ) and correlation coefficient for logarithmically transformed data (rLogCC) are given by Eqs. 14 and 15, respectively. For the
correlation coefficients, the values in parenthesis are the test-statistic values (t = r/(

√
1− r2/(n − 2))), which assumes a null-hypothesis

of zero correlation, followed by the corresponding p-values. n = 16 is the number of degrees of freedom.

Diffusion times (τD) Markovian (τMar
MFP) Non-Markovian (τ noMar

MFP ) Free energy factor (τ ′DξU)
RMSD [µs] 9.95 27.0 5.13 11.2

RMSLD 1.5 1.4 0.8 1.98
rCC 0.37 (t=1.5, p=0.15) 0.81 (t=5.2, p<0.001) 0.87 (t=6.7, p<0.001) 0.19 (t=0.75, p=0.46)
rLogCC 0.83 (t=5.2, p<0.001) 0.92 (t=8.4, p<0.001) 0.94 (t=9.4, p=<0.001) 0.48 (t=1.93, p=0.07)

The evaluated correlation coefficients rCC and rLogCC, as well as the RMSD and RMSLD values, for the four different prediction
models are summarized in Table S5.

In Table S5, we also present the test statistics (t-values) and corresponding two-tailed p-values for the null hypothesis
r0 = 0, stating that the data is uncorrelated. The test statistic is the deviation of rCC (or rLogCC) from the null hypothesis, per
standard error t = r/(

√
1− r2/(n− 2)), where n = 16 is the number of degrees of freedom. p-values of p<0.001 are considered

extremely statistically significant. The Markovian model τMar
MFP is an interesting case where RMSD and RMSLD suggest it

is either a less accurate prediction than the diffusion time τD, or at best, a slight improvement. The Pearson’s correlation
coefficients, rCC and rLogCC, suggest that τMar

MFP provides a significant improvement for prediction over τD and is almost as
accurate as τnoMar

MFP . The correlation coefficient reveals linear correlation regardless of the slope of the linear relation. The
RMSD and RMSLD, however, penalize data that is linearly correlated but has a slope different from 1, as is the case when
memory acceleration effects are present. The Markovian model typically predicts values slower than the MD data, despite
being strongly linearly correlated. This relationship is not penalized by r, but is by the RMSD and RMSLD.
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9. Evaluating Markovian mean first-passage times: position-independent friction

For a purely Markovian system with constant friction, the mean first-passage time between reaction coordinate positions Qs
and Qe is given by:

τMar
MFP(Qs, Qe) = βγ

∫ Qe

Qs

eβU(x)
[∫ x

−∞
e−βU(y)dy

]
dx [16]

where the subscript s indicates a start position and e indicates an end position.
In practice, the inner integral of Eq.16 will have a lower limit at the appropriate edge of the confining potential Q0. The

discrete form of the inner integral, using a rectangular discretization, will therefore be:∫ x

−∞
e−βU(y)dy →

j∑
i=0

e−βU(Qi)∆y. [17]

The composite integral becomes∫ Qe

Qs

eβU(x)
[∫ x

−∞
e−βU(y)dy

]
dx→

b∑
j=a

eβU(Qj)
[ j∑
i=0

e−βU(Qi)∆Q
]

∆Q. [18]

∆Q is the discretisation step size, set by the free-energy histogram. a and b are the indices for the bins located at the beginning
and the end of the transition, which might be, for example, the unfolded state minimum and the barrier top, respectively, for a
folding transition. The discrete form of the mean first-passage time is then:

τMar
MFP(Qs, Qe) = βγ∆Q2

b∑
j=a

j∑
i=0

eβU(Qj)e−βU(Qi). [19]

For the case of position-dependent friction, outlined in Eq. 49, γ(Q) resides inside the outer integral, such that the composite
integral becomes:

τMar
MFP(Qs, Qe) =

∫ Qe

Qs

γ(x)eβU(x)
[∫ x

−∞
e−βU(y)dy

]
dx→

b∑
j=a

γjeβU(Qj)
[ j∑
i=0

e−βU(Qi)∆Q
]

∆Q [20]

The discrete form is then written:

τMar
MFP(Qs, Qe) = β∆Q2

b∑
j=a

j∑
i=0

γjeβU(Qj)e−βU(Qi). [21]
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10. Non-Markovian reaction-rate theory and Grote-Hynes theory

In Fig. 4A of the main manuscript, we use the non-Markovian factor ξnoMar to predict barrier crossing times, which agree
well with the values obtained from MD simulations. For each protein, we evaluate ξnoMar in both the folding and unfolding
directions using parameters extracted from simulations, including mass m, free-energy barrier height U0, characteristic length
L, and the set of amplitudes γi and memory times τi comprising the extracted memory kernels Γ(t) =

∑M

i=1(γi/τi) exp (t/τi).
We use a previously published heuristic formula (17–19) to predict the barrier crossing time for a given protein, such that

τH
MFP(τD, U0, {γi}, {τi}, τm) =

M∑
i=1

τ iOD +

[
M∑
i=1

1
τ iED

]−1

, [22]

where τm = m/γ, such that γ =
∑M

i=1 γi, and τD = γL2/kBT . For of the M components included in the memory kernel Γ(t)
there will be M over-damped contributions (τ iOD) to the barrier crossing times and M energy-diffusion contributions (τ iED).
The over-damped contributions are given by

τ iOD = τD
γi
γ

eβU0

βU0

[
π

2
√

2
1

1 + 10βU0τi/τD
+
√
βU0

τm
τD

]
, [23]

and the energy diffusion contributions are given by

τ iED = τD
γ

γi

eβU0

βU0

[
τm
τD

+ 4βU0

(
τi
τD

)2

+
√
βU0

τm
τD

]
, [24]

as is also presented in the Methods section of the main manuscript. In the Markovian limit, i.e. τi → 0 for all memory time
scales, Eq. 22 reduces to

τH
Mark = τH

MFP(τD, U0, {γi}, 0, τm) = τD
eβU0

βU0

[
π

2
√

2
+ 2
√
βU0

τm

τD
+ τm

τD

]
. [25]

Furthermore, we see that in the high-friction (HF) limit, i.e. when τm → 0, we obtain

τH
HF = τH

MFP(τD, U0, {γi}, 0, 0) = τDπeβU0/2βU0
√

2. [26]

Thus we see that the non-Markovian correction factor is given by the full non-Markovian prediction for barrier crossing times
in the presence of multi-modal memory rescaled by the high-friction, memoryless limit

ξnoMar = τH
MFP(τD, U0, {γi}, {τi}, τm)
τH
MFP(τD, U0, {γi}, 0, 0) = τH

MFP
τH

HF
, [27]

which is Eq. 4 in the main manuscript.

Fig. 4B of the main manuscript introduces the memory-time-scaled heuristic curves that show the limits of vanishing memory
time (τi → 0, ∀ i) and long memory times (τi →∞, ∀ i). To achieve these limits, we uniformly rescale all memory times while
keeping all other parameters, including the memory kernel amplitudes γi, fixed at the value corresponding to the MD data. α
is the rescaling parameter, such that the rescaled memory kernel and the corresponding rescaled first-moment memory time are
given by

Γα(t) =
M∑
i=1

γi
ατi

exp (t/ατi), ατmem =
∫ ∞

0
tΓα(t)dt

/∫ ∞
0

Γα(t)dt, [28]

where τmem denotes the memory time of the original unscaled (α=1) system. The ξnoMar(α) curves given in Fig. 4B of the
main manuscript are generated by evaluating τH,α

MFP = τH
MFP(τD, U0, {γi}, {ατi}, τm) across a range of 0 < α <∞, such that the

over-damped and energy diffusion components are given by

τα,iOD = τD
γi
γ

eβU0

βU0

[
π

2
√

2
1

1 + 10βU0ατi/τD
+
√
βU0

τm
τD

]
, τα,iED = τD

γ

γi

eβU0

βU0

[
τm
τD

+ 4βU0

(
α
τi
τD

)2

+
√
βU0

τm
τD

]
. [29]

In doing so, it can be seen that neither the Markovian (τi=0) nor the high-friction (τD →∞) limit is affected by the α scaling.
Thus,

ξnoMar(α) = τH,α
MFP
τH

HF
. [30]

It is also clear that when α = 1, we recover the predictions for the original MD simulations. In Fig. S8, we show the results for
the α-scaled curves for all eight proteins. The vertical lines indicate the location corresponding to α = 1, which is different for
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the folding and unfolding processes since each process has a unique τD, which rescales the memory-time axis.

Grote-Hynes theory: The Grote-Hynes (GH) theory predictions presented in Fig. 4B of the main manuscript, as well as here
in Fig. S8, are generated similarly. The GH theory corrects the classical transition state theory (TST) for the barrier-crossing
rate by including frequency-dependent friction effects and particle mass. The TST barrier crossing time is given by

τTST = 2π
ωmin

eβU0 [31]

where ωmin =
√
U ′′min/m is the frequency at the free-energy minimum (well bottom). The GH prediction is therefore written as

τGH = ωmax

λ
τTST = 2πωmax

λωmin
eβU0 , [32]

where ωmax =
√
|U ′′max|/m is the frequency at the free-energy maximum (barrier top). U ′′min and U ′′max are the free energy

curvatures at the minimum and maximum and m is the mass of the particle. λ is the barrier reactive frequency, which is
determined by solving the Grote-Hynes equation

λ2 + λ
Γ̃(λ)
m

= ω2
max. [33]

Γ̃(λ) is the Laplace transform of the friction memory kernel, given by

Γ̃(λ) =
∞∫

0

Γ(t′)e−λt
′
dt′, [34]

which can be determined either analytically for simple memory kernels Γ(t), or numerically for a more complicated Γ(t).
Having obtained Γ̃(λ), one then solves Eq. 33, which will have one real and positive root. This root is assigned as the reactive
frequency λ, which enters into Eq. 32. In the Markovian limit, i.e. Γ(t) = γδ(t), and hence Γ̃(λ) = γ. τGH reduces to the
Kramers barrier crossing time τGH

Kr for medium-to-high friction, which is given by

τGH
Kr =

[√
γ2

4m2 + ω2
max −

γ

2m

]−1

ωmaxτTST. [35]

In the high-friction (HF) limit, we can further reduce the prediction Eq. 35 to

τGH
HF = γ

m
τTST, [36]

which is achieved by expanding the term under the square-root in Eq. 35 as a Taylor series expansion for small m2ω2
max/γ

2.
For the uniform α rescaling, we replace the Laplace transform in Eq. 34 with a Laplace transform of the rescaled memory
kernel (Eq. 28)

Γ̃α(λ) =
∞∫

0

Γα(t′)e−λt
′
dt′, [37]

and hence evaluate λ2 + λΓ̃α(λ)/m = ω2
max over the range of α. We indicate the α-scaled Grote-Hynes curves, as shown in

Figs. 4B of the main manuscript and S8, as τGH,α/τGH
HF . We give additional parameters required to evaluate the GH curves in

Table S6.

In Fig. S8, we present the heuristic and GH curves for the folding and unfolding of all eight proteins, along with the MD
folding and unfolding times τMD

MFP/τ
Mar
MFP from Fig.4A of the main manuscript. The MD results correspond to α = 1, which we

indicate with vertical lines. The theoretical predictions corresponding to α = 1 coincide the vertical dashed lines. All values for
α = 1 are shown in Fig. S9. We see that there is an agreement between the non-Markovian predictions (Eq. 22) and the GH
theory for small memory times. However, for intermediate and large memory times, the predictions deviate such that the GH
theory predicts barrier-crossing times that are orders of magnitude faster than the non-Markovian predictions. From Fig. 4A of
the main manuscript, we know that the non-Markovian predictions agree well with the extracted MD results, in particular
recapitulating the memory-induced slow-down regime, which is not well represented by the GH theory.

Grote-Hynes analysis of simple model system: We compare the Grote-Hynes theory to the heuristic formula for a simple
model system and find interesting behaviour in the long memory-time limit as we approach the limit of vanishing mass. In
Fig. S10, we show barrier crossing time predictions given by the two theories for a simple model consisting of a massive particle
in 1D moving in a double-well potential with a single component exponential memory kernel. The double-well potential is
given by U(Q) = [(Q/L)2 − 1]2, such that U ′′min = 8U0/L

2 and U ′′max = −4U0/L
2. For a single component memory kernel
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Table S6. Free energy curvatures and barrier frequencies. Barrier curvatures (U ′′ - absolute values shown) are given in units of kJmol−1 =
1×106unm2ns−2 and frequencies ω are in units of ns.

U ′′u,min |U ′′u,max| U ′′f,max U ′′f,min ωu,min ωu,max ωf,max ωf,min

Chignolin 66.3 60.2 10496 43210 0.62 0.59 7.84 15.91
Trp-Cage 211.2 939.8 3460.8 35873 0.81 1.72 3.31 10.68

Villin 553.2 3076.4 6593.5 12401 0.94 2.22 3.25 4.46
WW Domain 148.6 587.6 2247.5 17846 0.43 0.86 1.69 4.78

NTL9 249.1 492.6 338.7 87043 0.36 0.51 0.42 6.77
Protein-G 310.4 597.8 13502 66200 0.36 0.50 2.41 5.35
α3D 410.1 625.9 1984.9 8719.8 0.34 0.42 0.76 1.59

λ-Repressor 264.2 481.4 7351.7 14732 0.26 0.35 1.40 1.99

Γ(t) = γe−t/τmem/τmem, the Laplace transform (Eq. 34) required to solve Eq. 33 is simply given by Γ̃(λ) = γ/(1 + τmemλ). Note
that since we have an analytical expression for Γ̃(λ) in this simple system, we compare to results obtained using a numerical eval-
uation of Γ̃(λ), which is the method that we use for the study of the protein systems discussed above. Using the analytical result
for Γ̃(λ), the Grote-Hynes equation (Eq. 33) is then given by a cubic polynomial: τmemλ

3 +λ2 +(γ/m−ω2
maxτmem)λ−ω2

max = 0,
which will always have one real and positive root.

The parameters used for Fig.S10A are chosen to match Kappler et. al. (17), as shown in the figure caption, with τm/τD = 0.01.
GH agrees with the non-Markovian formula (Eq. 22) for small τmem/τD but deviates for τmem/τD > 0.1. Both theories produce
the memory-induced speed-up in the region of 1×10−2 < τmem/τD < 1×100. Small deviations occur between the two theories
in the memoryless limit (τmem/τD → 0) due to finite-mass effects from the choice of τm/τD. In Fig.S10B, both theories reach
their high-friction limit for small memory times as τm/τD → 0. Interestingly, for the GH theory, as τm/τD decreases, the long
memory-time limit also decreases. This behavior is relevant for protein folding, as observed in Figs. S8 and S9, where the GH
curves with α = 1 are located in the GH curve region where the long memory-time behavior converges to a constant value, as
seen in Trp-Cage, Villin, WW-domain, and Protein G. Therefore, it is interesting to consider the long memory-time behavior
for both predictions, especially for small mass.

Limit analysis: In the small-mass (SM) limit, λ(λ+ Γ̃(λ)/m) ≈ λΓ̃(λ)/m (from Eq. 33), so we write λΓ̃(λ) = mω2
max. For a

non-Markovian system with single component memory kernels, we include the analytic form of Γ̃(λ) from the previous section,
which leads to a reactive frequency λ = mω2

max/[γ(1− τmemmω
2
max/γ)]. The prediction for the Grote-Hynes theory is then

τGH
SM = 2πγ

mωminωmax

(
1− τmemmω

2
max

γ

)
eβU0 = 2πγ√

|U ′′minU
′′
max|

(
1− U ′′maxτmem

γ

)
eβU0 . [38]

Here, we see that the memory-induced speed-up regime is recovered, but for larger τmem the massless limit is ill-defined and
τGH
SM becomes negative.

When the memory time is large, Γ̃(λ) ≈ γ
τmemλ

and hence λ2 + γ
mτmem

= ω2
max. Taking the positive root, i.e. that

λ =
[
ω2

max − γ
mτmem

]1/2, the prediction for the Grote-Hynes theory is

τGH = 2π√
ω2

max − γ
mτmem

ωmax

ωmin
eβU0 . [39]

For the long memory (LM) time limit (τmem →∞), we recover the result for the transition state theory

τGH
LM = 2π

ωmin
eβU0 = 2π

√
m√

U ′′min

eβU0 . [40]

This final result is interesting for two reasons. Firstly, it is independent of τmem. This can be seen in Fig. S10B, where for
each τm/τD, the GH curve reaches a constant value for τmem → ∞. Secondly, this result tells us that as m → 0, τGH goes
to zero for large memory times. This can also be seen in Fig. S10B since as τm/τD → 0, the limiting value of τGH approaches zero.

The non-Markovian prediction has different limiting behaviour for large memory times, irrespective of mass. For a single
component memory kernel in the limit of τm/τD → 0, it is given by

τH
MPT = τD

eβU0

βU0

[
π

2
√

2
1

1 + 10βU0τmem/τD
+ 4βU0

(
τmem

τD

)2
]
. [41]
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It should be noted that the quadratic asymptotic limit for memory times has been derived analytically and confirmed numerically
(17–19). Assuming that 10βU0τmem/τD � 1, we minimize Eq. 41 such that

∂

∂τmem

[
π

2
√

2
1

10βU0τmem/τD
+ 4βU0

(
τmem

τD

)2
]

= 0, [42]

which leads to a minimum in τH
MPT at τ∗mem, which is given by

τ∗mem =

[
πτ3

D

160
√

2(βU0)2

] 1
3

. [43]

The minimum in the non-Markovian formula is then

τH∗
MPT = 3τD

eβU0

(βU0) 4
3

(
π

20
√

2

) 2
3

. [44]

For τmem > τ∗mem, we enter the memory-induced slow-down regime that is not accounted for by the GH theory. The minima for
each τm/τD can be seen in Fig. S10B, as well as for all proteins in Fig. S8. From Eq. 41, we can see that, for negligible mass
contribution, the second term with quadratic scaling dominates as τmem/τD →∞, which is again shown in Fig. S10B. This
divergence of behaviours between the Grote-Hynes theory and the non-Markovian prediction for long memory times and small
masses is relevant for protein folding kinetics, as seen in Fig. 4 of the main manuscript.
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Fig. S8. The non-Markovian correction factor ξnoMar (solid lines) and the Grote-Hynes theory prediction (dashed lines) for the folding (red) and unfolding (black) reactions of
eight proteins are compared. Memory times are uniformly scaled by a factor of α to explore the small and long memory-time limits. As τmem/τD → 0, all curves, except for
Chignolin unfolding, reach their high-friction limit, indicating that finite mass effects are irrelevant for proteins. In the long memory time limit, ξnoMar ∼ (τmem/τD)2 (dotted
lines show quadratic scaling), and the GH curves reach a constant value, demonstrating disagreement between the two theories in the long memory-time limit. Triangles
represent the barrier crossing times for MD simulations, coinciding with α = 1, indicated with vertical lines. The theoretical predictions for α = 1 for the two theories are given
by the curve-intercepts with the vertical lines. The corresponding α = 1 vertical lines for folding (f) and unfolding (u) differ because τD is different for the folding and unfolding
processes.
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Fig. S9. Comparison of the Grote-Hynes theory to the non-Markovian correction factor ξnoMar for protein folding and unfolding. Results for ξnoMar are already presented in
Fig. 4A of the main manuscript where they are compared to the barrier crossing times extracted from the MD simulations τMD

MFP/τ
Mar
MFP.

A B

Fig. S10. Comparing the Grote-Hynes theory to the non-Markovian formula (Eq. 4 in the main manuscript, Eq. 22 in this SI) for a simple model system. Theoretical curves for a
GLE with a single component exponential memory kernel Γ(t) = γe−t/τ/τ in a double-well potential U(Q) = [(Q/L)2 − 1]2. A) For comparison, parameters are taken
from Kappler et. al. (17). L = 1, τm/τD = 0.01, U0/kBT = 3. U ′′min = 8U0 and U ′′max = −4U0. The black curve is given by solving the cubic equation following from
Eq. 33 analytically. The thick, grey curve is given by solving Eq. 33 numerically, which is suitable for more complicated memory kernels. B) The long memory limit for the GH
theory decreases for vanishing mass (τm/τD → 0), which is relevant for protein folding since finite mass effects are negligible.
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11. Comparison of various reaction coordinates

In the main text, we only consider the fraction of native contacts reaction coordinate Q. Alternative standard reaction
coordinates for the analysis of MD protein simulation trajectories include:

1. the end-to-end distance (Re2e): the magnitude of the Cartesian vector separating the first and last α-carbon atoms in a
chain. For a chain constructed of N , the end-to-end distance is given by:

Re2e(t) = |rN (t)− r1(t)|. [45]

2. the radius of gyration (Rrgy): for a peptide chain with centre of mass rcom(t) and set of particle masses mi, the radius of
gyration is given by:

Rrgy(t) =

√∑N

i=1 mi|ri(t)− rcom(t)|2∑N

i=1 mi

, [46]

where the summation is over all N α-carbon atoms.

3. the root-mean-squared deviation (Rd
rms): r0

i is the position of the ith α-carbon in the native state (the native state is
defined in the Materials and Methods). The root-mean-squared deviation for the configuration of a protein at time t,
deviating from the native state, is given by:

Rd
rms(t) =

√√√√ 1
N

N∑
i=1

(
r̃i(t)− r0

i

)2
, [47]

where r̃i(t) is the position vector of the ith α-carbon at time t, for a configuration that has been uniformly translated and
rotated to minimize the RMS deviation from the native state.

4. the root-mean-squared pair-separation (Rps
rms): s0

ij is the pair-separation vector connecting the ith and jth residues in the
native state, where i and j are indices from the native contacts list. sij(t) = rj(t)− ri(t) is the pair-separation vector

10-3 10-2 10-1 100 101

t [µs]

0

0.2

0.4

0.6

0.8

1

1.2
end-to-end distance
radius of gyration
RMS deviation
RMS pair-separation
fraction native contacts

10-3 10-2 10-1 100 101

t [µs]

0

0.2

0.4

0.6

0.8

1

1.2
end-to-end distance
radius of gyration
RMS deviation
RMS pair-separation
fraction native contacts

Trp-Cage α3D

A B

Fig. S11. Comparison of memory kernels for five different reaction coordinates. A) Memory kernels for Trp-Cage protein. B) Memory kernels for α3D protein. Memory times,
evaluate as the first moments of the memory kernels, are given in Table S7.
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connecting the ith and jth residues at time t. Sij(t, t′) = sij(t) − s0
ij , then, is the time evolution of pair-separations,

compared to native separations. The root-mean-squared pair-separation is given by:

Rps
rms(t) =

√
1
Nnc

∑
i<j

(
sij(t)− s0

ij

)2
, [48]

where Nnc is the number of native contacts and sij = |sij | is the magnitude of the corresponding pair-separation vector.
Note that here, the summation indices i and j run just over those pairs that form the native contacts list, of which there
will be a total of Nnc.

The normalized memory kernels for these four reaction coordinates, plus the fraction of native contacts reaction coordinate Q
(described in the Materials and Methods), as shown in Fig. S11, reveal large variation, depending on the choice of the reaction
coordinate, and on the protein. For the Trp-Cage protein, the fraction of native contacts reaction coordinate has the shortest
memory time-scale, a factor of 3 less than the end-to-end distance, which has the longest. For the α3D protein, however, the
radius of gyration memory kernel decays the fastest, two orders of magnitude faster than the end-to-end distance. The memory
times for each reaction coordinate, evaluated as the first moments for each memory kernel, are given in Table S7.

Table S7. Memory times τmem for five different reaction coordinates, all given in units of µs. Re2e, Rrgy, Rd
rms, and Rps

rms are given by
Eqs. 45-48. Q is given by Eq. M1 in the methods section of the main text.

Re2e Rrgy Rd
rms Rps

rms Q

Trp-Cage 1.44 1.65 0.9 0.65 0.48
α3D 11.8 0.18 5.7 7.6 2.9
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Heavy-atom Q reaction coordinates: We compare two variations of the fraction of native contacts reaction coordinate Q.
In (20), Q was calculated using all heavy atoms in each residue, instead of just the Cα atoms, as we do in the main text. To
test if this affects the measured memory times and folding kinetics, we recalculate the memory times τmem and the folding
and unfolding mean first-passage times τMD

MFP for each protein. Additionally, we consider Q constructed using the minimum
heavy atom distance between two residues to avoid ambiguity in defining contacts when using only Cα atom distances. The
functional form for the reaction coordinates is the same as described in the methods section of the main manuscript (Eq. M1),
with the only difference being the choice of atoms that comprise the list of native contacts.

In Fig.S12A, we compare memory times for Q constructed using all heavy atoms in each residue (Q-Heavy) to those
determined using only the Cα atoms (Q-Cα) as presented in the main manuscript. We observe that the memory times are
effectively equivalent for both constructions of Q. Similarly, for Q determined using the minimum heavy atom distances
(Q-Heavy (minimum)), we find little variation in memory times (Fig.S12B), with a slight increase in overall memory times for
Q-Heavy (minimum). In Figs. S12C and D, we compare memory times for Q-Heavy and Q-Heavy (minimum) to the folding
and unfolding times measured in each reaction coordinate τMD

MFP. We find that the overall behavior is similar to that presented
in the main manuscript for Q-Cα, with folding times typically shorter than, but comparable to, the corresponding reaction
times for each protein.

A

Q - Heavy Q - Heavy (minimum)

B

C D

Fig. S12. Comparing the fraction of native contacts reaction coordinate Q constructed using only Cα atoms (Q - Cα) to Q constructed using all heavy atoms (Q - Heavy), or
the minimal heavy-atom separation (Q - Heavy (minimum)). A) Memory times τmem for trajectories generated by Q - Cα compared to memory times for trajectories generated
by Q - Heavy. Individual proteins are indicated by the symbols given in the figure legend. B) Memory times for Q - Cα compared to memory times evaluated for Q - Heavy
(minimum), which is a Q reaction coordinate constructed using only the minimal heavy atom distance between the native contact residues. C) and D) the memory times for the
Q - Heavy and Q - Heavy (minimum) reaction coordinates, compared against the folding and unfolding mean first-passage times τMD

MFP recalculated for the protein trajectories
corresponding to these reaction coordinates.
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12. Evaluating Markovian mean first-passage times: position-dependent friction

In Eq. 3 of the main manuscript, we show an equation to predict barrier crossing times using memoryless constant friction.
One can add position-dependent friction, such that (21)

τMar
MFP

(
Qs, Qe

)
= β

∫ Qe

Qs

γ(x)eβU(x)
[∫ x

Qmin

e−βU(y)dy

]
dx, [49]

where the superscript Mar indicates that this is a purely Markovian prediction. The quantity τMar
MFP(Qs, Qe) can be extracted

from the Q(t) trajectories for each protein, where Qs, and Qe are appropriately chosen for both folding and unfolding processes.
Eq. 49 is suitable when Qs < Qe, which is the case for folding in Q. When Qe > Qs, i.e. unfolding, we write

τMar
MFP

(
Qs, Qe

)
= β

∫ Qs

Qe

γ(x)eβU(x)
[∫ Qmax

x

e−βU(y)dy

]
dx. [50]

Here, Qmin and Qmax are the left and right bounds of the free-energy profile U(Q), respectively.

Having extracted τMar
MFP(Qs, Qe), we can evaluate γ(Qe) in both the folding and unfolding directions. For Qs < Qe, we take

the derivative of Eq. 49 with respect to Qe:

∂τMar
MFP

(
Qs, Qe

)
∂Qe

= βγ(Qe)eβU(Qe)
[∫ Qe

Qmin

e−βU(y)dy

]
, [51]

which we then solve for γ(Qe):

γ(Qe) = 1
βZf

∂τMar
MFP(Qs, Qe)
∂Qe

e−βU(Qe) [52]

where Zf is given by:

Zf =
∫ Qe

Qmin

e−βU(y)dy. [53]

For Qs > Qe, we take the derivative of Eq. 50 also with respect to Qe:

∂τMar
MFP

(
Qs, Qe

)
∂Qe

= −βγ(Qe)eβU(Qe)
[∫ Qmax

Qe

e−βU(y)dy

]
, [54]

which we then solve for γ(Qe):

γ(Qe) = − 1
βZu

∂τMar
MFP(Qs, Qe)
∂Qe

e−βU(Qe) [55]

where Zu is given by:

Zu =
∫ Qmax

Qe

e−βU(y)dy. [56]

In Figs. S13A and 1B, we present the friction profiles γ(Qe) for two example proteins evaluated in both the folding and
unfolding directions. The profiles are evaluated between the folded and unfolded state minima, as indicated by the free-energy
profile overlaid on the figures. The Markovian model Eq. 49 predicts that the friction experienced by each protein during
folding is different from that experienced during unfolding, as previously demonstrated for the 9-residue alanine homo-peptide
(12). Thus, there is no consistent way to describe the folding and unfolding dynamics simultaneously using a Markovian model.
We verify this by reconstructing the barrier-crossing-time profiles for folding and unfolding while permuting the friction. The
corresponding extracted friction profiles reproduce the folding and unfolding time profiles (Figs. S13C and 1D), serving as a
consistency check. However, we cannot predict folding times across Q using the unfolding friction, validating that there is no
unique friction profile that belongs to the reaction coordinate. Therefore, there is no consistent way to predict folding kinetics
with a position-dependent Markovian friction model.
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Fig. S13. Friction that varies with position is direction-dependent. A) and B) display the dependence of memoryless friction on the reaction coordinate position, calculated for
the folding (red) or unfolding (blue) direction, for the NTL9 and α3D proteins, respectively. The start-point of a transition, Qs, is fixed, while Qe, the end-point, serves as
the independent variable. The light gray free-energy profile shows the minima and barriers of interest. The dashed lines represent the value of total friction for each protein,
evaluated by the memory kernel extractions (Table S4). C) and D) illustrate various calculations of barrier crossing time profiles for the NTL9 and α3D proteins, respectively.
The bold black lines exhibit τMFP(Q), derived from the MD trajectories. The open circles show a validation calculation of the crossing times with the corresponding γ(Q)
profiles from A) and B). The filled circles present an attempted construction of τMFP(Q), using the anti-corresponding γ(Q).
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13. Additional confirmation of the linear friction non-Markovian model for the Q reaction coordinate

We simulate the GLE described by Eq. 1 using the Markov embedding methods described in (12) for a given memory kernel
Γ(t) and free-energy profile U(Q). In Fig. S14, we show that the GLE reproduces the dynamics of the fraction of native
contacts reaction coordinate Q(t) for two example proteins (α3D and the λ-repressor), as confirmed by the agreement of
the mean square displacements (MSD) evaluated from the GLE simulation (red lines) with those extracted from the MD
data (open circles). Notably, the GLE simulation, which we parametrize with the numerically extracted memory kernels,
reproduces the same sub-diffusive scaling observed in the MD-extracted MSDs. Pure-Markovian Langevin simulations using
position-independent friction (with values of γ from Table S4 - blue lines) over the same potential of mean force U(Q) do not
reproduce the sub-diffusive scaling, which indicates that the memory effects, rather than the free energy profile, cause the
observed sub-diffusive behavior in the MD MSD profiles. Both the GLE and Markovian simulations reproduce the plateau
caused by the confinement due to the free-energy profile.

We used a fourth-order Runge-Kutta integrator and a time step of 100τm for both Langevin and GLE simulations. The
value of τm was 1.5 ps for α3D and 4.9 ps for λ-repressor. We averaged the MSD over 1000 independent trajectories, each
containing 108 steps. The MSD of the GLE simulation exhibits oscillations at short times due to the absence of short time
scale components in our extracted memory kernels. We could not extract these components due to discretization effects in the
original MD data (see Section 7).
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Fig. S14. Mean square displacements (MSD) for the fraction of native contacts trajectories extracted from the MD data of the α3D and λ-repressor proteins (grey circles)
agree well with the Markovian embedding GLE simulation using the fitted memory kernel (red lines). The simulation of the Markovian Langevin equation (LE) using the
position-independent friction (blue line) does not reproduce the correct dynamics, but only the long-time behaviour.
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Nonlinear friction effects: We use the GLE in Eq.1 of the main manuscript and Eq.1, derived by following the projection
formalism of Ayaz et al. (11), which neglects non-linear friction effects. The two-projector formalism suggested by Vroylandt
et. al. (22) can rigorously derive a GLE with friction linear in the velocity, as in Eq.1. In this formulation, all non-linear
friction or position-dependent memory effects are absorbed in the random force, with the consequence that the fluctuation-
dissipation theorem (FDT), i.e., 〈FR(t)FR(t′)〉 = kBTΓ(t− t′), is violated. A modified version of the linear-friction GLE with
a decomposition of the friction memory kernel, i.e., Γ(t) = ΓR(t) + Γ∆(t), is useful, where ΓR(t) is the autocorrelator of the
random force, i.e., 〈FR(t)FR(t′)〉 = kBTΓR(t− t′). The FDT for the GLE in Eq.1 is valid if Γ∆(t) = 0. Otherwise, a violation
of the FDT indicates position-dependent memory effects. We check the FDT for the Q(t) reaction coordinate of the α3D
protein in Fig.S15. In Fig.S15A, we show the probability distribution of the random force FR(t), obtained by inverting the
GLE in Eq. 1

FR(t) = mQ̈(t) +
∫ t

0
Γ(t− t′)Q̇(t′)dt′ +∇U [Q(t)] , [57]

where we use the extracted free energy profile U(Q) and memory kernel Γ(t) from the data shown in Fig. 1 in the main
text, and we discretized Eq. 57 to obtain the trajectory of the random force. Comparing the trajectory distribution with a
Gaussian with zero mean and standard deviation σ =

√
kBTΓ(0), we see very weak non-Gaussian behaviour, with a probability

below 1% of the maximum value. Fig. S15B shows the comparison between the extracted memory kernel Γ(t) (solid black
line) and the autocorrelation of the random force trajectory ΓR(t) (dashed red line, divided by kBT ), where we observe
a very good agreement between both functions. The solid green line denotes the difference Γ∆(t), where in the inset, we
see that values relative to the memory kernel always lie below 1%, a clear sign that the FDT between the random force
and the memory kernel Γ(t) is fulfilled and the GLE with linear friction in Eq. 1 is an accurate model for theQ reaction coordinate.
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Fig. S15. Check for non-linear friction effects in the Q(t) reaction coordinate of the α3D protein. A) Probability distribution of the random force trajectory computed by the
discretized version of Eq. 57 compared with a Gaussian with zero mean and standard deviation σ =

√
kBTΓ0. B) Comparison between the extracted memory kernel Γ(t)

and the autocorrelation of the random force trajectory (ΓR(t)). The solid green line denotes the difference Γ∆(t) = Γ(t)− ΓR(t) (22).
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