

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202301110

PDGF-BB-Dependent Neurogenesis Buffers Depressive-Like Behaviors by Inhibition of GABAergic Projection from Medial Septum to Dentate Gyrus

Hou-Hong Li, Yang Liu, Hong-Sheng Chen, Ji Wang, Yu-Ke Li, Yang Zhao, Rui Sun, Jin-Gang He, Fang Wang* and Jian-Guo Chen*

Supporting information

PDGF-BB-Dependent Neurogenesis Buffers Depressive-Like Behaviors by Inhibition of GABAergic Projection from Medial Septum to Dentate Gyrus

Hou-Hong Li¹, Yang Liu¹, Hong-Sheng Chen^{1,2}, Ji Wang¹, Yu-Ke Li¹, Yang Zhao¹, Rui Sun¹, Jin-Gang He^{1,2,3,4}, Fang Wang^{1,2,3,4,*}, Jian-Guo Chen^{1,2,3,4,*}

Supplementary Figures

Suppl. Fig. 1 Monosynaptic connection of MS neurons to DG neurons. (A) Schematic of virus injections strategy. (B) Images showing GFP expression in the MS (left, green) and GFP-labeled MS axons in the DG (right, green). Top: Scale bar = 1000 μ m (left), 100 μ m (right). Below: Scale bar = 20 μ m. (C) Schematic of CTB injections strategy. (D) Images showing CTB expression in the DG (left, red) and retrograde labeled neurons in the MS (right, red). Left: Scale bar = 1000 μ m (top), 100 μ m (below). Right: Scale bar = 100 μ m (top), 10 μ m (below).

Suppl. Fig. 2 Chronic social defeat stress induces depressive-like behaviors in mice. (A) Experimental timeline and behavioral paradigm of CSDS experiments. (B) Representative heatmaps of social avoidance behavioral test. (C) Depressive-like behaviors in stressed mice, as measured by the social interaction ratio in SIT after CSDS. n = 12-13 per group. (D) Depressive-like behaviors in stressed mice, as measured by the sucrose preference in SPT after CSDS. n = 12-13 per group. Data are expressed as mean \pm SEM. Student's *t* test (C, D). ****P* < 0.001. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 3 Chemogenetic inhibition of MS-DG projections produces antidepressant effect in naïve mice. (A) Schematic of the stereotaxic injections for selective expression of the hM4Di mCherry in MS-DG projection neurons. (B) Behavioral effects of the chemogenetic inhibition of MS-DG projection neurons in the TST. n = 14-17 per group. (C) Behavioral effects of the chemogenetic inhibition of MS-DG projection neurons in the FST. n = 14-17 per group. (D) Behavioral effects of the chemogenetic inhibition of MS-DG projection neurons in the OFT. n = 14-17 per group. Data are expressed as mean \pm SEM. Student's *t* test (B-D). **P* < 0.05. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 4 Electrophysiological recording of MS neurons after exogenous expression DREADDs with bath application of CNO. (A) Schematics showing viral vector AAV-hM4Di(hM3Dq)-mCherry infusion in MS and patch-clamp recordings from DG-projecting MS neurons. (B) Electrophysiological recording showed the firing of MS neurons expressing hM4Di-mCherry in the presence of 10 μ M CNO. n = 4 cells from three mice per group. (C) Patch-clamp recording from neurons expressing hM4Di-mCherry. (D) Patch clamp recording from neurons expressing hM4Di-mCherry. (D) Patch clamp recording from neurons expressing hM3Dq-mCherry in the MS with representative trace of CNO-induced firing of action potential in neurons expressing hM3Dq-mCherry. Right: Summary of change

in resting membrane potential following bath application of CNO. n = 4 cells from three mice per group. Data are expressed as mean \pm SEM. Student's *t* test (B, D). ***P* < 0.01, ****P* < 0.001. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 5 Chemogenetic activation of MS-DG projections has no effects on depressive-like behaviors in naïve mice. (A) Schematic of the stereotaxic injections for selective expression of the hM3Dq-mCherry in MS-DG projection neurons. (B) Behavioral effects of the chemogenetic activation of MS-DG projection neurons in the SIT. n = 8-10 per group. (C) Behavioral effects of the chemogenetic activation of MS-DG projection neurons in the SPT. n = 8-11 per group. (D) Behavioral effects of the chemogenetic activation of MS-DG projection neurons in the SPT. n = 8-11 per group. (E) Behavioral effects of the chemogenetic activation of MS-DG projection neurons in the FST. n = 8-11 per group. (F) Behavioral effects of the chemogenetic activation of MS-DG projection neurons in the OFT. n = 8-11 per group. Data are expressed as mean \pm SEM. Student's *t* test (B-F).The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 6. Inhibition of MS^{GABA+} -DG projection induces the expression of PDGF-BB and prevents depression-like behaviors. (A) Venn diagram showing the overlap of DEGs in the depression and neurogenesis samples. (B) KEGG analysis of the 855 genes. (C) PDGF-BB mRNA expression in the DG after CSDS. n = 10-13 per group. (D) PDGF-BB protein levels in the DG as determined by ELISA after CSDS. n = 8 per group. (E) PDGF-BB mRNA expression in the DG after inhibition of MS-DG projection. n = 10-16 per group. (F) PDGF-BB mRNA expression in the DG after inhibition of MS-DG projection. n = 13-14 per group. (G) Timeline of experimental procedure. (H) Representative images showed that hM4Di-mCherry labeled neurons in the MS expressing GAD67. Scale bars: 10 µm. (I) Confocal fluorescent image showing the distribution of GABAergic axon fibers, which expressed hM4Di-mCherry and

innervated hippocampal DG regions. Scale bars: 100 μ m. (J) Effects of chemogenetic inhibition of MS-DG GABAergic neurons on the immobility time in TST. n = 14-16 per group. (K) Effects of chemogenetic inhibition of MS-DG GABAergic neurons on the immobility time in FST. n = 14-16 per group. (L) Effects of chemogenetic inhibition of MS-DG GABAergic neurons on the locomotor activity in the OFT. n = 14-16 per group. (M) PDGF-BB mRNA expression in the DG after inhibition of MS^{GABA+}-DG projection in the Vgat-Cre mice. n = 14-16 per group. Data are expressed as mean \pm SEM. Student's *t* test (C, D, F, J-M). Two-way ANOVA followed by the Bonferroni's post hoc test (E). **P* < 0.05, ***P* < 0.01, ****P* < 0.001. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 7 PDGF-BB overexpression in DG after virus injection in naïve mice. (A) Experimental timeline of PDGF-BB overexpression in the DG and behavioral test. (B) PDGF-BB protein levels in the DG as determined by ELISA four weeks after injection with AAV-GFP or AAV-PDGF-BB. n = 7-10 per group. Data are expressed as mean \pm SEM. Student's *t* test. ****P* < 0.001. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 8 The antidepressant effects of local injection of PDGF-BB into the DG. (A) Experimental timeline for behavioral testing after intra-hippocampal infusion of vehicle and PDGF-BB. (B) Time spent immobile in the FST following vehicle or PDGF-BB treatment. n = 7-8 per group. (C) Locomotor activity measured by the total distance traveled by the naïve mice with vehicle or PDGF-BB treatment. n = 7-8 per group. Data are expressed as mean \pm SEM. One-way ANOVA followed by Tukey's post hoc test (B, C). **P* < 0.05. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 9 Knockdown of PDGF-BB in the DG of naïve mice does not induce depressive-like phenotypes. (A) Experimental timeline of PDGF-BB knockdown in the DG and behavioral test. (B) PDGF-BB protein levels in the DG as determined by ELISA three weeks after injection with LV-shGFP or LV-shPDGF-BB. n = 8 per group. (C) Behavioral effects of PDGF-BB knockdown in the SIT. n = 6 per group. (D) Behavioral effects of PDGF-BB knockdown in the TST. n = 6 per group. (E) Behavioral effects of PDGF-BB knockdown in the TST. n = 6 per group. (E) Behavioral effects of PDGF-BB knockdown in the FST. n = 6 per group. (F) Behavioral effects of PDGF-BB knockdown in the GFT. n = 6 per group. (F) Behavioral effects of PDGF-BB knockdown in the OFT. n = 6 per group. Data are expressed as mean \pm SEM. Student's *t* test (B-F). ****P* < 0.001. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 10 Treatment with PDGF-BB reverses CSDS-induced alteration of hippocampal neurogenesis in the DG. (A) Experimental timelines for CSDS protocol, PDGF-BB treatment, and the BrdU injection protocol. (B) Immunofluorescence images

for BrdU (red), DCX (green) within the SGZ of the hippocampus in control or CSDSexposed mice treated with vehicle or PDGF-BB. Scale bars: 100 µm. (C) Quantification of the number of BrdU positive cells in SGZ of the hippocampus after PDGF-BB treatment. n = 3-4 per group. (D) Quantification of the number of BrdU/DCX positive cells in SGZ of the hippocampus after PDGF-BB treatment. n = 3-4 per group. (E) Immunofluorescence images for BrdU (green), Sox2 (red), and GFAP (white) within the SGZ of the hippocampus in control or defeated mice treated with vehicle or PDGF-BB. Panels on the below are magnified images showing that the colocalization of BrdU with GFAP and Sox2. Scale bar: 100 µm (top), 10 µm (below). (F) Quantification of the number of BrdU/Sox2/GFAP positive NSCs in SGZ of the hippocampus after PDGF-BB treatment. n = 3-4 per group. (G) Quantification of the number of Sox2/GFAP positive NSCs in SGZ of the hippocampus after PDGF-BB treatment. n = 3-4 per group. (H) The ratio of aNSCs to qNSCs. n = 3-4 per group. (I) Experimental timelines for CSDS protocol, PDGF-BB treatment, and the virus injection protocol. (J) Representative images of ROV-GFP labeled newborn neurons in vehicleor PDGF-BB-treated mice 4 weeks after retrovirus injection. Scale bars: 50 µm. (K) Quantification of branch number of ROV-GFP labeled newborn neurons in vehicle- or PDGF-BB-treated mice 4 weeks after retrovirus injection. n = 24-27 neurons per group. (L) Quantification of dendritic length of ROV-GFP labeled newborn neurons in vehicleor PDGF-BB-treated mice 4 weeks after retrovirus injection. n = 24-27 neurons per group. (M) Sholl analysis of dendritic complexity of ROV-GFP labeled newborn neurons in vehicle- or PDGF-BB-treated mice 4 weeks after retrovirus injection. n = 24-27 neurons per group. Data are expressed as mean ± SEM. Two-way ANOVA followed by the Bonferroni's post hoc test (C, D, F-H, K-M). *P < 0.05; **P < 0.01; ***P < 0.001. ##P < 0.01, ###P < 0.001 vs CSDS + Vehicle. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 11 Deletion of PDGFR β from NSCs impairs hippocampal neurogenesis. (A) Experimental timeline of CSDS experiments and the change in levels of PDGFR β protein in the DG after CSDS. n = 6-7 per group. (B) Double-labeled confocal immunofluorescence images showing the colocalization of PDGFR β (red) expression with Nestin (green). Top images: Scale bar =100 µm, Bottom images: Scale bar = 20 µm. (C) Immunohistochemistry for Nestin (green), PDGFR β (red) nuclear counterstaining with DAPI (blue). Left images: Scale bar = 100 µm. Right images:

Scale bar = $10 \,\mu\text{m}$. (**D**) Representative confocal micrographs of DG from control mice (left) or mice injected with AAV-DIO-shPDGFR^β (right), showing transduced cells marked by GFP (green) and PDGFR^β protein detected by immunolabeling (red). Top images: Scale bar =100 μ m, Bottom images: Scale bar =20 μ m. (E) Quantification of PDGFR β neurons colocalized with GFP. n = 9 slices per group. (F) Immunohistochemistry for BrdU (white), Sox2 (red), and GFAP (blue) within the SGZ of the hippocampus in AAV-DIO-shGFP or AAV-DIO-shPDGFR_β- injected mice. Top images: Scale bar = $100 \mu m$. Bottom images: Scale bar = $10 \mu m$. (G) Quantification of the number of BrdU positive cells in DG of the hippocampus in AAV-DIO-shGFP or AAV-DIO-shPDGFR β -injected mice. n = 4 per group. (H) Quantification of the number of BrdU/Sox2/GFAP positive NSCs in SGZ of the hippocampus in AAV-DIO-shGFP or AAV-DIO-shPDGFR β -injected mice. n = 4 per group. (I) The ratio of aNSCs to qNSCs. n = 4 per group. (J) Quantification of the number of Sox2/GFAP positive NSCs in SGZ of the hippocampus in AAV-DIO-shGFP or AAV-DIO-shPDGFRβ-injected mice. n = 4 per group. Data are expressed as mean \pm SEM. Student's *t* test (A, E, G-J). *P< 0.05; **P < 0.01; ***P < 0.001. The statistical details can be found in Supplementary Table S4.

Suppl. Fig. 12 JAK2/STAT3 is involved in the antidepressant action mediated by PDGF-BB/PDGFR β signaling pathway. (A) Functional protein association network plotted by using the STRING database. (B-D) GSEA plot of proteins expressed in fluoxetine-treated mice for the list of STAT3, STAT5, KRAS. (E) Experimental timeline for behavioral testing after intra-hippocampal infusion of vehicle and PDGF-BB. (F) The change of protein levels of JAK2 in the DG after PDGF-BB treatment. n = 10 per group. (G) The change of protein levels of STAT3 in the DG after PDGF-BB treatment. n = 10 per group. (H) Schematics of the experiments. (I) The change of protein levels of JAK2 in the DG after PDGF-BB treatment levels of JAK2 in the DG after PDGF-BB treatment. n = 9 per group. (J) The change of protein levels of STAT3 in the DG after PDGF-BB treatment are expressed as mean \pm SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.01. Student's *t* test (F, G, I, J). The statistical details can be found in Supplementary Table S4.

Uncropped scans of key western blots

Figure S11A

Figure S12F and Figure S12G

Figure S12I and Figure S12J

Names	Sequences (5' to 3')
PDGF-BB-R:	TACGGAGTCTCTGTGCAGCAGGC
PDGF-BB-F:	AGTCGGCATGAATCGCTGCTGGG
GAPDH-R:	ATGGTGAAGGTCGGTGTG
GAPDH-F:	CATTCTCGGCCTTGACTG

Supplementary Table S1. All primers used.

Antibodies	SOURCE	IDENTIFIER
Anti-PDGFR ^β	Cell Signaling Technology	Cat# 3169
Anti-PDGFR ^β	Abcam	Cat# ab32570
Anti-GFAP	Cell Signaling Technology	Cat# 3670
Anti-Sox2	Abcam	Cat# ab97959
Anti-BrdU	Abcam	Cat# ab6326
Anti-DCX	Cell Signaling Technology	Cat# 4604
Anti-Nestin	Millipore	Cat# MAB353
Anti-CTB	Abnova	Cat# PAB13910
Anti-β-actin	Cell Signaling Technology	Cat# 8480
Anti-Somatostatin-28	Synaptic Systems	Cat# 366004
Anti-Cholecystokinin 8	Abcam	Cat# ab37274
Anti-C-FOS	Abcam	Cat# ab190289
Anti-CCK	Abcam	Cat# ab37274
Anti-CaMKIIa	Cell Signaling Technology	Cat# 50049
Anti-VIP	Santa cruz biotechnology	Cat# sc-25347
Anti-GAD67	Abcam	Cat# ab26116
Anti-JAK2	Proteintech	Cat# 17670-1-AP
Anti-STAT3	Proteintech	Cat# 10253-2-AP
CTB-555	BrainVTA	Cat# 210127
Alex Fluor 488-conjugated donkey	Invitrogen	Cat# A32766
anti-mouse IgG		
Alex Fluor 488-conjugated donkey	Invitrogen	Cat# A21206
anti- rabbit IgG		
Alex Fluor 594-conjugated donkey	Invitrogen	Cat# A21207
anti-rabbit IgG		
Alex Fluor 647-conjugated donkey	Jackson ImmunoResearch	Cat# 712-605-153
anti-rat IgG		
Alex Fluor 405-conjugated donkey	Abcam	Cat# ab175660
anti-mouse IgG		
Alex Fluor 647-conjugated donkey	Invitrogen	Cat# A31573
anti- rabbit IgG		

Supplementary Table S2. All antibodies and drugs used.

AAV-EF1a-DIO-hM4D(Gi)-mCherry	Obio Technology Shanghai	HYMBH2481
AAV-EF1a-DIO-hM3D(Gq)-mCherry	Obio Technology Shanghai	HYMBH2482
AAV-hSyn-Cre	Obio Technology Shanghai	CN867
pROV-U6-shRNA-EF1a(S)-EGFP	Obio Technology Shanghai	CN889
qAkd-cmv-bGlobin-Flex-EGFP-	Obio Technology Shanghai	Y10057
MIR30shRNA (pdgfprβ)		
LV-U6-shPdgfb-Ubi-EGFP	Genechem Shanghai	81302-13
LV-U6-shPdgfb-Ubi-mcherry	Genechem Shanghai	92846-1
LV-Ubi-Pdgfb- Ubi-EGFP	Genechem Shanghai	45561-1
AAV-CMV-Pdgfb-EGFP	Genechem Shanghai	46612-1
AAV-CMV-Pdgfb-mCherry	Genechem Shanghai	61989-2

Supplementary Table S3. All bacterial and virus Strains used.

Figure and numbers of	Statistical analysis	Post hoc tests	Mean ± SEM.
animals or cells used			
1D: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	
SIT		test	
Control + Vehicle (n =	Stress: F $(1,52) =$	Control + Vehicle versus	Control + Vehicle
12)	4.8290, p = 0.0325	CSDS + Vehicle, p =	1.267 ± 0.179
Control + CNO (n = 14)	Treatment: $F(1,52) =$	0.0024	Control + CNO
CSDS + Vehicle (n = 15)	1.2060, p = 0.2772	Control + CNO versus	1.040 ± 0.151
CSDS + CNO (n = 15)	Stress × Treatment: F	CSDS + CNO,	CSDS + Vehicle
	(1,52) = 7.5570,	p > 0.9999	0.588 ± 0.079
	p = 0.0082	Control + Vehicle versus	CSDS + CNO
		Control + CNO, p =	1.116 ± 0.137
		0.5305	
		CSDS + Vehicle versus	
		CSDS + CNO,	
		p = 0.0133	
1E: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
TST		test	
Control + Vehicle (n =	Stress: F $(1,52) =$	Control + Vehicle versus	Control + Vehicle
12)	1.5620, p = 0.2170	CSDS + Vehicle,	127.8 ± 8.0
Control + CNO (n = 14)	Treatment: $F(1,52) =$	p = 0.0226	Control + CNO
CSDS + Vehicle (n = 15)	0.4100, p = 0.5248	Control + CNO versus	146.4 ± 8.7
CSDS + CNO (n = 15)	Stress \times Treatment: F	CSDS + CNO,	CSDS + Vehicle
	(1,52) = 6.4500,	p = 0.7117	164.9 ± 8.6
	p = 0.0141	Control + Vehicle versus	CSDS + CNO
		Control + CNO, p =	133.8 ± 12.2
		0.4016	
		CSDS + Vehicle versus	
		CSDS + CNO,	
		p = 0.0466	
1F: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
FST		test	
Control + Vehicle (n =	Stress: F $(1,52) =$	Control + Vehicle	Control + Vehicle
12)	0.1686, p = 0.6830	versus CSDS + Vehicle,	111.9 ± 7.5
Control + CNO (n = 14)	Treatment: $F(1,52) =$	p = 0.0396	Control + CNO
CSDS + Vehicle (n = 15)	15.0300, p = 0.0003	Control + CNO versus	102.6 ± 15.4
CSDS + CNO (n = 15)	Stress × Treatment: F	CSDS + CNO,	CSDS + Vehicle
	(1,52) = 9.3560,	p = 0.1227	151.5 ± 9.4
	p = 0.0035	Control + Vehicle	

Supplementary Table S4. Statistical analysis for Figures 1-8 and Figures S1-10.

		versus Control + CNO,	CSDS + CNO 72.3
		p > 0.9999	± 10.8
		CSDS + Vehicle	
		versus CSDS + CNO,	
		p < 0.001	
1G: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
OFT		test	
Control + Vehicle (n =	Stress: F (1,52) =	Control + Vehicle versus	Control +
12)	0.6083, p = 0.4390	CSDS + Vehicle,	Vehicle $35.11 \pm$
Control + CNO (n = 14)	Treatment: $F(1,52) =$	p > 0.9999	3.21
CSDS + Vehicle (n = 15)	2.9630, p = 0.0911	Control + CNO versus	Control + CNO
CSDS + CNO (n = 15)	Stress × Treatment: F	CSDS + CNO,	29.67 ± 3.37
	(1,52) = 0.01802, p =	p > 0.9999	CSDS + Vehicle
	0.8937	Control + Vehicle versus	32.43 ± 3.04
		Control + CNO, p =	CSDS + CNO
		0.4224	27.78 ± 1.99
		CSDS + Vehicle versus	
		CSDS + CNO,	
		p = 0.4975	
1K: Behavioral test of	Unpaired <i>t</i> test		Mean ± s.e.m.
SIT			
Vehicle $(n = 19)$	t = 2.0300, p = 0.0496		Vehicle 1.408 ±
CNO (n = 20)			0.228
			CNO 0.876 ± 0.136
1L: Behavioral test of	Unpaired t test		Mean ± s.e.m.
TST			
Vehicle $(n = 19)$	t = 2.7510, p = 0.0091		Vehicle 130.1 ± 5.6
CNO (n = 20)			CNO 150.9 ± 5.1
1M: Behavioral test of	Unpaired <i>t</i> test		Mean ± s.e.m.
FST			
Vehicle $(n = 19)$	t= 3.7140, p = 0.0007		Vehicle 97.8 ± 8.1
CNO (n = 20)			CNO 139.4 ± 7.8
1N: Behavioral test of	Unpaired t test		Mean ± s.e.m.
OFT			
Vehicle $(n = 19)$	t = 0.6909, p = 0.4939		Vehicle 22.33 \pm
CNO (n = 20)			1.87
-			CNO 20.68 ± 1.50
2C: DREADD inhibition	Unpaired t test		Mean ± s.e.m.
of MS-DG GABAergic			
projections led to an			

increment of c-Fos expression in DG.			
Vehicle (n = 3) CNO (n = 3)	t = 3.0440, p = 0.0383		Vehicle 1150.0 ± 278.7 CNO 2325.0 ± 266.9
2D: DREADD inhibition of MS-DG GABAergic projections led to an increment of c-Fos expression in SOM positive neurons.	Unpaired <i>t</i> test		Mean ± s.e.m.
Vehicle (n = 3) CNO (n = 3)	t = 2.8910, p = 0.0445		Vehicle 153.3 ± 21.9 CNO 527.7 ± 127.6
2F: DREADD inhibition of MS-DG GABAergic projections led to an increment of PDGF-BB expression in DG.	Unpaired <i>t</i> test		Mean ± s.e.m.
Vehicle (n = 3) CNO (n = 3)	t = 4.8190, p = 0.0085		Vehicle 1450.0 ± 531.5 CNO 4040.0 ± 79.4
2G: DREADD inhibition of MS-DG GABAergic projections led to an increment of PDGF-BB expression in SOM positive neurons.	Unpaired <i>t</i> test		Mean ± s.e.m.
Vehicle (n = 3) CNO (n = 3)	t = 10.8000, p = 0.0004		Vehicle 470.0 ± 189.3 CNO 2523.0 ± 18.6
3C: Behavioral test of SIT	Two-way ANOVA	Bonferroni's <i>post hoc</i> test	Mean ± s.e.m.
Control + AAV-GFP (n = 15) Control + AAV-PDGF- BB (n = 13)	Stress: F (1,54) = 1.6910, p = 0.1990 Virus: F (1,54) = 13.5900, p = 0.0005	Control + AAV-GFP versus CSDS + AAV- GFP, p = 0.0021	Control + AAV- GFP 1.367 ± 0.162 Control + AAV- PDGF-BB 1.382 ± 0.119

CSDS + AAV-GFP (n =	Stress × Virus: F (1,54)	Control + AAV-PDGF-	CSDS + AAV-GFP
14)	= 12.8700, p = 0.0007	BB versus CSDS +	0.626 ± 0.146
CSDS + AAV-PDGF-BB		AAV-PDGF-BB,	CSDS + AAV-
(n = 16)		p = 0.2249	PDGF-BB 1.729 ±
		Control + AAV-GFP	0.162
		versus Control + AAV-	
		PDGF-BB,	
		p > 0.9999	
		CSDS + AAV-GFP	
		versus CSDS + AAV-	
		PDGF-BB, p < 0.001	
3D: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
TST	·	test	
Control + AAV-GFP (n =	Stress: F (1,54) =	Control + AAV-GFP	Control + AAV-
15)	5.0870, p = 0.0282,	versus CSDS + AAV-	GFP 131.6 ± 4.3
Control + AAV-PDGF-	Virus: F (1,54) =	GFP, p = 0.0014	Control + AAV-
BB $(n = 13)$	40.8600, p < 0.001	Control + AAV-PDGF-	PDGF-BB 104.9 ±
CSDS + AAV-GFP (n =	Stress × Virus: F (1,54)	BB versus CSDS +	5.0
14)	= 7.8840, p = 0.0069	AAV-PDGF-BB,	CSDS + AAV-GFP
CSDS + AAV-PDGF-BB	· · · ·	p > 0.9999	169.3 ± 6.4
(n = 16)		Control + AAV-GFP	CSDS + AAV-
(versus Control + AAV-	PDGF-BB 100.8 ±
		PDGF-BB,	10.8
		n = 0.0317	10.0
		CSDS + AAV-GFP	
		versus CSDS + AAV-	
		PDGF-BB.	
		p < 0.001	
3E: Behavioral test of	Two-way ANOVA	Bonferroni's <i>post hoc</i>	Mean ± s.e.m.
FST	2 j	test	
Control + AAV-GFP (n =	Stress: F (1,54) =	Control + AAV-GFP	Control + AAV-
15)	0.1426, p = 0.7072	versus CSDS	GFP 74.9 ± 10.6
Control + AAV-PDGF-	Virus: $F(1,54) =$	+ AAV-GFP, p = 0.0050	Control + AAV-
BB $(n = 13)$	7.4140, p = 0.0087	Control + AAV-PDGF-	PDGF-BB 96.5 ±
CSDS + AAV-GFP (n =	Stress × Virus: F (1,54)	BB versus	10.4
14)	= 23.5700, p < 0.001	CSDS + AAV-PDGF-	CSDS + AAV-GFP
CSDS + AAV-PDGF-BB	~ .	BB,	120.1 ± 11.6
(n = 16)		p = 0.0010	CSDS + AAV-
		Control + AAV-GFP	PDGF-BB 43.6 ±
		versus Control + AAV-	7.7
		PDGF-BB,	
		p = 0.2883	

		CSDS + AAV-GFP	
		versus CSDS + AAV-	
		PDGF-BB,	
		p < 0.001	
3F: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
OFT	2	test	
Control + AAV-GFP (n =	Stress: F (1,54) =	Control + AAV-GFP	Control + AAV-
15)	0.0012, p = 0.9728	versus CSDS + AAV-	GFP 43.90 ± 3.28
Control + AAV-PDGF-	Virus: F (1,54)	GFP, p > 0.9999	Control + AAV-
BB $(n = 13)$	=1.4050, p=0.2411	Control + AAV-PDGF-	PDGF-BB 45.57 ±
CSDS + AAV-GFP (n =	Stress × Virus: F (1,54)	BB versus CSDS +	5.42
14)	= 0.5903,	AAV-PDGF-BB,	CSDS + AAV-GFP
CSDS + AAV-PDGF-BB	p = 0.4456	p > 0.9999	40.97 ± 4.00
(n = 16)		Control + AAV-GFP	CSDS + AAV-
``´		versus Control + AAV-	PDGF-BB 48.77 ±
		PDGF-BB,	3.33
		p > 0.9999	
		CSDS + AAV-GFP	
		versus CSDS + AAV-	
		PDGF-BB, p = 0.3309	
3H: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
SIT		test	
Control + Vehicle (n =	Stress: $F(1,47) =$	Control + Vehicle	Control + Vehicle
12)	25.8700, p < 0.001	versus CSDS + Vehicle,	1.263 ± 0.089
Control + PDGF-BB (n =	Treatment: F $(1,47) =$	p < 0.001	Control + PDGF-
12)	3.1380, p = 0.0830	Control + PDGF-BB	BB 1.125 ± 0.111
CSDS + Vehicle (n = 12)	Stress × Treatment: F	versus CSDS + PDGF-	CSDS + Vehicle
CSDS + PDGF-BB (n =	(1,47) = 8.4590,	BB, p=0.2408	0.297 ± 0.064
15)	p = 0.0055	Control + Vehicle versus	CSDS + PDGF-BB
		Control + PDGF-BB, p	0.862 ± 0.161
		= 0.8744	
		CSDS + Vehicle versus	
		CSDS + PDGF-BB,	
		p = 0.0028	
3I: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
TST		test	
Control + Vehicle (n =	Stress: F $(1,47) =$	Control + Vehicle	Control + Vehicle
12)	0.3129, p = 0.5785	versus CSDS +	124.4 ± 5.5
Control + PDGF-BB (n =	Treatment: $F(1,47) =$	Vehicle, p = 0.0218	Control + PDGF-
12)	5.6880, p = 0.0212	Control + PDGF-BB	BB 132.3 ± 8.1
CSDS + Vehicle (n = 12)	. 1	versus CSDS +	

CSDS + PDGF-BB (n =	Stress \times Virus: F (1,47)	PDGF-BB, p = 0.1068	CSDS + Vehicle
15)	= 10.8100,	Control + Vehicle	158.2 ± 9.6
	p = 0.0019	versus Control +	CSDS + PDGF-BB
		PDGF-BB, p > 0.9999	108.4 ± 10.0
		CSDS + Vehicle	
		versus CSDS + PDGF-	
		BB, p = 0.0003	
3J: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
FST		test	
Control + Vehicle (n =	Stress: F (1,47) =	Control + Vehicle	Control + Vehicle
12)	0.1019, p = 0.7510	versus CSDS + Vehicle,	85.7 ± 10.8
Control + PDGF-BB (n =	Treatment: F $(1,47) =$	p = 0.0206	Control + PDGF-
12)	12.2400, p = 0.0010	Control + PDGF-BB	BB 86.3 ± 8.0
CSDS + Vehicle (n = 12)	Stress × Virus: F (1,47)	versus CSDS + PDGF-	CSDS + Vehicle
CSDS + PDGF-BB	= 12.6700,	BB, p = 0.0456	122.8 ± 9.0
(n = 15)	p = 0.0009;	Control + Vehicle	CSDS + PDGF-BB
		versus Control + PDGF-	55.2 ± 9.8
		BB, p > 0.9999	
		CSDS + Vehicle	
		versus CSDS + PDGF-	
		BB, p < 0.001	
3K: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
3K: Behavioral test of OFT	Two-way ANOVA	Bonferroni's <i>post hoc</i> test	Mean ± s.e.m.
3K: Behavioral test of OFT	Two-way ANOVA	Bonferroni's <i>post hoc</i> test	Mean ± s.e.m.
3K: Behavioral test of OFT Control + Vehicle (n =	Two-way ANOVA Stress: F (1,47) =	Bonferroni's <i>post hoc</i> test Control + Vehicle versus	Mean ± s.e.m. Control + Vehicle
3K: Behavioral test of OFT Control + Vehicle (n = 12)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p =	Mean ± s.e.m. Control + Vehicle 54.43 ± 5.93
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n =	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) =	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404	Mean ± s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF-
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB	Mean ± s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 ± 3.42
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47)	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB versus CSDS + PDGF-	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n =	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, p = 0.5163	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, p = 0.5163 Control + Vehicle versus	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 ± 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, p = 0.5163 Control + Vehicle versus Control + PDGF-BB, p	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, p = 0.5163 Control + Vehicle versus Control + PDGF-BB, p = 0.2888	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, p = 0.5163 Control + Vehicle versus Control + PDGF-BB, p = 0.2888 CSDS + Vehicle versus	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, p = 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, p = 0.5163 Control + Vehicle versus Control + PDGF-BB, p = 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB,	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92
3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15)	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383	Bonferroni's post hoc test Control + Vehicle versus CSDS + Vehicle, $p =$ 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, $p = 0.5163$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB, p = 0.2639	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92
 3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15) 4C: Behavioral test of 	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383 Unpaired <i>t</i> test	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, $p =$ 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, $p = 0.5163$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB, $p = 0.2639$	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92 Mean \pm s.e.m.
 3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15) 4C: Behavioral test of SIT 	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383 Unpaired <i>t</i> test	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, $p =$ 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, $p = 0.5163$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB, $p = 0.2639$	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92 Mean \pm s.e.m.
 3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15) 4C: Behavioral test of SIT 	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383 Unpaired <i>t</i> test	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, $p =$ 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, $p = 0.5163$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB, $p = 0.2639$	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92 Mean \pm s.e.m.
 3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15) 4C: Behavioral test of SIT LV-shGFP (n = 15) 	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383 Unpaired <i>t</i> test t = 2.8890, p = 0.0074	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, $p =$ 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, $p = 0.5163$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB, $p = 0.2639$	Mean \pm s.e.m. Control + Vehicle 54.43 \pm 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 \pm 2.00 CSDS + PDGF-BB 52.24 \pm 2.92 Mean \pm s.e.m. LV-shGFP 1.285 \pm
 3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15) 4C: Behavioral test of SIT LV-shGFP (n = 15) LV-shPDGF-BB (n = 15) 	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383 Unpaired <i>t</i> test t = 2.8890, p = 0.0074	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, $p =$ 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, $p = 0.5163$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB, $p = 0.2639$	Mean \pm s.e.m. Control + Vehicle 54.43 \pm 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 \pm 2.00 CSDS + PDGF-BB 52.24 \pm 2.92 Mean \pm s.e.m. LV-shGFP 1.285 \pm 0.167
 3K: Behavioral test of OFT Control + Vehicle (n = 12) Control + PDGF-BB (n = 12) CSDS + Vehicle (n = 12) CSDS + PDGF-BB (n = 15) 4C: Behavioral test of SIT LV-shGFP (n = 15) LV-shPDGF-BB (n = 15) 	Two-way ANOVA Stress: F (1,47) = 0.3096, p = 0.5806 Treatment: F (1,47) = 0.0005, p = 0.9828 Stress × Virus: F (1,47) = 4.5460, p = 0.0383 Unpaired <i>t</i> test t = 2.8890, p = 0.0074	Bonferroni's <i>post hoc</i> test Control + Vehicle versus CSDS + Vehicle, $p =$ 0.1404 Control + PDGF-BB versus CSDS + PDGF- BB, $p = 0.5163$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.2888 CSDS + Vehicle versus CSDS + PDGF-BB, $p = 0.2639$	Mean \pm s.e.m. Control + Vehicle 54.43 ± 5.93 Control + PDGF- BB 46.28 \pm 3.42 CSDS + Vehicle 44.25 ± 2.00 CSDS + PDGF-BB 52.24 ± 2.92 Mean \pm s.e.m. LV-shGFP 1.285 \pm 0.167 LV-shPDGF-BB

4D: Behavioral test of	Unpaired <i>t</i> test		Mean ± s.e.m.
TST			
LV-shGFP ($n = 15$)	t = 2.7370, p = 0.0106		LV-shGFP 132.2 \pm
LV-shPDGF-BB ($n = 15$)			9.2
			LV-shPDGF-BB
			168.5 ± 9.5
4E: Behavioral test of	Unpaired <i>t</i> test		Mean ± s.e.m.
FST			
LV-shGFP ($n = 15$)	t = 3.0710, p = 0.0047		LV-shGFP
LV-shPDGF-BB (n = 15)			112.0 ± 9.2
			LV-shPDGF-BB
4E : Debenievel test of	Thursday data at		$14/.9 \pm 7.3$
4F: Behavioral test of	Unpaired t test		Mean ± s.e.m.
OFI			
IV shCFP (n = 15)	t = 0.1401 $n = 0.8896$		IV shGEP 21 24 +
IV-shPDGF-BB (n = 15)	t = 0.1401, p = 0.0070		2 N5
			LV-shPDGF-BB
			21.62 ± 1.75
4H: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	$Mean \pm s.e.m.$
SIT		test	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
CSDS + Vehicle + Anti-	Treatment: $F(1,57) =$	CSDS + Vehicle + Anti-	CSDS + Vehicle +
IgG $(n = 14)$	0.9231, p = 0.3407	IgG versus CSDS +	Anti-IgG 0.292 ±
CSDS + Vehicle + Anti-	Treatment: $F(1,57) =$	CNO + Anti-IgG,	0.080
PDGF-BB $(n = 15)$	15.6200, p = 0.0002	p < 0.001	CSDS + Vehicle +
CSDS + CNO + Anti-IgG	Treatment ×	CSDS + Vehicle + Anti-	Anti-PDGF-BB
(n = 16)	Treatment: F $(1,57) =$	PDGF-BB versus	0.418 ± 0.091
CSDS + CNO + Anti-	6.3810, p = 0.0143	CSDS + CNO + Anti-	CSDS + CNO +
PDGF-BB $(n = 16)$		PDGF-BB, p = 0.6263	Anti-IgG 0.814 ±
		CSDS + Vehicle + Anti-	0.076
		IgG versus CSDS +	CSDS + CNO +
		Vehicle + Anti-PDGF-	Anti-PDGF-BB
		BB,	0.533 ± 0.076
		p = 0.5692	
		CSDS + CNO + Anti-	
		IgG versus CSDS +	
		CNO + Anti-PDGF-	
		BB, p = 0.0284	
4I: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
TST		test	

CSDS + Vehicle + Anti-	Treatment: $F(1,58) =$	CSDS + Vehicle + Anti-	CSDS + Vehicle +
IgG $(n = 14)$	8.8430, p = 0.0043	IgG versus CSDS +	Anti-IgG 165.5 ±
CSDS + Vehicle + Anti-	Treatment: $F(1,58) =$	CNO + Anti-IgG,	7.2
PDGF-BB ($n = 15$)	8.800, p = 0.0044	p = 0.0015	CSDS + Vehicle +
CSDS + CNO + Anti-IgG	Treatment ×	CSDS + Vehicle + Anti-	Anti-PDGF-BB
(n = 17)	Treatment: $F(1,58) =$	PDGF-BB versus	173.3 ± 10.6
CSDS + CNO + Anti-	4.3430, p = 0.0416	CSDS + CNO + Anti-	CSDS + CNO +
PDGF-BB (n = 16)		PDGF-BB, p > 0.9999	Anti-IgG 121.4 ±
		CSDS + Vehicle + Anti-	9.1
		IgG versus CSDS +	CSDS + CNO +
		Vehicle + Anti-PDGF-	Anti-PDGF-BB
		BB,	165.6 ± 7.2
		p > 0.9999	
		CSDS + CNO + Anti-	
		IgG versus CSDS +	
		CNO + Anti-PDGF-	
		BB, p = 0.0010	
4J: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
FST		test	
CSDS + Vehicle + Anti-	Treatment: $F(1,58) =$	CSDS + Vehicle + Anti-	CSDS + Vehicle +
IgG $(n = 14)$	4.2380, p = 0.0440	IgG versus CSDS +	Anti-IgG 134.0 ±
CSDS + Vehicle + Anti-	Treatment: $F(1,58) =$	CNO + Anti-IgG,	8.5
PDGF-BB $(n = 15)$	1.5830, p = 0.2134	p = 0.0484	CSDS + Vehicle +
CSDS + CNO + Anti-IgG	Treatment ×	CSDS + Vehicle + Anti-	Anti-PDGF-BB
(n = 17)	Treatment: $F(1,58) =$	PDGF-BB versus	134.3 ± 10.9
CSDS + CNO + Anti-	4.0880, p = 0.0478	CSDS + CNO + Anti-	CSDS + CNO +
PDGF-BB $(n = 16)$	~	PDGF-BB, p > 0.9999	Anti-IgG 104.3 ±
		CSDS + Vehicle + Anti-	8.5
		IgG versus CSDS +	CSDS + CNO +
		Vehicle + Anti-PDGF-	Anti-PDGF-BB
		BB,	141.3 ± 8.1
		p > 0.9999	
		CSDS + CNO + Anti-	
		IgG versus CSDS +	
		CNO + Anti-PDGF-	
		BB, p = 0.0083	
4K: Behavioral test of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
OFT		test	
CSDS + Vehicle + Anti-	Treatment: $F(1,59) =$	CSDS + Vehicle + Anti-	CSDS + Vehicle +
IgG $(n = 14)$	0.0007, p = 0.9785	IgG versus CSDS +	Anti-IgG 30.65 ±
CSDS + Vehicle + Anti-	Treatment: $F(1,59) =$	CNO + Anti-IgG,	3.05
PDGF-BB ($n = 15$)	0.02334, p = 0.8791	p > 0.9999	

CSDS + CNO + Anti-IgG	Treatment ×	CSDS + Vehicle + Anti-	CSDS + Vehicle +
(n = 17)	Treatment: F $(1,59) =$	PDGF-BB versus	Anti-PDGF-BB
CSDS + CNO + Anti-	0.0274, p = 0.8691	CSDS + CNO + Anti-	31.20 ± 2.43
PDGF-BB $(n = 17)$		PDGF-BB, p > 0.9999	CSDS + CNO +
		CSDS + Vehicle + Anti-	Anti-IgG 30.69 ±
		IgG versus CSDS +	2.66
		Vehicle + Anti-PDGF-	CSDS + CNO +
		BB,	Anti-PDGF-BB
		p > 0.9999	30.30 ± 3.08
		CSDS + CNO + Anti-	
		IgG versus CSDS +	
		CNO + Anti-PDGF-	
		BB, p > 0.9999	
5C: Quantification of the	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
number of BrdU positive		test	
cells			
Control + LV-GFP ($n = 4$)	Stress: F (1,12) =	Control + LV-GFP	Control + LV-GFP
Control + LV-PDGF-BB	7.9930, p = 0.0153	versus CSDS + LV-GFP,	2238.0 ± 164.8
(n = 4)	Virus: F $(1,12) =$	p = 0.0020	Control + LV-
CSDS + LV-GFP (n = 4)	61.5700, p < 0.001	Control + LV-PDGF-BB	PDGF-BB 2833.0 ±
CSDS + LV-PDGF-BB (n	Stress × Virus: F (1.12)	versus CSDS + LV-	152.1
= 4)	= 10.6900, p = 0.0067	PDGF-BB. p > 0.9999	CSDS + LV-GFP
	,r	Control + LV-GFP	1445.0 ± 60.1
		versus Control + LV-	CSDS + LV-PDGF-
		PDGF-BB,	BB 2890.0 ± 116.9
		p = 0.0143	
		CSDS + LV-GFP versus	
		CSDS + LV-PDGF-BB.	
		p < 0.001	
5D: Ouantification of the	Two-way ANOVA	Bonferroni's <i>post hoc</i>	Mean ± s.e.m.
number of BrdU/DCX		test	
positive cells			
1			
Control + LV-GFP ($n = 4$)	Stress: F $(1,12) =$	Control + LV-GFP	Control + LV-GFP
Control + LV-PDGF-BB	9.4360, p = 0.0097	versus CSDS + LV-GFP,	1380.0 ± 117.3
(n = 4)	Virus: F $(1,12) =$	p = 0.0048	Control + LV-
CSDS + LV-GFP (n = 4)	25.2700, p = 0.0003	Control + LV-PDGF-BB	PDGF-BB 1668.0 ±
CSDS + LV-PDGF-BB (n	Stress × Virus: F (1,12)	versus CSDS + LV-	95.5
=4)	= 5.5250,	PDGF-BB, p > 0.9999	CSDS + LV-GFP
	p = 0.0367	Control + LV-GFP	797.5 ± 94.2
	-	versus Control + LV-	CSDS + LV-PDGF-
		PDGF-BB,	BB 1590.0 ± 120.1
		p = 0.1656	

		CSDS + LV-GFP versus	
		CSDS + LV-PDGF-BB,	
		p = 0.0004	
5F: Quantification of the number of BrdU/Sox2/GFAP positive NSCs	Two-way ANOVA	Bonferroni's post hoc test	Mean ± s.e.m.
Control + LV-GFP (n =4) Control + LV-PDGF-BB (n = 4) CSDS + LV-GFP (n = 4) CSDS + LV-PDGF-BB (n = 4)	Stress: F $(1,12) =$ 15.9500, p = 0.0018 Virus: F $(1,12) =$ 22.7200, p = 0.0005 Stress × Virus: F $(1,12) =$ 3.2040, p = 0.0987	Control + LV-GFP versus CSDS + LV-GFP, p = 0.0030 Control + LV-PDGF-BB versus CSDS + LV- PDGF-BB, $p = 0.2904$ Control + LV-GFP versus Control + LV- PDGF-BB, p = 0.1141 CSDS + LV-GFP versus CSDS + LV-PDGF-BB, p = 0.0011	Control + LV-GFP 557.5 \pm 86.4 Control + LV- PDGF-BB 737.5 \pm 19.3 CSDS + LV-GFP 207.8 \pm 32.0 CSDS + LV-PDGF- BB 604.3 \pm 76.0
5G: Quantification of the	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
number of Sox2/GFAP positive NSCs	, ,	test	
Control + LV-GFP (n =4) Control + LV-PDGF-BB (n = 4) CSDS + LV-GFP (n = 4) CSDS + LV-PDGF-BB (n = 4) 5H: The ratio of aNSCs	Stress: F (1,12) = 0.8694, p = 0.3695 Virus: F (1,12) = 5.8640, p = 0.0322 Stress × Virus: F (1,12) = 0.08552, p = 0.7749	Control + LV-GFP versus CSDS + LV-GFP, p > 0.9999 Control + LV-PDGF-BB versus CSDS + LV- PDGF-BB, $p = 0.8068$ Control + LV-GFP versus Control + LV- PDGF-BB, p = 0.3161 CSDS + LV-GFP versus CSDS + LV-PDGF-BB, p = 0.1581 Bonferroni's post hoc	Control + LV-GFP 7825.0 ± 195.9 Control + LV- PDGF-BB 8250.0 ± 108.6 CSDS + LV-GFP 7953.0 ± 201.9 CSDS + LV-PDGF- BB 8495.0 ± 261.6 Mean \pm s.e.m.
5H: The ratio of aNSCs	Two-way ANOVA	Bonterroni's <i>post hoc</i>	Mean ± s.e.m.
to quocs		test	
Control + LV-GFP (n =4) Control + LV-PDGF-BB (n = 4)	Stress: F (1,12) = 23.1900, p = 0.0004	Control + LV-GFP versus CSDS + LV-GFP, p = 0.0009	Control + LV-GFP 1.00 ± 0.15

CSDS + LV-GFP (n = 4)	Virus: F (1,12) =	Control + LV-PDGF-BB	Control + LV-
CSDS + LV-PDGF-BB (n	22.7700, p = 0.0005	versus CSDS + LV-	PDGF-BB 1.26 ±
= 4)	Stress × Virus: F (1,12)	PDGF-BB, p = 0.1337	0.02
	= 3.8660, p = 0.0728	Control + LV-GFP	CSDS + LV-GFP
		versus Control + LV-	0.37 ± 0.06
		PDGF-BB,	CSDS + LV-PDGF-
		p = 0.1413	BB 0.99 ± 0.10
		CSDS + LV-GFP versus	
		CSDS + LV-PDGF-BB,	
		p = 0.0009	
5K: Quantification of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
branch number		test	
Control + AAV-mCherry	Stress: F (1,99) =	Control + AAV-mCherry	Control + AAV-
(n =26)	18.0900, p < 0.001	versus CSDS + AAV-	mCherry 5.7 ± 0.3
Control + AAV-PDGF-	Virus: F (1,99) =	mCherry, p < 0.001	Control + AAV-
BB (n = 25)	18.9300, p < 0.001	Control + AAV-PDGF-	PDGF-BB 5.3 ± 0.4
CSDS + AAV-mCherry (n	Stress × Virus: F (1,99)	BB versus CSDS +	CSDS + AAV-
= 27)	= 34.2900, p < 0.001	AAV-PDGF-BB,	mCherry 2.7 ± 0.2
CSDS + AAV-PDGF-BB		p = 0.5330	CSDS + AAV-
(n = 25)		Control + AAV-mCherry	PDGF-BB 5.8 ± 0.3
		versus Control + AAV-	
		PDGF-BB,	
		p = 0.5838	
		CSDS + AAV-mCherry	
		versus CSDS + AAV-	
		PDGF-BB, p < 0.001	
5L: Quantification of the	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
dendritic length		test	
Control + AAV-mCherry	Stress: F (1,99) =	Control + AAV-mCherry	Control + AAV-
(n = 26)	10.4200, p = 0.0017	versus CSDS + AAV-	mCherry 703.6 \pm
Control + AAV-PDGF-	Virus: F (1,99) =	mCherry, p < 0.001	32.4
BB $(n = 25)$	10.2100, p = 0.0019	Control + AAV-PDGF-	Control + AAV-
CSDS + AAV-mCherry (n	Stress × Virus: F (1,99)	BB versus CSDS +	PDGF-BB 618.2 \pm
= 27)	= 32.1500,	AAV-PDGF-BB,	39.1
CSDS + AAV-PDGF-BB	p < 0.001	p = 0.1837	CSDS + AAV-
(n = 25)		Control + AAV-mCherry	mCherry 396.3 \pm
		versus Control + AAV-	28.8
		PDGF-BB, p = 0.1694	CSDS + AAV-
		CSDS + AAV-mCherry	PDGF-BB 702.5 \pm
		versus CSDS + AAV-	37.8
		PDGF-BB, p < 0.001	
6C: Quantification of the	Unpaired <i>t</i> test		Mean ± s.e.m.

number of BrdU positive		
cells		
LV-shGFP $(n = 4)$	t = 2.5100, p = 0.0459	LV-shGFP
LV-shPDGF-BB $(n = 4)$		2102.0 ± 197.0
		LV-shPDGF-BB
		1364.0 ± 218.3
6D: Quantification of the number of BrdU/DCX	Unpaired t test	Mean ± s.e.m.
	. 2 7740 0 0222	
LV-snGFP(n=4)	t = 2.7/40, p = 0.0322	LV-snGFP
LV-shPDGF-BB (n = 4)		$1036.0 \pm 12/.8$
		LV-SHPDGF-BB
(F: Quantification of the	Unnaired t test	380.0 ± 103.2
number of	Onpaned <i>i</i> test	Weat \pm s.e.m.
BrdU/Sox2/GFAP		
positive NSCs		
positive reses		
LV-shGFP $(n = 4)$	t = 3.5650, p = 0.0119	LV-shGFP
LV-shPDGF-BB $(n = 4)$	· · · · · · · · · · · · · · · · · · ·	362.5 ± 23.9
		LV-shPDGF-BB
		173.0 ± 47.5
6G: Quantification of the	Unpaired <i>t</i> test	Mean ± s.e.m.
number of Sox2/GFAP	1	
positive NSCs		
LV-shGFP $(n = 4)$	t = 0.2787, p = 0.7898	LV-shGFP
LV-shPDGF-BB $(n = 4)$		6515.0 ± 120.7
		LV-shPDGF-BB
		6384.0 ± 454.2
6H: The ratio of aNSCs	Unpaired <i>t</i> test	Mean ± s.e.m.
to quises		
LV-shGFP $(n = 4)$	t = 3.5560, p = 0.0120	LV-shGFP
LV-shPDGF-BB $(n = 4)$		1.00 ± 0.08
		LV-shPDGF-BB
		0.49 ± 0.12
6K: Quantification of	Unpaired <i>t</i> test	Mean ± s.e.m.
branch number	-	
LV-shmCherry (n = 25	t = 6.0250, p < 0.001	LV-shCherry
neurons)		6.4 ± 0.4
		LV-shPDGF-BB

LV-shPDGF-BB ($n = 25$			3.3 ± 0.3
neurons)			
6L: Quantification of the	Unpaired <i>t</i> test		Mean ± s.e.m.
dendritic length			
LV-shmCherry (n = 25	t = 6.0040, p < 0.001		LV-shCherry
neurons)			813.5 ± 40.6
LV-shPDGF-BB ($n = 25$			LV-shPDGF-BB
neurons)			477.9 ± 38.5
7C: Behavioral tests of	Unpaired <i>t</i> test		Mean ± s.e.m.
SIT			
AAV-DIO-shGFP (n =	t = 2.8320, p = 0.0090		AAV-DIO-shGFP
15)			1.247 ± 0.139 AAV-
AAV-DIO-shPDGFR β (n			DIO-shPDGFβ
=12)			0.517 ± 0.230
7D: Behavioral tests of	Unpaired t test		Mean ± s.e.m.
TST			
AAV-DIO-shGFP (n =	t = 2.0690, p = 0.0490		AAV-DIO-shGFP
15)			137.9 ± 11.5
AAV-DIO-shPDGFRβ			AAV-DIO-
(n=12)			shPDGF β 170.2 ±
			9.9
7E: Behavioral tests of	Unpaired t test		Mean ± s.e.m.
FST			
AAV-DIO-shGFP $(n = 1.5)$	t = 2.2650, p = 0.0324		AAV-DIO-shGFP
15)			96.0 ± 11.3
AAV-DIO-shPDGFRβ (n			AAV-DIO-
=12)			shPDGF β 132.2 ±
	TT 1		10.9
7F: Behavioral tests of	Unpaired t test		Mean ± s.e.m.
OFI			
	t = 0.1051 = -0.94(0)		
AAV-DIO-SnGFP (n =	t = 0.1951, p = 0.8469		AAV-DIO-GFP
AWDIO aNDCEDO (*			31.20 ± 2.98
-12			AAV-DIU-
-12)			ыг DGгр 32.11 ± 2 0/
74. Rehavioral tasta of		Bonferroni's next has	$\frac{2.77}{M_{000}} \pm s \circ m$
FST	1w0-way ANOVA	test	witan ± S.C.III.
		11.51	
	Treatment: F (1 47) –		
	110uillonii (1,+/) -		

AAV-DIO-shGFP +	0.4228, p = 0.5187	AAV-DIO-shGFP +	AAV-DIO-shGFP +
Vehicle $(n = 13)$	Virus: F (1,47) =	Vehicle versus	Vehicle 120.7 ± 4.8
AAV-DIO-shGFP +	14.8400, p = 0.0004	AAV-DIO-shPDGFRβ	AAV-DIO-shGFP +
PDGF-BB ($n = 14$)	Treatment × Virus: F	+ Vehicle, p = 0.9496	PDGF-BB 94.9 ±
AAV-DIO-shPDGFR β +	(1,47) = 7.9790,	AAV-DIO-shGFP +	8.7
Vehicle $(n = 12)$	p = 0.0069	PDGF-BB versus AAV-	AAV-DIO-
AAV-DIO-shPDGFR β +		DIO-shPDGFRβ	$shPDGFR\beta$ +
PDGF-BB ($n = 12$)		+ PDGF-BB,	Vehicle 128.3 ± 5.9
		p < 0.001	AAV-DIO-
		AAV-DIO-shGFP +	$shPDGFR\beta$ +
		Vehicle versus AAV-	PDGF-BB 144.5 \pm
		DIO-shGFP + PDGF-	9.2
		BB, p = 0.0295	
		AAV-DIO-shPDGFR β +	
		Vehicle versus AAV-	
		$DIO-shPDGFR\beta$ +	
		PDGF-BB,	
		p = 0.2833	
7I: Behavioral tests of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
OFT		test	
AAV-DIO-shGFP +	Treatment: $F(1,47) =$	AAV-DIO-shGFP +	AAV-DIO-shGFP +
AAV-DIO-shGFP + Vehicle (n = 13)	Treatment: F $(1,47) = 0.4061, p = 0.5271$	AAV-DIO-shGFP + Vehicle versus	AAV-DIO-shGFP + Vehicle 42.34 ±
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP +	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFRβ +	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14)	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50 AAV-DIO-shGFP +
AAV-DIO-shGFP+Vehicle $(n = 13)$ +AAV-DIO-shGFP+PDGF-BB $(n = 14)$ +AAV-DIO-shPDGFR β +	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP +	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 ±
AAV-DIO-shGFP+Vehicle $(n = 13)$ +AAV-DIO-shGFP+PDGF-BB $(n = 14)$ +AAV-DIO-shPDGFR β +Vehicle $(n = 12)$ +	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p =	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 ± 3.30
AAV-DIO-shGFP+Vehicle $(n = 13)$ +AAV-DIO-shGFP+PDGF-BB $(n = 14)$ +AAV-DIO-shPDGFR β +Vehicle $(n = 12)$ +AAV-DIO-shPDGFR β +	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP+Vehicle versusAAV-DIO-shPDGFR β +Vehicle, p = 0.3810AAV-DIO-shGFP +PDGF-BB versusAAV-DIO-shPDGFR β	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 ± 3.30 AAV-DIO-
AAV-DIO-shGFP+Vehicle $(n = 13)$ +AAV-DIO-shGFP+PDGF-BB $(n = 14)$ +AAV-DIO-shPDGFR β +Vehicle $(n = 12)$ +AAV-DIO-shPDGFR β +PDGF-BB $(n = 12)$ +	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB,	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 ± 3.30 AAV-DIO- shPDGFR β +
AAV-DIO-shGFP+Vehicle (n = 13)+AAV-DIO-shGFP+PDGF-BB (n = 14)+AAV-DIO-shPDGFR β +Vehicle (n = 12)+AAV-DIO-shPDGFR β +PDGF-BB (n = 12)+	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 ± 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 ± 300
AAV-DIO-shGFP+Vehicle $(n = 13)$ +AAV-DIO-shGFP+PDGF-BB $(n = 14)$ +AAV-DIO-shPDGFR β +Vehicle $(n = 12)$ +AAV-DIO-shPDGFR β +PDGF-BB $(n = 12)$ +	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP+Vehicle versusAAV-DIO-shPDGFR β +Vehicle, p = 0.3810AAV-DIO-shGFP +PDGF-BB versusAAV-DIO-shPDGFR β + PDGF-BB,p = 0.5929AAV-DIO-shGFP+ PDGF-shGFP	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53
AAV-DIO-shGFP+Vehicle (n = 13)+AAV-DIO-shGFP+PDGF-BB (n = 14)+AAV-DIO-shPDGFR β +Vehicle (n = 12)+AAV-DIO-shPDGFR β +PDGF-BB (n = 12)+	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV-	AAV-DIO-shGFP + Vehicle 42.34 ± 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 ± 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 ± 2.53 AAV-DIO-
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14) AAV-DIO-shPDGFR β + Vehicle (n = 12) AAV-DIO-shPDGFR β + PDGF-BB (n = 12)	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF-	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β +
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14) AAV-DIO-shPDGFR β + Vehicle (n = 12) AAV-DIO-shPDGFR β + PDGF-BB (n = 12)	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14) AAV-DIO-shPDGFR β + Vehicle (n = 12) AAV-DIO-shPDGFR β + PDGF-BB (n = 12)	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β +	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14) AAV-DIO-shPDGFR β + Vehicle (n = 12) AAV-DIO-shPDGFR β + PDGF-BB (n = 12)	Treatment: F $(1,47) = 0.4061$, p = 0.5271 Virus: F $(1,47) = 2.8470$, p = 0.0982 Treatment × Virus: F $(1,47) = 0.04302$, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β + Vehicle versus	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14) AAV-DIO-shPDGFR β + Vehicle (n = 12) AAV-DIO-shPDGFR β + PDGF-BB (n = 12)	Treatment: F $(1,47) = 0.4061$, p = 0.5271 Virus: F $(1,47) = 2.8470$, p = 0.0982 Treatment × Virus: F $(1,47) = 0.04302$, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β + Vehicle versus AAV-DIO-shPDGFR β +	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14) AAV-DIO-shPDGFR β + Vehicle (n = 12) AAV-DIO-shPDGFR β + PDGF-BB (n = 12)	Treatment: F $(1,47) =$ 0.4061, p = 0.5271 Virus: F $(1,47) =$ 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β + Vehicle versus AAV-DIO-shPDGFR β + PDGF-BB,	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31
AAV-DIO-shGFP + Vehicle (n = 13) AAV-DIO-shGFP + PDGF-BB (n = 14) AAV-DIO-shPDGFR β + Vehicle (n = 12) AAV-DIO-shPDGFR β + PDGF-BB (n = 12)	Treatment: F $(1,47) = 0.4061$, p = 0.5271 Virus: F $(1,47) = 2.8470$, p = 0.0982 Treatment × Virus: F $(1,47) = 0.04302$, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β + Vehicle versus AAV-DIO-shPDGFR β + PDGF-BB, p > 0.9999	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31
AAV-DIO-shGFP+Vehicle (n = 13)+AAV-DIO-shGFP+PDGF-BB (n = 14)+AAV-DIO-shPDGFR β +PDGF-BB (n = 12)+AAV-DIO-shPDGFR β +PDGF-BB (n = 12)+ 7K: Quantification of the	Treatment: F (1,47) = 0.4061, p = 0.5271 Virus: F (1,47) = 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β + Vehicle versus AAV-DIO-shPDGFR β + PDGF-BB, p > 0.9999 Bonferroni's <i>post hoc</i>	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31 Mean \pm s.e.m.
AAV-DIO-shGFP+Vehicle (n = 13)-AAV-DIO-shGFP+PDGF-BB (n = 14)-AAV-DIO-shPDGFR β +Vehicle (n = 12)-AAV-DIO-shPDGFR β +PDGF-BB (n = 12)- 7K: Quantification of the number of BrdU positive	Treatment: F (1,47) = 0.4061, p = 0.5271 Virus: F (1,47) = 2.8470, p = 0.0982 Treatment × Virus: F (1,47) = 0.04302, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β + Vehicle versus AAV-DIO-shPDGFR β + PDGF-BB, p > 0.9999 Bonferroni's <i>post hoc</i> test	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31 Mean \pm s.e.m.
AAV-DIO-shGFP+Vehicle (n = 13)	Treatment: F $(1,47) = 0.4061$, p = 0.5271 Virus: F $(1,47) = 2.8470$, p = 0.0982 Treatment × Virus: F $(1,47) = 0.04302$, p = 0.8366	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.3810 AAV-DIO-shGFP + PDGF-BB versus AAV-DIO-shPDGFR β + PDGF-BB, p = 0.5929 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p > 0.9999 AAV-DIO-shPDGFR β + Vehicle versus AAV-DIO-shPDGFR β + PDGF-BB, p > 0.9999 Bonferroni's <i>post hoc</i> test	AAV-DIO-shGFP + Vehicle 42.34 \pm 2.50 AAV-DIO-shGFP + PDGF-BB 40.02 \pm 3.30 AAV-DIO- shPDGFR β + Vehicle 37.14 \pm 2.53 AAV-DIO- shPDGFR β + PDGF-BB 35.96 \pm 2.31 Mean \pm s.e.m.

AAV-DIO-shGFP +	Treatment: $F(1,10) =$	AAV-DIO-shGFP +	AAV-DIO-shGFP +
Vehicle $(n = 3)$	0.3994, p = 0.5416	Vehicle versus	Vehicle
AAV-DIO-shGFP +	Virus: F (1,10) =	AAV-DIO-shPDGFRβ	1827.0 ± 68.9
PDGF-BB $(n = 4)$	5.8770, p = 0.0358	+ Vehicle, p = 0.6523	AAV-DIO-shGFP +
AAV-DIO-shPDGFR β +	Treatment × Virus: F	AAV-DIO-shGFP +	PDGF-BB 3448.0 \pm
Vehicle $(n = 3)$	(1,10) = 15.8800,	PDGF-BB versus AAV-	541.0
AAV-DIO-shPDGFR β +	p = 0.0026	DIO-shPDGFRβ	AAV-DIO-
PDGF-BB (n =4)		+ PDGF-BB,	$shPDGFR\beta$ +
		p = 0.0013	Vehicle 2375.0 \pm
		AAV-DIO-shGFP +	101.8
		Vehicle versus AAV-	AAV-DIO-
		DIO-shGFP + PDGF-	$shPDGFR\beta$ +
		BB, p = 0.0170	PDGF-BB 1198.0 ±
		AAV-DIO-shPDGFR β +	227.7
		Vehicle versus AAV-	
		DIO -shPDGFR β +	
		PDGF-BB,	
		p = 0.0784	
7L: Quantification of the	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
number of		test	
BrdU/Sox2/GFAP			
positive NSCs			
AAV-DIO-shGFP +	Treatment: $F(1,10) =$	AAV-DIO-shGFP +	AAV-DIO-shGFP +
Vehicle $(n = 3)$	1.0040, p = 0.3400	Vehicle versus	Vehicle 256.7 \pm
AAV-DIO-shGFP +	Virus: F (1,10) =	AAV-DIO-shPDGFRβ	32.83
PDGF-BB $(n = 4)$	4.9730, p = 0.0498	+ Vehicle, p > 0.9999	AAV-DIO-shGFP +
AAV-DIO-shPDGFR β +	Treatment × Virus: F	AAV-DIO-shGFP+	PDGF-BB 533.0 \pm
Vehicle $(n = 3)$	(1,10) = 7.8620,	PDGF-BB versus AAV-	92.3
AAV-DIO-shPDGFR β +	p = 0.0187	DIO-shPDGFRβ	AAV-DIO-
PDGF-BB $(n = 4)$		+ PDGF-BB,	$shPDGFR\beta$ +
		p = 0.0065	Vehicle 298.3 ±
		AAV-DIO-shGFP +	83.7
		Vehicle versus AAV-	AAV-DIO-
		DIO-shGFP + PDGF-	$shPDGFR\beta$ +
		BB, p = 0.0453	PDGF-BB 167.5 \pm
		AAV-DIO-shPDGFR β +	50.1
		Vehicle versus AAV-	
		$DIO-shPDGFR\beta$ +	
		PDGF-BB,	
		p = 0.4629	
7M: Quantification of the	Two way ANOVA	Donformani'a next has	$M_{con} \perp c \circ m$
1	Two-way ANOVA	Bomerioni s post noc	Weat \pm s.e.m.
number of Sox2/GFAP	Two-way ANOVA	test	wiean ± s.e.m.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Treatment: F (1,10) = 1.5410, p = 0.2428 Virus: F (1,10) = 1.2820, p = 0.2839 Treatment × Virus: F (1,10) = 1.5900, p = 0.2359	AAV-DIO-shGFP + Vehicle versus AAV-DIO-shPDGFR β + Vehicle, p = 0.2145 AAV-DIO-shGFP + PDGF-BB versus AAV- DIO-shPDGFR β + PDGF-BB, p > 0.9999 AAV-DIO-shGFP + Vehicle versus AAV- DIO-shGFP + PDGF- BB, p = 0.2890 AAV-DIO-shPDGFR β + Vehicle versus AAV- DIO-shPDGFR β + PDGF-BB, p > 0.9999	AAV-DIO-shGFP + Vehicle $8067.0 \pm$ 34.8 AAV-DIO-shGFP + PDGF-BB 6115.0 \pm 539.2 AAV-DIO- shPDGFR β + Vehicle 6200.0 \pm 595.3 AAV-DIO- shPDGFR β + PDGF-BB 6215.0 \pm 1127.0
7N: The ratio of aNSCs	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
to qNSCs		test	
AAV-DIO-shGFP + Vehicle (n = 3) AAV-DIO-shGFP + PDGF-BB (n = 4) AAV-DIO-shPDGFR β + Vehicle (n = 3) AAV-DIO-shPDGFR β + PDGF-BB (n = 4)	Treatment: F $(1,10) =$ 1.8670, p = 0.2017 Virus: F $(1,10) =$ 3.5670, p = 0.0883 Treatment × Virus: F (1,10) = 8.7410, p = 0.0144	$\begin{array}{llllllllllllllllllllllllllllllllllll$	AAV-DIO-shGFP + Vehicle 1.00 \pm 0.12 AAV-DIO-shGFP + PDGF-BB 2.91 \pm 0.69 AAV-DIO- shPDGFR β + Vehicle 1.47 \pm 0.31 AAV-DIO- shPDGFR β + PDGF-BB 0.77 \pm 0.16
S2C: Behavioral tests of SIT	Unpaired <i>t</i> test		Mean ± s.e.m.
Control $(n = 13)$	t = 11.0700,		

CSDS (n =12)	p < 0.001	Control 1.884 ±
		0.104
		CSDS 0.502 ±
		0.064
S2D: Behavioral tests of	Unpaired t test	Mean ± s.e.m.
SPT		
Control $(n = 13)$	t = 6.2040, p < 0.001	Control 87.97 ±
CSDS $(n=12)$	-	1.58
		CSDS 52.40 ± 5.73
S3B: Behavioral effects	Unpaired <i>t</i> test	Mean ± s.e.m.
of the chemogenetic	1	
inhibition of MS-DG		
neurons in the TST		
Vehicle $(n = 14)$	t = 2.7080, $p = 0.0112$	Vehicle 137.4 ± 7.6
CNO(n = 17)		$CNO 102.5 \pm 9.9$
S3C : Behavioral effects	Unnaired <i>t</i> test	Mean + s.e.m
of the chemogenetic	onpuned i test	Witchi + 5.c.m.
inhibition of MS-DG		
neurons in the FST		
neurons in me r's i		
Vehicle $(n = 14)$	t = 2.0960 $n = 0.0449$	Vehicle $131.1 + 8.2$
CNO(n = 17)	t = 2.0000, p = 0.0440	CNO 106.6 \pm 8.2
$\mathbf{S2D}$: Dehavioral offecta	Unnained t test	$\frac{1}{100.0 \pm 0.2}$
sol: Benavioral effects	Onpaned <i>i</i> test	with \pm s.e.m.
of the chemogenetic		
infibition of MIS-DG		
neurons in the OF I		
X71'1 (14)	4 0 4049 0 6996	V1:1 20.00 L
Vehicle $(n = 14)$	t = 0.4048, p = 0.6886	Vehicle $38.69 \pm$
CNO(n = 17)		2.23
		$CNO 39.89 \pm 1.96$
S4B: Patch clamp	Unpaired <i>t</i> test	Mean ± s.e.m.
recording from neurons		
expressing hM4Di-		
mCherry in the MS		
Control ($n = 4$ cells)		
CNO ($n = 4$ cells)	t = 4.8000, p = 0.0030	Control 9.5 ± 0.6
		CNO 4.8 ± 0.8
S4D: Patch clamp	Two-tailed paired t test	Mean ± s.e.m.
recording from neurons		
expressing hM3Dq-		
mCherry in the MS		

CNO (n = 4 cells) S5B: Behavioral effects	t = 14.8100, P = 0.0007 Unpaired <i>t</i> test	Before-CNO -63.80 ± 4.60 After-CNO -40.50 ± 4.23 Mean ± s.e.m.
of the chemogenetic activation of MS-DG neurons in the SIT	1	
Vehicle (n = 8) CNO (n = 10)	t = 1.1970, p = 0.2486	Vehicle 1.251 ± 0.136 CNO 1.688 ± 0.306
S5C: Behavioral effects of the chemogenetic activation of MS-DG neurons in the SPT	Unpaired <i>t</i> test	Mean ± s.e.m.
Vehicle (n = 8) CNO (n = 11)	t = 0.2279, p = 0.8225	Vehicle 71.24 ± 8.09 CNO 73.04 ± 3.40
S5D: Behavioral effects of the chemogenetic activation of MS-DG neurons in the TST	Unpaired <i>t</i> test	Mean ± s.e.m.
S5D: Behavioral effects of the chemogenetic activation of MS-DG neurons in the TST Vehicle (n = 8) CNO (n = 11)	Unpaired <i>t</i> test t = 1.7330, p = 0.1013	Mean ± s.e.m. Vehicle 143.1 ± 9.5 CNO 112.2 ± 13.5
S5D: Behavioral effects of the chemogenetic activation of MS-DG neurons in the TST Vehicle (n = 8) CNO (n = 11) S5E: Behavioral effects of the chemogenetic activation of MS-DG neurons in the FST	Unpaired <i>t</i> test t = 1.7330, p = 0.1013 Unpaired <i>t</i> test	Mean ± s.e.m. Vehicle 143.1 ± 9.5 CNO 112.2 ± 13.5 Mean ± s.e.m.
S5D: Behavioral effects of the chemogenetic activation of MS-DG neurons in the TST Vehicle (n = 8) CNO (n = 11) S5E: Behavioral effects of the chemogenetic activation of MS-DG neurons in the FST Vehicle (n = 8) CNO (n = 11)	Unpaired <i>t</i> test t = 1.7330, p = 0.1013 Unpaired <i>t</i> test t = 0.2470, p = 0.8079	Mean ± s.e.m. Vehicle 143.1 ± 9.5 CNO 112.2 ± 13.5 Mean ± s.e.m. Vehicle 101.8 ± 9.0 CNO 106.0 ± 13.1
S5D: Behavioral effects of the chemogenetic activation of MS-DG neurons in the TST Vehicle (n = 8) CNO (n = 11) S5E: Behavioral effects of the chemogenetic activation of MS-DG neurons in the FST Vehicle (n = 8) CNO (n = 11) S5F: Behavioral effects of the chemogenetic activation of MS-DG neurons in the OFT	Unpaired <i>t</i> test t = 1.7330, p = 0.1013 Unpaired <i>t</i> test t = 0.2470, p = 0.8079 Unpaired <i>t</i> test	Mean ± s.e.m. Vehicle 143.1 ± 9.5 CNO 112.2 ± 13.5 Mean ± s.e.m. Vehicle 101.8 ± 9.0 CNO 106.0 ± 13.1 Mean ± s.e.m.

S6C: PDGF-BB mRNA	Unpaired t test		Mean ± s.e.m.
expression in the DG			
after CSDS			
Control $(n = 10)$	t = 3.0480, p = 0.0061		Control 1.000 ±
CSDS $(n = 13)$			0.048
			CSDS 0.759 ±
			0.059
S6D: PDGF-BB	Unpaired <i>t</i> test		Mean ± s.e.m.
protein levels in the			
DG as determined by			
ELISA after CSDS			
Control $(n = 8)$	t = 2.6160, p = 0.0203		Control 172.2 ± 6.2
CSDS(n=8)			CSDS 138.3 ± 11.4
S6E: PDGF-BB mRNA	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
expression in the DG	1	test	
after inhibition of MS-			
DG projection neurons			
DO projection licutoris			
Control + Vehicle (n =			
$\frac{10}{10}$	Stragg: $E(1.46) =$	Control + Vahiala varsus	Control + Vahiala
$\frac{10}{10}$	5 2210 = 0.0256	CSDS Vehicle r =	
$CSDS + V_{r}h_{r}h_{r}^{2}h_{r}^{2} = 10$	5.3210, p = 0.0256	CSDS + venicle, p = 0.0029	0.961 ± 0.088
CSDS + Venicle (n = 14)	Ireatment: $F(1,46) =$	0.0028	Control + CNO
CSDS + CNO (n = 16)	11.1600, $p = 0.0017$	Control + CNO versus	1.016 ± 0.064
	Stress × Treatment: F	CSDS + CNO,	CSDS + Vehicle
	(1,46) = 6.5860, p =	p > 0.9999	0.620 ± 0.063
	0.0136	Control + Vehicle versus	CSDS + CNO
		Control + CNO, $p >$	1.034 ± 0.062
		0.9999	
		CSDS + Vehicle versus	
		CSDS + CNO,	
		p < 0.001	
S6F: PDGF-BB mRNA	Unpaired <i>t</i> test		Mean ± s.e.m.
expression in the DG			
after stimulation MS-DG			
projection neurons			
Vehicle $(n = 13)$	t = 2.5680, p = 0.0166		Vehicle $1.000 \pm$
CNO $(n = 14)$			0.055
			CNO 0.839 ± 0.032
S6J: Behavioral test of	Unpaired <i>t</i> test		Mean ± s.e.m.
TST			

Vehicle $(n = 14)$	t = 3.3810, p = 0.0021		Vehicle 141.9 ± 7.0
CNO $(n = 16)$			CNO 100.6 ± 9.6
S6K: Behavioral test of	Unpaired <i>t</i> test		Mean ± s.e.m.
FST	1		
Vehicle $(n = 14)$	t = 3.6550 $p = 0.0011$		Vehicle 77 8 + 10 4
CNO(n = 16)	t 5.0550,p 0.0011		CNO 349 + 61
S6L · Behavioral test of	Unnaired t test		$M_{eqn} + s = m$
	onpaned i test		Wican - S.c.m.
OFI			
$V_{abiala} (n - 14)$	t = 0.6220 $r = 0.5277$		Vahiala 27.41
$\frac{1}{2}$	t = 0.0239, p = 0.3377		venicle $3/.41 \pm$
CNO(n = 16)			2.25
			$CNO 39.94 \pm 3.23$
S6M: PDGF-BB	Unpaired <i>t</i> test		Mean ± s.e.m.
mRNA expression			
in the DG after MS			
to DG inhibition in			
the Vgat-Cre mice			
Vehicle $(n = 14)$	t = 3.1000, p = 0.0044		Vehicle $1.000 \pm$
CNO (n = 16)			0.059
			CNO 1.425 ± 0.117
S7B: PDGF-BB protein	Unpaired t test		Mean ± s.e.m.
levels in the DG as			
determined by ELISA			
AAV-GFP $(n = 7)$	t = 4.4140, p = 0.0005		AAV-GFP
AAV-PDGF-BB $(n = 10)$	· •		164.60 ± 14.73
			AAV-PDGF-BB
			265.60 ± 16.07
S8B: Time spent	One-way ANOVA	Tukey's <i>post hoc</i> test	Mean ± s.e.m.
immobile in the FST			
Vehicle $(n = 8)$	Treatment: $F(3, 27) =$	Vehicle versus 0.0072	Vehicle 136 1 + 5 2
$0.0072 \mu g/mL(n=8)$	2.7560 n = 0.0618	$\mu g/mL$ $n = 0.4412$	0.0072
$0.072 \mu g/mL (n = 8)$	2.7500, p 0.0010	Vehicle versus 0.072	$\mu g m L$
$0.072 \mu g/mL (n = 7)$		$u_{a}/mI_{a} = 0.6350$	0.072 µg/mI 115.8
$0.72 \mu g/mL(m - 7)$		Vahiela versus	± 15.0
		$\int \frac{1}{\sqrt{2}} \frac{1}{$	± 13.0
		$0.72 \ \mu g/IIIL, p = 0.0383$	$0.72 \ \mu g/mL \ 85.7 \pm 7.5$
		$0.0072 \ \mu g/mL \ versus$	1.3
		$0.072 \mu g/mL$,	
		p = 0.9881	
		0.00/2 µg/mL versus	
		0.50	

		0.072 µg/mL versus 0.72	
		μ g/mL, p = 0.3422	
S8C: Locomotor activity measured by the total distance traveled by the WT mice with vehicle or PDGF-BB treatment	One-way ANOVA	Tukey's <i>post hoc</i> test	Mean ± s.e.m.
Vehicle (n = 8) 0.0072 µg/mL (n = 8) 0.072 µg/mL (n = 8) 0.72 µg/mL (n = 7)	Treatment: F (3, 27) = 1.6110, p = 0.2099	Vehicle versus $0.0072 \ \mu g/mL, p =$ 0.4757 Vehicle versus $0.072 \ \mu g/mL, p = 0.9162$ Vehicle versus $0.72 \ \mu g/mL, p = 0.9996$ $0.0072 \ \mu g/mL \ versus$ $0.072 \ \mu g/mL, p = 0.1775$ $0.0072 \ \mu g/mL, p = 0.4470$ $0.072 \ \mu g/mL \ versus 0.72 \ \mu g/mL, p = 0.9524$	Vehicle 32.60 ± 6.02 $0.0072 \ \mu g/mL$ 42.10 ± 4.61 $0.072 \ \mu g/mL \ 28.39$ ± 3.81 $0.72 \ \mu g/mL \ 31.93 \pm 3.65$
S9B: PDGF-BB protein levels in the DG as determined by ELISA	Unpaired t test		Mean ± s.e.m.
LV-shGFP (n = 8) LV-shPDGF-BB (n = 8)	t = 4.9140, p = 0.0002		LV-shGFP 175.0 ± 15.8 LV-shPDGF-BB 90.5 ± 6.7
S9C: Behavioral effects of PDGF-BB knockdown in the SIT	Unpaired <i>t</i> test		Mean ± s.e.m.
LV-shGFP (n = 6) LV-shPDGF-BB (n = 6)	t = 0.8668, p = 0.4064		LV-shGFP 1.252 ± 0.115 LV-shPDGF-BB 1.396 ± 0.120
S9D: Behavioral effects of PDGF-BB knockdown in the TST	Unpaired <i>t</i> test		Mean ± s.e.m.
LV-shGFP $(n = 6)$ LV-shPDGF-BB $(n = 6)$	t = 0.3781, p = 0.7132		LV-shGFP 134.0 ± 11.2

			LV-shPDGF-BB
			139.5 ± 9.3
S9E: Behavioral effects of PDGF-BB knockdown in the FST	Unpaired <i>t</i> test		Mean ± s.e.m.
LV-shGFP (n = 6) LV-shPDGF-BB (n = 6)	t = 1.2080, p = 0.2547		LV-shGFP 135.0 ± 8.9 LV-shPDGF-BB 122.8 ± 4.7
S9F: Behavioral effects of PDGF-BB knockdown in the OFT	Unpaired <i>t</i> test		Mean ± s.e.m.
LV-shGFP (n = 6) LV-shPDGF-BB (n = 6)	t = 0.09797, p = 0.9239		LV-shGFP 43.76 ± 6.96 LV-shPDGF-BB 43.00 ± 3.51
S10C: Quantification of the number of BrdU positive cells	Two-way ANOVA	Bonferroni's <i>post hoc</i> test	Mean ± s.e.m.
Control + Vehicle (n = 4) Control + PDGF-BB (n = 4) CSDS + Vehicle (n = 3) CSDS + PDGF-BB (n = 4)	Stress: F $(1,11) =$ 2.7820, p = 0.1235 Treatment: F $(1,11) =$ 45.0200, p < 0.001 stress × treatment interaction: F $(1,11) =$ 5.1380, p = 0.0446	Control + Vehicle versus CSDS + Vehicle, $p =$ 0.0427 Control + PDGF-BB versus CSDS + PDGF- BB, $p > 0.9999$ Control + Vehicle versus Control + PDGF-BB, $p =$ 0.0149 CSDS + Vehicle versus CSDS + PDGF-BB, $p =$ 0.0002	Control + Vehicle 2334.0 \pm 124.7 Control + PDGF- BB 3693.0 \pm 484.9 CSDS + Vehicle 1130.0 \pm 15.28 CSDS + PDGF-BB 3876.0 \pm 256.9
S10D: Quantification ofthenumberofBrdU/DCXpositive cells	Two-way ANOVA	Bonferroni's <i>post hoc</i> test	Mean ± s.e.m.
Control + Vehicle (n = 4) Control + PDGF-BB (n = 4) CSDS + Vehicle (n = 3)	Stress: F (1,11) = 4.6700, p = 0.0536 Treatment: F (1,11) = 15.4500, p = 0.0024	Control + Vehicle versus CSDS + Vehicle, p = 0.0474	Control + Vehicle 1489.0 ± 58.5 Control + PDGF- BB 2038.0 ± 300.2

CSDS + PDGF-BB (n =	Stress × Treatment: F	Control + PDGF-BB	CSDS + Vehicle
4)	(1,11) = 2.8500, p =	versus CSDS + PDGF-	546.7 ± 73.1
	0.1195	BB, p > 0.9999	CSDS + PDGF-BB
		Control + Vehicle versus	1923.0 ± 326.7
		Control + PDGF-BB, p	
		= 0.2543	
		CSDS + Vehicle versus	
		CSDS + PDGF-BB,	
		p = 0.0056	
S10F: Quantification of	Two-way ANOVA,	Bonferroni's post hoc	Mean ± s.e.m.
the		test	
number of			
BrdU/Sox2/GFAP			
positive NSCs			
Control + Vehicle $(n = 4)$	Stress: F $(1,11) =$	Control + Vehicle versus	Control + Vehicle
Control + PDGF-BB ($n =$	6.1920, p = 0.0301,	CSDS + Vehicle, p =	335.0 ± 8.7
4)	Treatment: $F(1,11) =$	0.0202	Control + PDGF-
CSDS + Vehicle (n = 3)	27.9000, p =0.0003	Control + PDGF-BB	BB $467.5.0 \pm 52.0$
CSDS + PDGF-BB (n =	Stress × Treatment: F	versus CSDS + PDGF-	CSDS + Vehicle
4)	(1,11) = 4.2560, p =	BB, p > 0.9999	147.7 ± 16.2
	0.0635	Control + Vehicle	CSDS + PDGF-BB
		versus Control +	450.0 ± 53.1
		PDGF-BB, p = 0.0744	
		CSDS + Vehicle versus	
		CSDS + PDGF-BB,	
		p = 0.0008	
S10G: Quantification of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
the		test	
number of Sox2/GFAP			
positive NSCs			
		a	
Control + Vehicle $(n = 4)$	Stress: $F(1,11) =$	Control + Vehicle versus	Control + Vehicle
Control + PDGF-BB ($n =$	0.1566, p = 0.6998	CSDS + Vehicle, p =	5913.0 ± 168.6
4)	Treatment: $F(1,11) =$	0.5800	Control + PDGF-
CSDS + Vehicle (n = 3)	0.009234, p = 0.9252	Control + PDGF-BB	BB 6345.0 \pm 202.1
CSDS + PDGF-BB (n = 1)	Stress \times Treatment: F	versus USDS + PDGF-	CSDS + Vehicle
4)	(1,11) = 1.52/0,	вв, p > 0.9999	0442.0 ± 044.1
	p = 0.2423	Control + venicle versus	CSDS + PDGF-BB
		-0.6062	$00/2.0 \pm 283.3$
		-0.0902	
		CSDS + DDCE DD	
		CSDS + FDGF-BB,	
		u = 0.90 / /	

S10H: The ratio of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
aNSCs to qNSCs		test	
Control + Vehicle $(n = 4)$	Stress: $F(1,11) =$	Control + Vehicle versus	Control + Vehicle
Control + PDGF-BB (n =	8.1240, p = 0.0158	CSDS + Vehicle, p =	1.00 ± 0.02
4)	Treatment: $F(1,11) =$	0.0051	Control + PDGF-
CSDS + Vehicle (n = 3)	32.9000, p = 0.0001	Control + PDGF-BB	BB 1.30 ± 0.15
CSDS + PDGF-BB (n =	Stress × Treatment: F	versus CSDS + PDGF-	CSDS + Vehicle
4)	(1,11) = 8.1270,	BB, p > 0.9999	0.40 ± 0.01
	p = 0.0158	Control + Vehicle versus	CSDS + PDGF-BB
		Control + PDGF-BB, p	1.30 ± 0.12
		= 0.1145	
		CSDS + Vehicle versus	
		CSDS + PDGF-BB,	
		p = 0.0002	
S10K: Quantification of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
the		test	
branch number			
Control + Vehicle (n =	Stress: F (1,97) =	Control + Vehicle versus	Control + Vehicle
27)	3.4990, p = 0.0644	CSDS + Vehicle, p =	4.7 ± 0.3
Control + PDGF-BB (n =	Treatment: F (1,97) =	0.0032	Control + PDGF-
24)	19.9200, p < 0.001	Control + PDGF-BB	BB 5.3 ± 0.4
CSDS + Vehicle (n = 26)	Stress × Treatment: F	versus CSDS + PDGF-	CSDS + Vehicle 3.2
CSDS + PDGF-BB (n =	(1,97) = 6.8190, p =	BB, p > 0.9999	± 0.3
24)	0.0105	Control + Vehicle versus	CSDS + PDGF-BB
		Control + PDGF-BB, p	5.5 ± 0.4
		= 0.3830	
		CSDS + Vehicle versus	
		CSDS + PDGF-BB,	
		p < 0.001	
S10L: Quantification of	Two-way ANOVA	Bonferroni's post hoc	Mean ± s.e.m.
the dendritic length		test	
Control + Vehicle (n =	Stress: F $(1, 97) =$	Control + Vehicle versus	Control + Vehicle
27)	1.1470, p = 0.2869	CSDS + Vehicle, p =	635.4 ± 32.4
Control + PDGF-BB (n =	Treatment: F $(1,97) =$	0.0004	Control + PDGF-
24)	16.8100, p < 0.001	Control + PDGF-BB	BB 628.9 ± 30.1
CSDS + Vehicle (n = 26)	Stress × Treatment: F	versus CSDS + PDGF-	CSDS + Vehicle
CSDS + PDGF-BB (n =	(1,97) = 18.4500,	BB, p = 0.0567	455.8 ± 35.9
24)	p < 0.001	Control + Vehicle versus	CSDS + PDGF-BB
		Control + PDGF-BB,	736.8 ± 34.5
		p > 0.9999	

		CSDS + Vehicle versus	
		CSDS + PDGF-BB,	
		p < 0.001	
S11A: The protein levels of PDGFR β in the DG after CSDS	Unpaired <i>t</i> test		Mean ± s.e.m.
Control $(n = 7)$ CSDS $(n = 6)$	t = 3.3470, p = 0.0065		CSDS 1.00 ± 0.06 CSDS 0.67 ± 0.08
S11E: Quantification of PDGFR β neurons colocalized with GFP	Unpaired <i>t</i> test		Mean ± s.e.m.
AAV-DIO-shGFP $(n = 9)$ AAV-DIO-shPDGFR β $(n = 9)$	t = 6.7530, p < 0.001		AAV-DIO-shGFP 22.510 \pm 1.263 AAV-DIO shPDGFR β 12.000 \pm 0.910
S11G: Quantification of the number of BrdU positive cells	Unpaired <i>t</i> test		Mean ± s.e.m.
AAV-DIO-shGFP (n = 4) AAV-DIO-shPDGFRβ (n =4)	t = 4.2070, p = 0.0056		AAV-DIO-shGFP 2489.0 ± 309.1 AAV-DIO- shPDGFβ 1081.0 ± 127.9
S11H: Quantification ofthenumberofBrdU/Sox2/GFAPpositive NSCs	Unpaired <i>t</i> test		Mean ± s.e.m.
AAV-DIO-shGFP (n = 4) AAV-DIO-shPDGFRβ (n =4)	t = 3.6070, p = 0.0113		AAV-DIO-shGFP 331.5 ± 35.8 AAV-DIO- shPDGFβ 173.3 ± 25.4
S111: The ratio of aNSCs to qNSCs	Unpaired <i>t</i> test		Mean ± s.e.m.
AAV-DIO-shGFP (n = 4) AAV-DIO-shPDGFR β (n =4)	t = 2.4610, p = 0.0491		AAV-DIO-shGFP 1.00 ± 0.21

		AAV-DIO-
		shPDGF β 0.45 ±
		0.08
S11J: Quantification of the number of Sox2/GFAP positive NSCs	Unpaired <i>t</i> test	Mean ± s.e.m.
AAV-DIO-shGFP $(n = 4)$ AAV-DIO-shPDGFR β $(n = 4)$	t = 0.5874, p = 0.5783	AAV-DIO-shGFP 6490.0 ± 819.9 AAV-DIO- shPDGFβ 7003.0 ± 300.8
S12F: The protein levels of JAK2 in the DG after PDGF-BB treatment	Unpaired <i>t</i> test	Mean ± s.e.m.
Vehicle (n = 10) PDGF-BB (n = 10)	t = 3.4140, p = 0.0031	Vehicle 1.00 ± 0.05 PDGF-BB 1.38 ± 0.10
S12G: The protein levels of STAT3 in the DG after PDGF-BB treatment	Unpaired <i>t</i> test	Mean ± s.e.m.
Vehicle (n = 10) PDGF-BB (n = 10)	t = 3.6090, p = 0.0020	Vehicle 1.00 ± 0.06 PDGF-BB 1.30 ± 0.06
S12I: The protein levels of JAK2 in the DG after PDGF-BB treatment	Unpaired <i>t</i> test	Mean ± s.e.m.
Vehicle (n = 9) PDGF-BB (n = 9)	t = 3.1210, p = 0.0066	Vehicle 1.00 ± 0.06 PDGF-BB 1.52 ± 0.16
S12J: The protein levels of STAT3 in the DG after PDGF-BB treatment	Unpaired <i>t</i> test	Mean ± s.e.m.
Vehicle (n = 9) PDGF-BB (n = 9)	t = 2.6550, p = 0.0173	Vehicle 1.00 ± 0.03 PDGF-BB 1.18 ± 0.06