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Figure 1—figure supplement 1. Transcript changes elicited by WINi in MLLr cancer cells. (A)
Crystal structures of C6 or C16 bound to the WIN Site of WDR5 with electrostatic surfaces mapped
[PDB IDs: 6E23 (Aho et al., 2019a); 6UCS (Tian et al., 2020)]. (B) Viabilities of MV4;11 cells treated
with a serial dilution range of either C6 (left) or C16 (right) for 72 hours, relative to viability of DMSO-
treated cells (n = 3; Mean £ SEM). (C) As in (B) but for MOLM13 cells. (D) Transcript levels as
determined by QuantiGene™ analysis of representative WDR5-bound (color) or non-bound (grayscale)
ribosomal protein genes in MOLM13 cells treated with a serial dilution range of either C6 (left) or C16
(right) and relative to DMSO-treated cells (n = 3; Mean + SEM). Vertical dashed line indicates either 2
MM C6 (left) or 100 nM C16 (right). (E) Transformed z-scores of genes with significantly altered
transcript levels (RNA-Seq) in MV4;11 cells treated with either C6 (2 uM) or C16 (100 nM) for 48 hours,
compared to DMSO-treatment. (F) Volcano plots, showing transcript level alterations in MV4;11 cells
treated 48 hours with 2 yM C6 (left) or 100 nM C16 (right) compared to DMSO (n = 3; red indicates
FDR < 0.05). (G) Dispersion plot describing the variance in gene expression for the RNA-seq data in a
previous study (left) and this study (right).

Figure 1—figure supplement 2. Impact of WINi on RPL22L 1 and p53 target gene expression. (A)
Venn diagram, showing the overlap of consensus p53 target genes (Fischer, 2017) with genes
significantly induced by C6 or C16 in MV4;11 cells. (B) Graph showing the change in expression of the
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91common genes in (A) elicited by WIN site inhibitor (WINi) C6 (red) or C16 (blue) in MV4;11 cells,
compared to DMSO. (C) Changes in expression (and FDR) of RPL22L1 elicited in response to C6 (red)
or C16 (blue) treatment of K562 leukemia cells (Aho et al., 2019a) or five rhabdoid tumor cell lines
[TTC642, KYM-1, G401, TM87-16, and TTC549; (Florian et al., 2022)].

Figure 2—figure supplement 1. WINi suppress translation. (A) Distribution of ribosome protected
fragment (RPF) lengths in each Ribo-Seq sample/replicate. The length distribution of RPF in
mammalian Ribo-Seq experiments typically peaks at 30-31 nucleotides. (B) Proportion of RPFs
mapping to the coding sequence (CDS) or 5' or 3' untranslated regions (UTR) of transcripts. Color of
dots is the same as in (A). (C) Proportion of RPFs mapping to each reading frame in the 5' UTR (left),
the CDS (middle), and the 3' UTR. Color of dots is the same as in (A). (D) Magnitudes of significant TE
alterations of mMRNAs in each quartile (stratified by TE in DMSO) in cells treated with C6 (left) or C16
(right). Color dots represent individual genes. Bottom, middle, and top horizontal lines of each box
represent first, second, and third quartiles, respectively. Vertical lines extend to data points within 1.5-
fold of the interquartile range. Black dots represent values beyond 1.5-fold of the inter-quartile range.
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(E) Changes in TE induced by C6 (left) or C16 (right) in MV4;11 cells, binned according to mRNA
TOPscores (Philippe et al., 2020). Dashed lines represent the median; dotted lines indicate quartiles.
Significance by t-test is indicated compared to group with TOPscore 0 to 1 ("' < 0.05, **" < 0.0001). (F)
UpSet plot, showing the breakdown of genes encoding PRMT5 substrates (Radzisheuskaya et al.,
2019) whose transcript levels and/or translation efficiencies decrease following WIN site inhibition (p-
value calculated by hypergeometric test for over-representation of genes encoding PRMT5 substrates
in genes with decreased translation efficiencies). (G) Overlap of C6/C16 common mRNAs with
decreased abundance (RNA; blue) and those with decreased translation efficiency (TE; salmon),
grouped according to the indicated Hallmark.MSigDB categories. (H) Overlap of all C6/C16 common
mRNAs with altered abundance and decreased TE. (I) The top row of the heatmap displays the codon
stability coefficient (CSC) for each codon (Wu et al., 2019) ranked from lowest (‘Non-optimal') to highest
('Optimal'). The middle row displays enrichment of each codon in mRNAs that are decreased at both
the TE and mRNA levels (RNA+TE) versus those that show a decrease in TE without an accompanying
decreased in mMRNA abundance (TE only). Bottom row is -Log10 FDR.

Figure 2—figure supplement 2. WINi impair translation of mitochondrial ribosomal proteins. (A)
Top: Transcript level changes in mitochondrial ribosomal protein genes elicited by C6 or C16, as
indicated. Bottom: Translational efficiency (TE) changes in mitochondrial ribosomal protein genes
elicited by C6 or C16. All of the mitochondrial RPGs are nuclear-encoded; none have detectable
binding of WDRS5.
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Figure 3—figure supplement 1. Enrichment analysis of proteins with altered expression in
response to C16 treatment. (A) Graphs showing enrichment of proteins in GO BP (top) and
Hallmark.MSigDB (bottom) pathways that are induced by C16 treatment at 24 (blue) or 72 (green)
hours. The x-axis displays -Log10 (FDR); the number of proteins in each category is given in italics. (B)
Graphs showing enrichment of proteins in GO BP (top) and Hallmark.MSigDB (bottom) pathways that
are suppressed by C16 treatment at 24 (red) or 72 (brown) hours. The x-axis displays -Log10 (FDR);
the number of proteins in each category is given in italics. See Figure 3—source data 2 for output of
the full enrichment analyses.

Figure 4—figure supplement 1. Genome wide CRISPR screen identifies genes that influence
response to C6/C16. (A) Tier 1 screen: Daily cell counts of MV4;11 Cas9 and MV4;11 Cas9 +
GeCKOv2 (Library) populations treated with either DMSO or 2 yM C6. The two replicates of this screen
are shown separately. (B) Normalized counts of each sgRNA (x-axis) in the GeCKOv.2 library targeting
TP53 in the initial transduced cells (red; not visible on this scale) and the C6-treated population (blue).
Data represents means of replicates; "*" indicates FDR < 0.05. (C) As in (B) but for sgRNAs targeting
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CDKNZ2A. (D) Schematic of the CDKNZ2A gene locus with indicated sites complementary to Tier 1 and
Tier 2 screen sgRNAs. Red sgRNAs increase in representation in CRISPR screens. (E) miRNet 2.0
(Chang & Xia, 2023) analysis of the 27 miRNAs enriched in the Tier 1 screen produced a single
significant hit corresponding to the KEGG p53 signaling pathway. The miRNAs are represented as blue
boxes and target genes as red circles; the connections between them are indicated. (F) As in (B) but for
sgRNAs targeting RPL22. (G) Volcano plots, showing gene-level changes from the Tier 2 screen in
sgRNA representation in C6- (left) and C16- (right) treated populations compared to DMSO control
cultures (orange indicates FDR < 0.05). (H) Graph depicting gene-level Log2 FC and FDR values for
genes that were flagged as C6- (squares) or C16- (circles) specific in the Tier 2 screen. (I) GO
enrichment analysis of the 57 C6/C16 common genes emerging from Tier 2 of the screen. Italics
represent the number of genes in each category. (J) Western blot analysis of y-H2A.X (top) or H2A.X
(bottom) levels in MV4;11 cells treated for three days with the indicated dose of C16. Etoposide
("Etop.") treatment was used as a positive control. GAPDH is a loading control. Representative images
from three biological replicates shown. Raw unprocessed gel images for the data in (J) are presented in
Figure 4—source data 3.

Figure 5—figure supplement 1. C16 is synergistic with multiple agents in MV4;11 cells. (A)
Heatmaps of MV4;11 cell growth inhibition at each dose of C16 and the indicated five compounds. (B)
Heatmaps of & scores from MV4;11 cells at each dose combination of C16 and the indicated agents.
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Figure 5—figure supplement 2. C16 is synergistic with multiple agents in MOLM13 cells. (A)
Heatmaps of MOLM13 cell growth inhibition at each dose of C16 and the indicated five compounds. (B)
Heatmaps of & scores from MOLM13 cells at each dose combination of C16 and the indicated agents.

Figure 5—figure supplement 3. Impact of C16 and mivebresib on RPG and p53 target gene
expression. (A) Transcript level changes in WDR5-bound (left) and non-bound (right) RPGs elicited by
C16 (top), mivebresib (Mivb; middle) or the combination (bottom). (B) Heatmap, showing significant
changes in the expression of consensus p53 target genes (Fischer, 2017) induced by C16, mivebresib
(Mivb; middle) or the combination (bottom) in MV4;11 cells.
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Figure 6—figure supplement 1. WINi alter the abundance of alternatively-spliced mRNA
isoforms. (A) Western blots comparing the effects of 72 hour DMSO (DM) or C16 treatment of MV4;11
(top) or MOLM13 (bottom) cells on levels of p53 and GAPDH (loading control). Representative images
from three biological replicates are shown. Raw unprocessed gel images are presented in Figure 6—
source data 1. (B) Differential alternative splicing events impacted by C6 (red) or C16 (blue) treatment
of MV4;11 cells were quantified by rMATS. The number of significantly different events (> 5% Ay; FDR
< 0.05) for each WIN site inhibitor are depicted in the graph. "RI" is retained intron; "MEX" is mutually
exclusive exons; "A3SS" is alternative 3' splice site; "A5SS" is alternative 5' splice site; "SE" is skipped
exon. See Figure 6—source data 2 for output of rMATS analysis. (C) Sashimi plot quantifying read
junctions that span exons 12-17 of KRBA1 in MV4;11 cells treated with DMSO (green) or C16 (blue).
Numbers in the arcs display junction depth. Skipped exon 15 is highlighted in orange. (D) As in (C) but
for read junctions that span exons 20-22 of TTF2. Skipped exon 21 is highlighted in orange. (E) As in
(C), but for read junctions that span exons 2 and 3 of RPL22L1. The location of exons 2 and 3 is
depicted at the bottom. Splicing of exon 2 to the distal acceptor site in exon 3 results in an mRNA
encoding RPL22L1a (orange); splicing to the proximal acceptor site in exon 3 results in an mRNA
encoding RPL22L1b (yellow). (F) Left: Representation of amplicons used to discriminate between
different MDM4 (top) and RPL22L1 (bottom) isoforms via semi-quantitative PCR. Right: Results of
semi-quantitative PCR analysis for the various isoforms of MDM4 and RPL22L 1, and a GAPDH control,
in MV4;11 or MOLM13 cells treated for 48 hours with DMSO or C16 (MV4;11, 100 nM; MOLM13, 250
nM; n = 3). All three biological replicates for DMSO and C16 are shown. Raw unprocessed gel images
for the data in (F) are presented in Figure 6—source data 3. (G) Left: Representation of amplicons
used to discriminate between MDM4 (top) and RPL22L1 (bottom) isoforms via RT-gPCR. Right:
Results of RT-gPCR analysis for the various isoforms of MDM4 (top) and RPL22L1 (bottom) in MV4;11
or MOLM13 cells treated for 48 hours with DMSO or C16 (MV4;11, 100 nM; MOLM13, 250 nM; n = 3;
Mean + SEM). For each amplicon, isoform levels are expressed relative to the DMSO control. P-values
are represented by asterisks: ™' < 0.05, "*" < 0.01, "**" < 0.001.

Figure 6—figure supplement 2. Impact of RPL22 loss on the response of MLLr cells to WINi. (A)
Western blot analysis of RPL22 expression in MV4;11, MOLM13, and K562 cells electroporated with
Cas9 and either scrambled non-targeting (NT) control or RPL22-targeting sgRNAs. GAPDH and a-
Actinin are loading controls. Representative images from three biological replicates shown. Raw
unprocessed gel images are presented in Figure 6—source data 4. (B) Glsg values of C16 in NT and
RPL22 KO MV4;11, MOLM13, and K562 cells in a 72 hour assay (n = 3; Mean £ SEM). (C) Number of
genes with significantly (FDR < 0.05) altered transcript levels following treatment of RPL22 knock out
(KO) or control (NT) cells treated with DMSO or 100 nM C16 for 48 hours, as determined by RNA-Seq
(n = 4). See Figure 6—source data 6 for complete output of RNA-Seq analysis. (D) Volcano plots,
showing pairwise transcript level alterations in NT (control) and RPL22 KO MV4;11 cells treated 48
hours with DMSO or 100 nM C16 (red indicates FDR < 0.05). The location of transcripts from ZMAT3
and RPL22L1 are indicated. (E) Transcript level changes in WDR5-bound (left) and non-bound (right)
RPGs in each of the indicated pairwise comparisons of RNA-Seq datasets. (F) Enrichment analysis of
genes differentially induced by C16 in RPL22KO cells compared to control (NT) cells. KEGG and
Hallmark.MSigDB pathways are shown. Fold enrichment of indicated pathways is presented on the x-
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axis, the number of genes is shown in italics in each bar, and colors represent -Log10 FDR. See Figure
6—source data 7 for complete enrichment analyses. (G) As in (F) but for suppressed genes. (H)
Transcript level changes in mitochondrial ribosomal protein genes elicited by C16 in NT or RPL22KO
cells.

Figure 6—figure supplement 3. Impact of RPL22 loss on the abundance of alternatively-spliced
mRNA isoforms in MV4;11 cells. (A) Differential alternative splicing events affected by C16 treatment
of control (NT) or RPL22 knockout (KO) MV4;11 cells were quantified by rMATS. The types of
alternative splicing events are cartooned at left, and the number of significantly different events (> 5%
Ay; FDR < 0.05) depicted in the graph. See Figure 6—source data 8 for output of rMATS analysis. (B)
Sashimi plot quantifying read junctions that span exons 5-7 of MDM4 in NT or RPL22KO MV4;11 cells
treated with DMSO or C16. Numbers in the arcs display junction depth. The location of exons 5, 6, and
7 is depicted at the bottom; skipped exon 6 is highlighted in orange. Note that RPL22KO images are
also represented in Figure 6F. (C) As in (B) but for read junctions that span exons 2 and 3 of RPL22L1.
The location of exons 2 and 3 is depicted at the bottom. Splicing of exon 2 to the distal acceptor site in
exon 3 results in an MRNA encoding RPL22L1a (orange); splicing to the proximal acceptor site in exon
3 results in an mRNA encoding RPL22L1b (yellow).
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