
Supplementary Material590

S1. Relating K2(T ) and g2(τ ) in arbitrary modulation591

Define the AOM modulation function as m(t), the intact speckle signal592

as I(t), and the modulated speckle signal as Im(t) such that593

Im(t) = I(t)m(t) (S1)

Then the intensity of pixel i on the camera sensor within intensity-modulated594

exposure time T would be595

Si,T =

∫ T

0

Ii(t
′)m(t′)dt′ (S2)

where Ii(t) is the intact speckle signal of pixel i and m(t) is the modulation596

function on the illumination intensity.The second moment of modulated pixel597

intensity would be598

⟨S2
T ⟩ =

1

N

N∑
i=1

(Si,T )
2 (S3)

where ⟨ ⟩ denotes averaging and N is the number of averaged pixels. The last599

material needed for the derivation is the definition of intensity autocorrelation600

function g2(τ) given by Eq. S4601

g2(t
′ − t′′) =

⟨Ii(t′)Ii(t′′)⟩
⟨I⟩2

(S4)

where ⟨I⟩ is the average intensity of the intact speckle signal.602

Based on Eq. S1 to S4, we can derive the expression of the second moment
of modulated pixel intensity with respect to the intensity modulation function
m(t) and the intensity autocorrelation function g2(τ) of the intact signal as
follows:

⟨S2
T ⟩ = ⟨(Si,T )

2⟩
⟨ ⟩ denotes averaging over independent instances
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= ⟨(
∫ T

0

Ii(t
′)m(t′)dt′)2⟩

= ⟨(
∫ T

0

Ii(t
′)m(t′)dt′)(

∫ T

0

Ii(t
′′)m(t′′)dt′′)⟩

= ⟨
∫ T

0

∫ T

0

Ii(t
′)Ii(t

′′)m(t′)m(t′′)dt′dt′′⟩

m(t) is independent of i

=

∫ T

0

∫ T

0

⟨Ii(t′)Ii(t′′)⟩m(t′)m(t′′)dt′dt′′

Using Eq. S4

= ⟨I⟩2
∫ T

0

∫ T

0

g2(t
′ − t′′)m(t′)m(t′′)dt′dt′′

Symmetry of t′ and t′′; g2(τ) is even

= 2⟨I⟩2
∫ T

0

∫ t′

0

g2(t
′ − t′′)m(t′)m(t′′)dt′′dt′

Let t′ − t′′ = τ , then t′′ = t′ − τ , dt′′ = −dτ

= 2⟨I⟩2
∫ T

0

∫ t′

0

g2(τ)m(t′)m(t′ − τ)dτdt′

Change the order of integral

= 2⟨I⟩2
∫ T

0

∫ T

τ

g2(τ)m(t′)m(t′ − τ)dt′dτ

= 2⟨I⟩2
∫ T

0

g2(τ)(

∫ T

τ

m(t′)m(t′ − τ)dt′)dτ

Let t = t′ − τ , then t′ = t+ τ , dt′ = dt

= 2⟨I⟩2
∫ T

0

g2(τ)(

∫ T−τ

0

m(t)m(t+ τ)dt)dτ

Define603

M(τ) =

∫ T−τ

0

m(t)m(t+ τ)dτ (S5)

then604

⟨S2
T ⟩ = 2⟨I⟩2

∫ T

0

g2(τ)M(τ)dτ (S6)
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Since605

K2(T ) =
Var (ST )

⟨ST ⟩2
=

⟨S2
T ⟩ − ⟨ST ⟩2

⟨ST ⟩2
(S7)

where ⟨ST ⟩ is the mean pixel intensity of modulated speckle signal within606

exposure time T and ⟨ST ⟩ = T ⟨Im⟩ where ⟨Im⟩ is the mean intensity of the607

modulated speckle signal, we arrive at the expression of speckle contrast of608

the within-exposure modulated speckle signal (Eq. S8).609

K2 =
2⟨I⟩2

T 2⟨Im⟩2

∫ T

0

g2(τ)M(τ)dτ − 1 (S8)

Notice that when the modulation function m(t) is a constant 1, we have610

M = T − τ and Eq. S8 reduces to the expression of speckle contrast that is611

commonly seen (Eq. 3). In other words, the classic expression of speckle con-612

trast we use is a particular case of Eq. S8 when the illumination intensity is613

held constant. Finally, we would like to introduce one important observation614

about M(τ) (Lemma S1.1).615

Lemma S1.1 (Integral property of M(τ)). If the average intensity of the616

intact speckle signal I(t) remains steady over time, i.e.,
∫ T

0
I(t)m(t)dt =617

⟨I⟩
∫ T

0
m(t)dt, then the integral of M(τ) satisfies 2⟨I⟩2

T 2⟨Im⟩2
∫ T

0
M(τ)dτ = 1.618

Proof. Because Im(t) = I(t)m(t), we have619 ∫ T

0
Im(t)dt∫ T

0
I(t)m(t)dt

=
T ⟨Im⟩

⟨I⟩
∫ T

0
m(t)dt

= 1 (S9)

Hence,620 ∫ T

0

m(t)dt =
T ⟨Im⟩
⟨I⟩

(S10)
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Therefore,621 ∫ T

0

M(τ)dτ =

∫ T

0

∫ T−τ

0

m(t)m(t+ τ)dτdt

=

∫ T

0

m(t)

∫ T−t

0

m(t+ τ)dτdt

Let t′ = t+ τ , then dt′ = dτ

=

∫ T

0

m(t)

∫ T

t

m(t′)dt′dt

=

∫ T

0

∫ T

t

m(t)m(t′)dt′dt

Symmetry of m(t) and m(t′)

=
1

2

∫ T

0

∫ T

0

m(t)m(t′′)dt′dt

=
1

2
(

∫ T

0

m(t))2

Plug in Eq. S10

=
T 2⟨Im⟩2

2⟨I⟩2

(S11)

Namely, 2⟨I⟩2
T 2⟨Im⟩2

∫ T

0
M(τ)dτ = 1. The proof is over.622

S2. K2
2P (T ) = 1

2
g2(0) +

1
2
g2(T ) − 1 if m(t) = δ(0) + δ(T )623

Proof. Denote I(t) as I and I(t+τ) as Iτ , then according to g2(τ) =
⟨I(t)I(t+τ)⟩

⟨I⟩2624

we have625

g2(0) =
⟨I2⟩
⟨I⟩2

(S12)

and626

g2(τ) =
⟨I · Iτ ⟩
⟨I⟩2

(S13)

Since Var (I) = ⟨I2⟩ − ⟨I⟩2 and Cov (I, Iτ ) = ⟨I · Iτ ⟩ − ⟨I⟩2 where Var (X)627

and Cov (X, Y ) denote the variance of X, and the covariance between X and628
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Y , we have629

1

2
g2(0) +

1

2
g2(τ)− 1 =

1

2
(
⟨I2⟩
⟨I⟩2

− 1) +
1

2
(
⟨I · Iτ ⟩
⟨I⟩2

− 1)

=
Var (I) + Cov (I, Iτ )

2⟨I⟩2

(S14)

If m(t) = δ(0) + δ(τ), the pixel intensity S would be S = I + Iτ and K2
2P (τ)630

would be631

K2
2P (τ) =

Var (I + Iτ )

⟨I + Iτ ⟩
=

Var (I + Iτ )

4⟨I⟩2
(S15)

Therefore, to prove that K2
2P (τ) =

1
2
g2(0)+

1
2
g2(τ)−1, based on Eq. S14 and632

S15, one only needs to prove that Var (I + Iτ ) = 2Var (I) + 2Cov (I, Iτ ),633

which is true since Var (I + Iτ ) = Var (I) + Var (Iτ ) + 2Cov (I, Iτ ) and634

Var (I) = Var (Iτ ). The proof is over.635

636

S3. The Impact of Non-zero Residual Illumination637

We can model the non-zero residual illumination in 2-pulse modulation638

as639

m′(t) = (1− r)m(t) + r (S16)

where r is the relative amplitude of residual illumination during the off state640

and ranges from 0 to 1. m(t) here is the ideal 2-pulse modulation with zero641

residual illumination, and ranges between 0 and 1. Then the modulation642

autocorrelation function would be643

M ′(τ) =

∫ T−τ

0

m′(t)m′(t+ τ)dt

≈ (1− r)2M(τ) + (T − τ)[2r(1− r)d+ r2]

(S17)

where M(τ) =
∫ T−τ

0
m(t)m(t + τ)dt and d is the duty cycle of m(t) or the644

pseudo duty cycle of m′(t). Fig. S1a shows an example of how M(τ) would645

be skewed in presence of a non-zero residual illumination (r=0.1). The square646
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of speckle contrast corresponding to m′(t) would then become647

K̃2(T ) =
2⟨I⟩2

T 2⟨Im′⟩2

∫ T

0

g2(τ)M
′(τ)dτ − 1

=
2

T 2[d+ (1− d)r]2

∫ T

0

g2(τ)M
′(τ)dτ − 1

=
2

T 2[d+ (1− d)r]2

∫ T

0

g2(τ)[(1− r)2M(τ) + (T − τ)(2r(1− r)d+ r2)]dτ − 1

(S18)

Simplify Eq. S18, we get648

K̃2(T ) = pK2
m + (1− p)K2

0 (S19)

where K2
m = 2⟨I⟩2

T 2⟨Im⟩2
∫ T

0
g2(τ)M(τ)dτ−1, K2

0 = 2
T 2

∫ T

0
(T −τ)g2(τ)dτ−1, and649

p = d2(1−r)2

[r+d(1−r)]2
. Therefore, the square of speckle contrast, K2 in presence of a650

non-zero residual illumination in 2-pulse modulation would be the weighted651

sum of that of an ideal 2-pulse modulation plus that of no modulation on652

intensity. p indicates the proportion of the contribution by the ideal 2-pulse653

modulation. It is noticed that when r increases, p drops and that when d654

increases, p rises. Fig. S1b shows an example of how an AOM with limited655

OD when gating the light would affect the tail of K2
2P (T ) curves when T is656

large.657

S4. The impact of pulse duration on the accuracy of measuring658

absolute and relative values of g2(τ )659

In this section, we would like to answer the question of how to choose the660

pulse duration when doing 2-pulse modulated multiple exposure imaging. We661

demonstrated the validity of a 10 µs pulse duration in extracting correlation662

times as short as 30 µs (Fig. 3f). But it does not have to be always the case.663

The pulse duration can be longer when measuring g2(τ) of slowly varying664

signals. We examined the optimal pulse duration selection through numerical665

simulation. For a given pulse duration Tm, we evaluated the discrepancy666

between g2(τ) and its estimation byK2
2P (T ) at various correlation times (Fig.667

S5). For a given pulse duration, the maximum percent discrepancy between668

2[K2
2P (τ)−C] and the absolute value of g2(τ) decreases as τc increases (Fig.669
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Figure S1: The impact of non-zero residual illumination between two illumination pulses
on K2

2P (T ). a How the modulation autocorrelation function M(τ) would be skewed by
a non-zero residual illumination (r=0.1). b The comparison of K2

2P (T ) curves with and
without residual illumination. An AOM with an OD of 4 when gating the light is simulated
for the former case.

Figure S2: The optimal n given by the fitting algorithm in various flow rates. Dashed line:
APD. Asteroids: 2PM-MESI. For each flow rate, the experiment is repeated for five times.
Three of the five repeats are shown here and grouped together by the same color in the
plot. Different colors represent different flow rates. When the flow rate is zero, the optimal
n is 1, which is true for both APD and 2PM-MESI fitting results. When the flow rate is
not zero, the optimal n is 2 according to APD fitting results. 2PM-MESI identifies the
same optimal n for small flow rates (≤ 60 µL/min). But for higher flow rates, instability
in estimating the optimal n is observed, which could be due to the downticking tail of the
K2

2P curve induced by the non-zero residual illumination between illumination pulses.
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Figure S3: Comparison of ICT values extracted from g2(τ) and K2
2P (T ) curves in vivo

with unfixed n. 28 points from 4 mice.

Figure S4: Comparison of the performance of weighted fitting vs. unweighted fitting.
The weighted fitting by 1/τ improves the fitting performance in the head of g2(τ) curve
compared with unweighted fitting.
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S5a). When τc becomes larger than 10 times Tm, the percentage discrepancy670

drops below 0.2%. In other words, to recover the absolute value of g2(τ) of671

the signal of interest within a maximum of 0.2% discrepancy threshold, the672

pulse duration Tm should be made shorter than 10% of the correlation time673

τc of the signal. On the other hand, if the correlation time is the only interest674

about g2(τ), i.e., the relative value of g2(τ) or g̃2(τ) is of interest, then the675

pulse duration can be longer than 10% of τc (Fig. S5b). But considering that676

2-pulse modulated multiple exposure imaging can only capture g2(τ)’s shape677

in the range of τ ≥ Tm, it is recommended that Tm not be longer than τc to678

ensure sufficient sampling of the exponential-decay phase of g2(τ).679

Figure S5: The accuracy of estimating g2(τ) and g̃2(τ) based on K2
2P (T ) for signals of

different correlation times. a The maximum percentage discrepancy between absolute

g2(τ) and that estimated by K2
2P (T ). The y-axis is max

τ∈[Tm,0.1 s]

2[K2
2P (τ)−C]−g2(τ)

g2(τ)
/%. b

The maximum percentage discrepancy between normalized g2(τ) and K2
2P (τ). The y-axis

is max
τ∈[Tm,0.1 s]

[K̃2
2P (τ)+1]−[g̃2(τ)+1]

g̃2(τ)+1 /%.
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