⁵⁹⁰ Supplementary Material

$_{^{591}}$ S1. Relating $K^2(T)$ and $g_2(\tau)$ in arbitrary modulation

 592 Define the AOM modulation function as $m(t)$, the intact speckle signal 593 as $I(t)$, and the modulated speckle signal as $I_m(t)$ such that

$$
I_m(t) = I(t)m(t)
$$
\n(S1)

 594 Then the intensity of pixel i on the camera sensor within intensity-modulated 595 exposure time T would be

$$
S_{i,T} = \int_0^T I_i(t')m(t')dt'
$$
\n(S2)

596 where $I_i(t)$ is the intact speckle signal of pixel i and $m(t)$ is the modulation ⁵⁹⁷ function on the illumination intensity.The second moment of modulated pixel ⁵⁹⁸ intensity would be

$$
\langle S_T^2 \rangle = \frac{1}{N} \sum_{i=1}^N (S_{i,T})^2
$$
 (S3)

599 where $\langle \rangle$ denotes averaging and N is the number of averaged pixels. The last ⁶⁰⁰ material needed for the derivation is the definition of intensity autocorrelation 601 function $g_2(\tau)$ given by Eq. S4

$$
g_2(t'-t'') = \frac{\langle I_i(t')I_i(t'')\rangle}{\langle I\rangle^2}
$$
\n(S4)

 $\frac{602}{2}$ where $\langle I \rangle$ is the average intensity of the intact speckle signal.

Based on Eq. S1 to S4, we can derive the expression of the second moment of modulated pixel intensity with respect to the intensity modulation function $m(t)$ and the intensity autocorrelation function $g_2(\tau)$ of the intact signal as follows:

$$
\langle S_T^2 \rangle = \langle (S_{i,T})^2 \rangle
$$

$$
\langle \rangle
$$
 denotes averaging over independent instances

$$
= \langle \left(\int_0^T I_i(t')m(t')dt' \right)^2 \rangle
$$

\n
$$
= \langle \left(\int_0^T I_i(t')m(t')dt' \right) \left(\int_0^T I_i(t'')m(t'')dt' dt' \right) \rangle
$$

\n
$$
= \langle \int_0^T \int_0^T I_i(t')I_i(t'')m(t')m(t'')dt'dt'' \rangle
$$

\n
$$
m(t) \text{ is independent of } i
$$

\n
$$
= \int_0^T \int_0^T \langle I_i(t')I_i(t'') \rangle m(t')m(t'')dt'dt''
$$

\nUsing Eq. S4
\n
$$
= \langle I \rangle^2 \int_0^T \int_0^T g_2(t'-t'')m(t')m(t'')dt'dt''
$$

\nSymmetry of t' and t'' ; $g_2(\tau)$ is even
\n
$$
= 2\langle I \rangle^2 \int_0^T \int_0^{t'} g_2(t'-t'')m(t')m(t'')dt''dt'
$$

\nLet $t'-t'' = \tau$, then $t'' = t' - \tau$, $dt'' = -d\tau$
\n
$$
= 2\langle I \rangle^2 \int_0^T \int_0^{t'} g_2(\tau)m(t')m(t'-\tau)d\tau dt'
$$

\nChange the order of integral
\n
$$
= 2\langle I \rangle^2 \int_0^T \int_{\tau}^T g_2(\tau)m(t')m(t'-\tau)dt'd\tau
$$

\nLet $t = t' - \tau$, then $t' = t + \tau$, $dt' = dt$
\n
$$
= 2\langle I \rangle^2 \int_0^T g_2(\tau)(\int_0^T m(t)m(t'-\tau)dt')d\tau
$$

\nLet $t = t' - \tau$, then $t' = t + \tau$, $dt' = dt$
\n
$$
= 2\langle I \rangle^2 \int_0^T g_2(\tau)(\int_0^{T-\tau} m(t)m(t+\tau)dt)d\tau
$$

⁶⁰³ Define

$$
M(\tau) = \int_0^{T-\tau} m(t)m(t+\tau)d\tau
$$
 (S5)

⁶⁰⁴ then

$$
\langle S_T^2 \rangle = 2 \langle I \rangle^2 \int_0^T g_2(\tau) M(\tau) d\tau \tag{S6}
$$

⁶⁰⁵ Since

$$
K^{2}(T) = \frac{\text{Var}(S_{T})}{\langle S_{T} \rangle^{2}} = \frac{\langle S_{T}^{2} \rangle - \langle S_{T} \rangle^{2}}{\langle S_{T} \rangle^{2}}
$$
(S7)

 \cos where $\langle S_T \rangle$ is the mean pixel intensity of modulated speckle signal within 607 exposure time T and $\langle S_T \rangle = T \langle I_m \rangle$ where $\langle I_m \rangle$ is the mean intensity of the ⁶⁰⁸ modulated speckle signal, we arrive at the expression of speckle contrast of ⁶⁰⁹ the within-exposure modulated speckle signal (Eq. [S8\)](#page-2-0).

$$
K^2 = \frac{2\langle I \rangle^2}{T^2 \langle I_m \rangle^2} \int_0^T g_2(\tau) M(\tau) d\tau - 1
$$
\n(S8)

 δ ¹⁰ Notice that when the modulation function $m(t)$ is a constant 1, we have $611 M = T - \tau$ and Eq. [S8](#page-2-0) reduces to the expression of speckle contrast that is ϵ_{612} commonly seen (Eq. 3). In other words, the classic expression of speckle con-⁶¹³ trast we use is a particular case of Eq. [S8](#page-2-0) when the illumination intensity is ⁶¹⁴ held constant. Finally, we would like to introduce one important observation 615 about $M(\tau)$ (Lemma [S1.1\)](#page-2-1).

616 Lemma S1.1 (Integral property of $M(\tau)$). If the average intensity of the $\begin{array}{ll} \text{\emph{intract}} \quad \text{\emph{speckle signal}} \ \ \text{\emph{I}}(t) \ \ \text{\emph{remains}} \ \ \text{\emph{steady over time,}} \ \ \text{\emph{i.e.}}, \ \ \int_0^T I(t) m(t) dt \ \ = \end{array}$ $\langle I \rangle \int_0^T m(t) dt$, then the integral of $M(\tau)$ satisfies $\frac{2\langle I \rangle^2}{T^2\langle I_m \rangle}$ $\langle I\rangle\int_0^T m(t)dt,$ then the integral of $M(\tau)$ satisfies $\frac{2\langle I\rangle^2}{T^2\langle I_m\rangle^2}\int_0^T M(\tau)d\tau=1.$

619 Proof. Because $I_m(t) = I(t)m(t)$, we have

$$
\frac{\int_0^T I_m(t)dt}{\int_0^T I(t)m(t)dt} = \frac{T\langle I_m \rangle}{\langle I \rangle \int_0^T m(t)dt} = 1
$$
\n(S9)

⁶²⁰ Hence,

$$
\int_{0}^{T} m(t)dt = \frac{T\langle I_{m}\rangle}{\langle I\rangle}
$$
 (S10)

⁶²¹ Therefore,

 \int

$$
\int_0^T M(\tau)d\tau = \int_0^T \int_0^{T-\tau} m(t)m(t+\tau)d\tau dt
$$

\n
$$
= \int_0^T m(t) \int_0^{T-t} m(t+\tau)d\tau dt
$$

\nLet $t' = t + \tau$, then $dt' = d\tau$
\n
$$
= \int_0^T m(t) \int_t^T m(t')dt'dt
$$

\n
$$
= \int_0^T \int_t^T m(t)m(t')dt'dt
$$

\n
$$
= \frac{1}{2} \int_0^T \int_0^T m(t)m(t'')dt'dt
$$

\n
$$
= \frac{1}{2} (\int_0^T m(t))^2
$$

\nPlug in Eq. S10
\n
$$
= \frac{T^2 \langle I_m \rangle^2}{2 \langle I \rangle^2}
$$

Namely, $\frac{2\langle I \rangle^2}{T^2/I}$ ⁶²² Namely, $\frac{2\langle I\rangle^2}{T^2\langle I_m\rangle^2} \int_0^T M(\tau)d\tau = 1$. The proof is over.

$$
E_{23} \quad S2. \quad K_{2P}^2(T) = \frac{1}{2}g_2(0) + \frac{1}{2}g_2(T) - 1 \text{ if } m(t) = \delta(0) + \delta(T)
$$

Proof. Denote $I(t)$ as I and $I(t+\tau)$ as I_{τ} , then according to $g_2(\tau) = \frac{\langle I(t)I(t+\tau) \rangle}{\langle I \rangle^2}$ 624 ⁶²⁵ we have

$$
g_2(0) = \frac{\langle I^2 \rangle}{\langle I \rangle^2} \tag{S12}
$$

 \Box

⁶²⁶ and

$$
g_2(\tau) = \frac{\langle I \cdot I_\tau \rangle}{\langle I \rangle^2} \tag{S13}
$$

627 Since Var $(I) = \langle I^2 \rangle - \langle I \rangle^2$ and Cov $(I, I_\tau) = \langle I \cdot I_\tau \rangle - \langle I \rangle^2$ where Var (X) ϵ_{28} and $\text{Cov}(X, Y)$ denote the variance of X, and the covariance between X and

 $_{629}$ Y, we have

$$
\frac{1}{2}g_2(0) + \frac{1}{2}g_2(\tau) - 1 = \frac{1}{2}(\frac{\langle I^2 \rangle}{\langle I \rangle^2} - 1) + \frac{1}{2}(\frac{\langle I \cdot I_\tau \rangle}{\langle I \rangle^2} - 1)
$$

=
$$
\frac{\text{Var}(I) + \text{Cov}(I, I_\tau)}{2\langle I \rangle^2}
$$
(S14)

630 If $m(t) = \delta(0) + \delta(\tau)$, the pixel intensity S would be $S = I + I_{\tau}$ and $K_{2P}^2(\tau)$ ⁶³¹ would be

$$
K_{2P}^2(\tau) = \frac{\text{Var}\left(I + I_\tau\right)}{\langle I + I_\tau \rangle} = \frac{\text{Var}\left(I + I_\tau\right)}{4\langle I \rangle^2} \tag{S15}
$$

632 Therefore, to prove that $K_{2P}^2(\tau) = \frac{1}{2}g_2(0) + \frac{1}{2}g_2(\tau) - 1$, based on Eq. [S14](#page-4-0) and 633 [S15,](#page-4-1) one only needs to prove that $Var(I + I_\tau) = 2Var(I) + 2Cov(I, I_\tau)$, 634 which is true since $\text{Var}(I + I_\tau) = \text{Var}(I) + \text{Var}(I_\tau) + 2 \text{Cov}(I, I_\tau)$ and 635 Var $(I) = \text{Var}(I_{\tau})$. The proof is over. \Box 636

⁶³⁷ S3. The Impact of Non-zero Residual Illumination

⁶³⁸ We can model the non-zero residual illumination in 2-pulse modulation ⁶³⁹ as

$$
m'(t) = (1 - r)m(t) + r
$$
 (S16)

 ϵ_{40} where r is the relative amplitude of residual illumination during the off state ϵ_{41} and ranges from 0 to 1. $m(t)$ here is the ideal 2-pulse modulation with zero ⁶⁴² residual illumination, and ranges between 0 and 1. Then the modulation ⁶⁴³ autocorrelation function would be

$$
M'(\tau) = \int_0^{T-\tau} m'(t)m'(t+\tau)dt
$$

\n
$$
\approx (1-r)^2 M(\tau) + (T-\tau)[2r(1-r)d + r^2]
$$
\n(S17)

⁶⁴⁴ where $M(\tau) = \int_0^{T-\tau} m(t)m(t+\tau)dt$ and d is the duty cycle of $m(t)$ or the 645 pseudo duty cycle of $m'(t)$. Fig. S1a shows an example of how $M(\tau)$ would ϵ_{66} be skewed in presence of a non-zero residual illumination (r=0.1). The square

 ϵ_{47} of speckle contrast corresponding to $m'(t)$ would then become

$$
\widetilde{K}^{2}(T) = \frac{2\langle I\rangle^{2}}{T^{2}\langle I_{m'}\rangle^{2}} \int_{0}^{T} g_{2}(\tau)M'(\tau)d\tau - 1
$$
\n
$$
= \frac{2}{T^{2}[d + (1-d)r]^{2}} \int_{0}^{T} g_{2}(\tau)M'(\tau)d\tau - 1
$$
\n
$$
= \frac{2}{T^{2}[d + (1-d)r]^{2}} \int_{0}^{T} g_{2}(\tau)[(1-r)^{2}M(\tau) + (T-\tau)(2r(1-r)d + r^{2})]d\tau - 1
$$
\n(S18)

⁶⁴⁸ Simplify Eq. [S18,](#page-5-0) we get

$$
\widetilde{K}^2(T) = p K_m^2 + (1 - p) K_0^2 \tag{S19}
$$

where $K_m^2 = \frac{2\langle I \rangle^2}{T^2 \langle I_m \rangle^2}$ $\frac{2\langle I\rangle ^{2}}{T^{2}\langle I_{m}\rangle ^{2}}\int_{0}^{T}g_{2}(\tau)M(\tau)d\tau-1,\,K_{0}^{2}=\frac{2}{T^{2}}% \int_{0}^{T}g_{1}(\tau)d\tau. \label{12}%$ 649 where $K_m^2 = \frac{2\langle I \rangle^2}{T^2 \langle I_m \rangle^2} \int_0^T g_2(\tau) M(\tau) d\tau - 1$, $K_0^2 = \frac{2}{T^2} \int_0^T (T - \tau) g_2(\tau) d\tau - 1$, and $p = \frac{d^2(1-r)^2}{[r+d(1-r)]}$ ⁶⁵⁰ $p = \frac{d^2(1-r)^2}{[r+d(1-r)]^2}$. Therefore, the square of speckle contrast, K^2 in presence of a ⁶⁵¹ non-zero residual illumination in 2-pulse modulation would be the weighted ⁶⁵² sum of that of an ideal 2-pulse modulation plus that of no modulation on ϵ_{653} intensity. p indicates the proportion of the contribution by the ideal 2-pulse $\frac{654}{654}$ modulation. It is noticed that when r increases, p drops and that when d ϵ_{655} increases, p rises. Fig. S1b shows an example of how an AOM with limited σ ₆₅₆ OD when gating the light would affect the tail of $K^2_{2P}(T)$ curves when T is ⁶⁵⁷ large.

⁶⁵⁸ S4. The impact of pulse duration on the accuracy of measuring ϵ_{659} absolute and relative values of $g_2(\tau)$

⁶⁶⁰ In this section, we would like to answer the question of how to choose the ⁶⁶¹ pulse duration when doing 2-pulse modulated multiple exposure imaging. We $\frac{662}{100}$ demonstrated the validity of a 10 μ s pulse duration in extracting correlation $\frac{663}{100}$ times as short as 30 μ s (Fig. 3f). But it does not have to be always the case. ⁶⁶⁴ The pulse duration can be longer when measuring $q_2(\tau)$ of slowly varying ⁶⁶⁵ signals. We examined the optimal pulse duration selection through numerical ϵ_{666} simulation. For a given pulse duration T_m , we evaluated the discrepancy ⁶⁶⁷ between $g_2(\tau)$ and its estimation by $K_{2P}^2(T)$ at various correlation times (Fig. ⁶⁶⁸ S5). For a given pulse duration, the maximum percent discrepancy between ⁶⁶⁹ $2[K_{2P}^{2}(\tau) - C]$ and the absolute value of $g_2(\tau)$ decreases as τ_c increases (Fig.

Figure S1: The impact of non-zero residual illumination between two illumination pulses on $K_{2P}^2(T)$. **a** How the modulation autocorrelation function $M(\tau)$ would be skewed by a non-zero residual illumination (r=0.1). **b** The comparison of $K_{2P}^2(T)$ curves with and without residual illumination. An AOM with an OD of 4 when gating the light is simulated for the former case.

Figure S2: The optimal n given by the fitting algorithm in various flow rates. Dashed line: APD. Asteroids: 2PM-MESI. For each flow rate, the experiment is repeated for five times. Three of the five repeats are shown here and grouped together by the same color in the plot. Different colors represent different flow rates. When the flow rate is zero, the optimal n is 1, which is true for both APD and 2PM-MESI fitting results. When the flow rate is not zero, the optimal n is 2 according to APD fitting results. 2PM-MESI identifies the same optimal n for small flow rates ($\leq 60 \mu L/min$). But for higher flow rates, instability in estimating the optimal n is observed, which could be due to the downticking tail of the K_{2P}^2 curve induced by the non-zero residual illumination between illumination pulses.

Figure S3: Comparison of ICT values extracted from $g_2(\tau)$ and $K_{2P}^2(T)$ curves in vivo with unfixed n. 28 points from 4 mice.

Figure S4: Comparison of the performance of weighted fitting vs. unweighted fitting. The weighted fitting by $1/\tau$ improves the fitting performance in the head of $g_2(\tau)$ curve compared with unweighted fitting.

670 S5a). When τ_c becomes larger than 10 times T_m , the percentage discrepancy ϵ_{671} drops below 0.2%. In other words, to recover the absolute value of $g_2(\tau)$ of ϵ_{672} the signal of interest within a maximum of 0.2% discrepancy threshold, the ϵ_{55} pulse duration T_m should be made shorter than 10% of the correlation time τ_c of the signal. On the other hand, if the correlation time is the only interest 675 about $g_2(\tau)$, i.e., the relative value of $g_2(\tau)$ or $\widetilde{g}_2(\tau)$ is of interest, then the pulse duration can be longer than 10% of τ_c (Fig. S5b). But considering that pulse duration can be longer than 10% of τ_c (Fig. S5b). But considering that ϵ_{677} 2-pulse modulated multiple exposure imaging can only capture $g_2(\tau)$'s shape σ ₆₇₈ in the range of $\tau \geq T_m$, it is recommended that T_m not be longer than τ_c to ϵ_{679} ensure sufficient sampling of the exponential-decay phase of $g_2(\tau)$.

Figure S5: The accuracy of estimating $g_2(\tau)$ and $\tilde{g}_2(\tau)$ based on $K_{2P}^2(T)$ for signals of different correlation times. a The maximum perception discrepancy between absolute different correlation times. a The maximum percentage discrepancy between absolute $g_2(\tau)$ and that estimated by $K_{2P}^2(T)$. The y-axis is $\max_{\tau \in [T] \setminus [0]}$ $\tau{\in}[T_m,0.1~s]$ $\frac{2[K_{2P}^{2}(\tau)-C]-g_{2}(\tau)}{g_{2}(\tau)}$ /%. b The maximum percentage discrepancy between normalized $g_2(\tau)$ and $K_{2P}^2(\tau)$. The y-axis is max $\tau \in [T_m, 0.1 \; s]$ $\frac{[K_{2P}^{2}(\tau)+1]-[\tilde{g_{2}}(\tau)+1]}{\tilde{g_{2}}(\tau)+1}/\%$.