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s0 Supplementary Material
s S1. Relating K?(T') and g»(7) in arbitrary modulation

502 Define the AOM modulation function as m(t), the intact speckle signal
s03 as I(t), and the modulated speckle signal as I,,,(t) such that

L, (t) = I(t)m(t) (S1)

s« ' Then the intensity of pixel ¢ on the camera sensor within intensity-modulated
505 exposure time 7" would be

Sir = / ' L ym(t)dt (S2)

s0s where I;(t) is the intact speckle signal of pixel i and m(t) is the modulation
so7 function on the illumination intensity.The second moment of modulated pixel
se¢ intensity would be

N

1
(Sh) =5 D (Sir)” (S3)

i=1
so0 where ( ) denotes averaging and N is the number of averaged pixels. The last
o0 material needed for the derivation is the definition of intensity autocorrelation
so1 function go(7) given by Eq. S4

e .

2 where (I) is the average intensity of the intact speckle signal.

Based on Eq. S1 to S4, we can derive the expression of the second moment
of modulated pixel intensity with respect to the intensity modulation function
m(t) and the intensity autocorrelation function go(7) of the intact signal as
follows:

gt —t') =

(1) = ((Sir)®)

() denotes averaging over independent instances
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Using Eq. S4

T T
= (I)? / / go(t" — " ym(t")ym(t")dt' dt”
0 0

Symmetry of ¢ and t"; g(7) is even

/)/ght—ﬂ (ym(")dt" e

Let '/ —t" =7, thent" =t — 7, dt'' = —dr

/ / go(T)m(E)m(t’ — 7)drdt

Change the order of integral

JVAT[T@umwmmﬂ—ﬂﬁﬂf

zzufé mﬁx/memw—mem

Lett =t —7,thent' =t+ 7, dt' = dt
T T—1
zzuy/‘@@x/ m(t)m(t + 7)dt)dr
0 0

603 Deﬁne

604 then
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g5 Since

KQ(T) _ Var <S2T) _ <S:2F> — <2ST>2
(St) (St)

s where (Sr) is the mean pixel intensity of modulated speckle signal within

sor exposure time 7" and (Sy) = T'(I,,) where (I,,,) is the mean intensity of the

ss modulated speckle signal, we arrive at the expression of speckle contrast of
s00 the within-exposure modulated speckle signal (Eq. S8).

(S7)

k2= A7 /T ()M (r)dr — 1 (s8)
= T)M(7)dT —

(1) Jo
610 Notice that when the modulation function m(t) is a constant 1, we have

s M =T — 71 and Eq. S8 reduces to the expression of speckle contrast that is
sz commonly seen (Eq. 3). In other words, the classic expression of speckle con-
13 trast we use is a particular case of Eq. S8 when the illumination intensity is
s1a  held constant. Finally, we would like to introduce one important observation
s about M(7) (Lemma S1.1).

ss Lemma S1.1 (Integral property of M(7)). If the average intensity of the
a7 intact speckle signal I(t) remains steady over time, i.e., fOT I({t)ym(t)dt =

s () fOT m(t)dt, then the integral of M (7) satisfies % fOT M(7)dr = 1.
s10  Proof. Because I,,(t) = I(t)m(t), we have

Jo ()t T(I)
S I@yme)dt (1) [ mi)dt

—1 (S9)

s20 Hence,

/T m(t)dt = (S10)
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s21  Therefore,

/ dT—/ /T ' m(t + 7)drdt
_ /0 m(t) /0 m(t + 7)drdt

Let ' =t 4 7, then dt’ = dr

:/T (t)/T () dv'dt
// t/dtdt (Sll)

Symmetry of m(t) and m(t')

/ / 1)t dt
= 5[ moy

Plug in Eq. S10

_ T2<Im>2
2D
22 Namely, % fOT M (7)dr = 1. The proof is over. O]

w82, K2,(T) = 1g5(0) + Lgo(T) — 1 if m(t) = 8(0) + &(T)

s Proof. Denote I(t) as I and I(t+7) as I, then according to gy (7) = LU

we have e
_ ()
626 and <] I >

o7 Since Var (I) = (I?) — (I)? and Cov (I,I,;) = (I - I,) — (I)* where Var (X)
s and Cov (X,Y’) denote the variance of X, and the covariance between X and
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s20 Y, we have

1 1 1 (I?) 1 (I-1,)
~02(0) + 502(7) — 1 = (7 — 1)+ S ()
21(1) 2\ (1) S14)

_ Var(I)+ Cov (I, 1)
B 2(I)2

e If m(t) = (0) + §(7), the pixel intensity S would be S = I + I, and K2p(7)
21 would be Var(1 4+ L) Var(I+L)
ar (L + ar (L +

K3p(r) = ~ = . S15
e Therefore, to prove that K3,(7) = 1¢2(0)+392(7) — 1, based on Eq. S14 and
633 515, one only needs to prove that Var (I + I;) = 2Var (I) + 2Cov (I, [,),
s which is true since Var (I + I;) = Var(I) + Var(Il,) + 2Cov (I,I,;) and
o35 Var(I) = Var (I;). The proof is over.
636 D

s7 33. The Impact of Non-zero Residual Illumination

638 We can model the non-zero residual illumination in 2-pulse modulation
639 aS
m'(t) = (1 —r)m(t) +r (S16)

sa0  where 7 is the relative amplitude of residual illumination during the off state
s and ranges from 0 to 1. m(t) here is the ideal 2-pulse modulation with zero
s2 residual illumination, and ranges between 0 and 1. Then the modulation
3 autocorrelation function would be

M(r) = /0 o m (4 Pt
~ (1 —7r)?M(7)+ (T —7)[2r(1 — r)d + 7]

(S17)

saa  where M(7) = OT_T m(t)m(t + 7)dt and d is the duty cycle of m(t) or the

ess pseudo duty cycle of m/(t). Fig. Sla shows an example of how M (1) would
sss  be skewed in presence of a non-zero residual illumination (r=0.1). The square
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s Of speckle contrast corresponding to m/(t) would then become

%/{) go(T)M'(T)dT — 1

2 r )
— T (1= )] /0 go(T)M'(T)dT — 1

KX(T) =

= T (21 — T /OT G (D1 =7’ M(7) + (T — 7)(2r(1 — r)d + r*)]dr — 1
(S18)
s Simplify Eq. S18, we get
K*(T) = p Ky + (1-p)K; (S19)
ss0 Where K2 = 2<I fo g(T)M(T)dT—1, K} = % fOT(T—T)gg(T)dT—l, and

50 P = [T‘fd(éf?” Therefore, the square of speckle contrast, K2 in presence of a

51 non-zero residual illumination in 2-pulse modulation would be the weighted
2 sum of that of an ideal 2-pulse modulation plus that of no modulation on
es3 intensity. p indicates the proportion of the contribution by the ideal 2-pulse
ssa  modulation. It is noticed that when r increases, p drops and that when d
es5 increases, p rises. Fig. S1b shows an example of how an AOM with limited
s OD when gating the light would affect the tail of K2,(T) curves when T is
657 large.

s 34. The impact of pulse duration on the accuracy of measuring
650 absolute and relative values of g»(7)

660 In this section, we would like to answer the question of how to choose the
s1  pulse duration when doing 2-pulse modulated multiple exposure imaging. We
2 demonstrated the validity of a 10 us pulse duration in extracting correlation
e63 times as short as 30 us (Fig. 3f). But it does not have to be always the case.
s« The pulse duration can be longer when measuring ¢o(7) of slowly varying
ses signals. We examined the optimal pulse duration selection through numerical
s simulation. For a given pulse duration 7;,, we evaluated the discrepancy
ee7 between go(7) and its estimation by K25(T) at various correlation times (Fig.
s SH). For a given pulse duration, the maximum percent discrepancy between
soo 2[K3p(7) — C] and the absolute value of go(7) decreases as 7. increases (Fig.
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Figure S1: The impact of non-zero residual illumination between two illumination pulses
on K2,(T). a How the modulation autocorrelation function M(7) would be skewed by
a non-zero residual illumination (r=0.1). b The comparison of K2,(T) curves with and
without residual illumination. An AOM with an OD of 4 when gating the light is simulated
for the former case.
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Figure S2: The optimal n given by the fitting algorithm in various flow rates. Dashed line:
APD. Asteroids: 2PM-MESI. For each flow rate, the experiment is repeated for five times.
Three of the five repeats are shown here and grouped together by the same color in the
plot. Different colors represent different flow rates. When the flow rate is zero, the optimal
n is 1, which is true for both APD and 2PM-MESI fitting results. When the flow rate is
not zero, the optimal n is 2 according to APD fitting results. 2PM-MESI identifies the
same optimal n for small flow rates (< 60 puL/min). But for higher flow rates, instability
in estimating the optimal n is observed, which could be due to the downticking tail of the
K2, curve induced by the non-zero residual illumination between illumination pulses.
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Figure S3: Comparison of ICT values extracted from go(7) and K3p(T) curves in vivo
with unfixed n. 28 points from 4 mice.
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Figure S4: Comparison of the performance of weighted fitting vs. unweighted fitting.
The weighted fitting by 1/7 improves the fitting performance in the head of g(7) curve
compared with unweighted fitting.
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e0  Sha). When 7, becomes larger than 10 times T, the percentage discrepancy
e drops below 0.2%. In other words, to recover the absolute value of go(7) of
ez the signal of interest within a maximum of 0.2% discrepancy threshold, the
er3 pulse duration T}, should be made shorter than 10% of the correlation time
o4 T, of the signal. On the other hand, if the correlation time is the only interest
s about go(7), i.e., the relative value of go(7) or go(7) is of interest, then the
s pulse duration can be longer than 10% of 7. (Fig. S5b). But considering that
7 2-pulse modulated multiple exposure imaging can only capture go(7)’s shape
s in the range of 7 > T,,, it is recommended that 7T, not be longer than 7. to
oo ensure sufficient sampling of the exponential-decay phase of go(7).
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Figure S5: The accuracy of estimating g2(7) and ga(7) based on K3,(T) for signals of
different correlation times. a The maximum percentage discrepancy between absolute
2
g2(7) and that estimated by K3,(T). The y-axis is [;nax | Q[K“’P(Tg)zzgkgg(ﬂ/%. b
T7€|T,0.1 5 <

The maximum percentage discrepancy between normalized g>(7) and K3p(7). The y-axis
is (K3 p (D) +1)=[32(r)+1]

el g2(T)+1 /%
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