Evaluating the utility of brightfield image data for mechanism of action prediction

Table S4. Comparison of the test set F1 scores for three different architectures trained on BF and FL when site-level normalization was applied to the data.

(a) Macro-F1 scores on the test sets for the five data splits.

	ResNet-50		Dense	Vet-169	EfficientNet-B3	
	$\mathrm{BF}_{\mathrm{site}}$	$\mathrm{FL}_{\mathrm{site}}$	BF_{site}	$\mathrm{FL}_{\mathrm{site}}$	$\mathrm{BF}_{\mathrm{site}}$	$\mathrm{FL}_{\mathrm{site}}$
Split 1	0.662	0.661	0.677	0.655	0.638	0.665
Split 2	0.770	0.762	0.776	0.742	0.757	0.776
Split 3	0.654	0.677	0.647	0.654	0.630	0.705
Split 4	0.676	0.645	0.638	0.604	0.625	0.641
Split 5	0.708	0.688	0.690	0.687	0.595	0.708

(b) F1 scores per MoA on the test sets.

	ResNet-50		DenseNet-169		EfficientNet-B3	
	BF_{site}	FL _{site}	BF_{site}	$\mathrm{FL}_{\mathrm{site}}$	BF_{site}	$\mathrm{FL}_{\mathrm{site}}$
ATPase-i	0.650	0.683	0.622	0.648	0.585	0.702
AuroraK-i	0.713	0.671	0.693	0.644	0.724	0.667
HDAC-i	0.766	0.785	0.749	0.785	0.760	0.819
HSP-i	0.756	0.682	0.767	0.689	0.748	0.686
JAK-i	0.405	0.429	0.345	0.369	0.255	0.444
PARP-i	0.789	0.748	0.797	0.734	0.756	0.789
Prot.Synthi	0.520	0.646	0.543	0.647	0.455	0.668
Ret.Rec.Ag	0.767	0.796	0.790	0.798	0.683	0.822
Topoi	0.702	0.651	0.676	0.616	0.626	0.600
Tub.Poli	0.850	0.865	0.856	0.859	0.827	0.818
DMSO	0.836	0.691	0.801	0.685	0.732	0.791
Macro average	0.705	0.695	0.695	0.679	0.650	0.710