
A mathematical model of stochastic phase variation

Here we develop a mathematical model to describe the dynamic evolution of CPS promoter hetero-
geneity in a population of B. fragilis. Such heterogeneity at the population level is a consequence
of the inherent stochastic nature of biomolecular reactions occurring at the single cell level. In par-
ticular, we assume that the dynamic processes driving CPS promoter inversion have the following
ergodicity property: at any time t and for any promoter state i, the fraction of cells in state i in a
population is equal to the probability of a single cell to be in state i. Hence, in the sequel, we develop
a mathematical model to describe the stochastic biomolecular reactions at the single cell level that
governs CPS promoter inversion.

In each B. fragilis cell, there are n = 7 CPS gene clusters. Let xi represent the i-th promoter,
which is either in “ON” state (denoted by xi = 1) or in “OFF” state (denoted by xi = 0). When an
invertase E binds with the promoter i, it could switch the promoter to the “ON” (“OFF”) state if it
was previously in the “OFF” (“ON”) state. We use the following chemical reaction to describe the
binding and unbinding between the invertase and the promoter i, as well as flipping of the promoter
state:

(xi = 0) + E 
 (xi = 1) + E, for every promoter i. (1)

The macrostate of a cell is dictated by the combination of its CPS promoter states and is denoted
by a random variable z. With n invertible CPS promoters, this constitutes a 2n dimensional discrete
state space z ∈ Z = {0, 1}n. To denote possible realizations of system macrostates, we will use
zi, where i is the decimal conversion of the binary sequence representing promoter states. For
example, z = z0 := (0000000) denotes the cell is in a macrostate where all promoters are “OFF”
and z = z127 := (1111111) denotes the cell is in a macrostate where all promoters are “ON”. For a
macrostate zi, a different macrostate zj is its neighbor state if they are different by a single promoter
inversion. We use Ni to denote the set of all neighbor states of zi. For instance, the set of neighbors
of state z0 is N0 = {z1, z2, z4, z8, z16, z32, z64}. For every i, we have |Ni| = n = 7. Now we develop
a mathematical model to describe the stochastic transition between cell macrostates. The resultant
model is a set of coupled linear ordinary differential equations (ODEs) describing how the probability
of the cell in each macrostate i, denoted as Pi(t) := P (z = zi, t), evolves over time. Such a model
is known as a chemical master equation model in the chemical reaction network setting [1, 2], and
here we derive it in full detail to explicitly account for all relevant physical assumptions.

We first consider generic state transition dynamics in a continuous-time discrete-state Markovian
setting. Taking a sufficiently small time interval δt, in which only a single state transition (i.e.,
chemical reaction) could occur. The probability a cell is in state zi ∈ Z at time t+ δt is determined
by the propensities of the following two types of events:

(I) The propensity αi,jδt that the cell starts at a neighbor state zj ∈ Ni at time t, but transition
to zi by inverting a single promoter during the δt interval.

(II) The propensity that the cell starts at zi at t and no reaction occur during the δt interval. This
propensity can be quantified as (1 −

∑
j∈Ni

αj,iδt), where αj,i is the propensity of the cell in
state i to transition to a neighbor state j ∈ Ni.

We can then compute the probability of each cell to be in state zi at time t+ δt as follows:

Pi(t+ δt) = Pi(t)[1−
∑
j∈Ni

αj,iδt] +
∑
j∈Ni

Pj(t)αi,jδt, for all i = 1, · · · , 127. (2)

Rearranging equation (2), we have

d

dt
Pi(t) := lim

δt→0+

Pi(t+ δt)− Pi(t)
δt

=
∑
j∈Ni

αi,jPj(t)−
∑
j∈Ni

αj,iPi(t), for all i = 1, · · · , 127. (3)
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Alternatively, equation (3) can be put in matrix form:

d

dt


P0

P1

...
P127

 =


−
∑
j∈N0

αj,0 α0,1 · · · α0,127

α1,0 −
∑
j∈N1

αj,1 · · · α1,127

...
...

. . .
...

α127,0 α127,1 · · · −
∑
j∈N127

αj,127


︸ ︷︷ ︸

A


P0

P1

...
P127

 . (4)

Since equation (3) is linear, its solution can be written as

P(t) = exp(A · t) ·P(0), (5)

where P := [P1, · · · , P127]>, A is called the state transition matrix, and exp(·) represents matrix
exponential operation.

We then write the parameters in the transition matrix A in terms of parameters in the chemical
reaction (1). To this end, we consider the probability that each reaction in (1) occurs. In particular,
for each promoter i and each forward (or backward) reaction in (1), the reaction propensity functions

afi (z, t)δt (or abi (z, t)δt, respectively) captures the instantaneous probability that the reaction occurs
(i.e., the promoter flips). More specifically, the reaction propensity function is the probability the
forward (or backward) reaction will occur for promoter i between t and t+ δt given current state z
and an infinitesimal time δt [2]. Assuming that the cell is a well-mixed space, the probability that
an invertase collides and reacts with promoter i in “ON” (or “OFF”) state is determined by the
following factors [1, 2]: (i) it is proportional to the number of invertase molecules (ii) proportional to
the number (i.e., 0 or 1) of promoter i in “ON” (or “OFF”) state, and (iii) it is inversely proportional
to the volume of the cell Ω. Hence, the reaction propensity functions for the forward and backward
reactions can be written as:

afi (z) =
1

Ω
· r+i · nE · 1(xi = 0), abi (z) =

1

Ω
· r−i · nE · 1(xi = 1), (6)

where nE is the number of invertase molecules, r+i /r−i are the forward/backward reaction rate
constants, and 1(u) is the indicator function with 1(u) = 1 if u is true and 1(u) = 0 if otherwise.

We consider transition from state zj to zi, quantified by the propensity function αi,jδt. Depending
on the promoter configurations in states zj and zi, there are three cases, and every entry in the
transition matrix A can be determined by the following rules:

(a) If i /∈ Nj , based on equation (3), we have:

αi,j = 0. (7)

(b) If i ∈ Nj and the q-th promoter (q = 1, · · · , 7) is switched from “OFF” in zj to “ON” in zi in
δt time interval, then according to (6), we have:

αi,j = afq (zj) = r+q · [E], (8)

where [E] denotes the concentration of the invertase E.

(c) Conversely, if i ∈ Nj and the q-th promoter is switched from “ON” in state zj to “OFF” in
state zi in δt time interval, then according to (6), we have:

αi,j = abq(zj) = r−q · [E], (9)

where [E] denotes the concentration of the invertase E.

Here, we further assume that the invertase is expressed in sufficiently large amount such that its
copy number is much larger than 7 (i.e., the total number of promoter sites it could bind to). As a
result, the free invertase concentration [E] stays approximately constant with individual promoter
inversion events. Under this assumption, we call r̂±i := r±i · [E] the effective flipping rates. Hence,
in sum, the propensity of a cell switching from a macrostate zj to a neighbor state zi (i.e., αi,j) by
flipping a promoter is equal to the corresponding effective flipping rate, which we determine from
experimental data in the next section.
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Parameter inference

To infer the effective flipping rates r̂±i as well as their associated uncertainties from experimental
data, we perform Markov Chain Monte Carlo (MCMC) simulations. This allows us to obtain
posterior distributions of the parameters θ := [r̂+1 , r̂

−
1 , · · · , r̂

+
7 , r̂

−
7 ] given experimentally measured

empirical distribution dynamics starting from different initial conditions. Specifically, let Ni(t, k)
be the number of cells in macrostate zi measured at time t with initial condition k, the respective
empirical distribution P̂(t, k) is defined as:

P̂i(t, k) :=
Ni(t, k)∑127
j=0Nj(t, k)

, (10)

with P̂(t, k) := [P̂0(t, k), · · · , P̂127(t, k)]. We intend to find parameters that allow P dynamics in (5)

to match the evolution of empirical distributions P̂ starting from all initial conditions. We use an
additive, Gaussian noise to model measurement uncertainty:

P̂i(t, k) = Pi(t, k) + εi, where εi ∼ N (0, σi(t, k)) (11)

and σi is the standard deviation associated with the fraction of cells in state zi. For states with
smaller number of cell counts, the deviation between probability Pi and empirical distribution P̂i
increases. To account for this, we further assume that measurement uncertainty increases for states
with low cell counts and hence fractions: σi(t, k) = −a · log10 P̂i(t, k) + b. The parameters a =
0.028 and b = 0.016 are found by fitting standard deviation quantified from three independent
DoTA-seq experiments. Given mechanistic state transition model (5) and noise model (11), we use

X̂ := [P̂(t1, k1), · · · , P̂(tm, k1), P̂(t1, k2), · · · , P̂(tm, kq)] to represent the measured time series of cell
fractions for all macrostates starting from all initial conditions k1, · · · , kq. For a fixed parameter θ,

the likelihood to observe X̂ can be computed as

P(X̂|θ) =

m∏
j=1

q∏
l=1

127∏
i=0

f(P̂i(tj , kl)− Pi(tj , kl);σi(tj , kl)), (12)

where f(·;σ) is the probability density function for the normal distribution with standard deviation
σ and Pi(tj , kl) is the solution to (5) from the l-th initial condition (i.e., setting the empirical
distribution measured at t = 0 from the l-th initial condition as P(0)). The posterior probability

can then be described according to Bayes rule as P(θ|X̂) ∝ P(X̂|θ) · π(θ), where π(θ) is the prior
parameter distribution. We assign a uniform prior distribution U(0, 10) for each parameter.

An adaptive, symmetric, random-walk Metropolis MCMC algorithm [3] is then used to draw
samples from the posterior distributions. Implementation details of the same MCMC setup has been
described in [4, 5]. The algorithm was implemented using custom code in MATLAB R2021a (The
MathWorks, Inc., Natick, MA, USA). For each parameter, we collected at least 100,000 MCMC
samples after a burn-in. The Gelman-Rubin potential scale reduction factor (PSRF) was used
to evalute convergence of the posterior distribution, where a PSRF closer to 1 indicates better
convergence. The PSRF for all parameters lie between 1.0002 and 1.0056. In order to verify that
the model structure in (5) is not too flexible to fit any experimental data, we randomly shuffled
experimental data by exchanging the measured fractions of cells in each state. In particular, we
generate randomly shuffled data P̃(t, k) via P̃(t, k) = Λ · P̂(t, k), where Λ ∈ R128×128 randomly

shuffles elements in P̂(t, k) (i.e., it contains a one at a random position in each row and each column
only contains one non-zero element) and it is constant for all initial condition and all time. For both
the synthetic strain data and WT data, we generated 100 such Λ matrices hence 100 sets of randomly
shuffled data. We use Pearson correlation between P(t, k) and P̂(t, k) for all t and k to evaluate
goodness of fit and found that the mechanistic model (5) had difficulty fitting randomly shuffled
data. Specifically, for the synthetic strain (WT) data, Pearson correlation for all 100 sets of randomly
shuffled data are below 0.6 (0.61, for WT respectively). In comparison, Pearson correlations for the
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unshuffled data were 0.97 and 0.80 for the synthetic strain and the WT data, respectively. These
results indicate that our model (5) is not too flexible to fit randomly generate data hence it partially
explains the experimental observations.
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