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1 Simulation Study

We tested netSGCCA using two simulated blocks X1 and X2 with a graph
penalty based on a graph G on the second block.Our simulation procedure
followed Du et al. [1] proposal. We started by defining the vectors u1 and
u2 of dimensions p1 = 150 and p2 = 101. Then we generated n = 80
samples for each row of the two blocks x1|z ∼ N

(
czu⊤

1 ,Σ1

)
(respectively

x2|z ∼ N
(
czu⊤

2 ,Σ2

)
), with z ∼ N (0, 1) a latent variable. We defined

(Σ1)kl = 0.1, and (Σ2)kl = −0.9 × |uk − ul| + 0.9 if the variables k and
l are adjacent in the graph G , and 0.1 otherwise. The variance of each
vector is 1. The vector u1 = (0, · · · , 0︸ ︷︷ ︸

60

, 1, · · · , 1︸ ︷︷ ︸
30

, 0, · · · , 0︸ ︷︷ ︸
60

) was used in all

configurations. Finally, the coefficient c ∈ {0.5, 2} was used to simulate data
with different mean/variance ratios. Since the defined correlation matrices
are not necessarily positive semi-definite, we used the nearest correlation
matrix as proposed by [2].
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We tested 12 different configurations, each configuration consists of a
vector u2 and a graph. The different configurations allow us to assess the
properties of the method on diverse situations. As a remainder, the aim of
the simulation is not to compare the different graphs, as they are expected
to be a priori knowledge and not computed. But, we aim to assess the
behaviour of the different graph types in the different cases.

Three different cases of u2 were used to simulate different interaction
types between variables of interest. The first case, u2 = (0, · · · , 0︸ ︷︷ ︸

40

, 1, · · · , 1︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
41

).

The second case, u2 = (0, · · · , 0︸ ︷︷ ︸
40

, 1, · · · , 1︸ ︷︷ ︸
10

, 0,−1, · · · ,−1︸ ︷︷ ︸
10

, 0, · · · , 0︸ ︷︷ ︸
41

). And the

third case, u2 = (0, · · · , 0︸ ︷︷ ︸
41

, 1,−1, 1 · · · ,−1, 1︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
40

). Additionally, four dif-

ferent graphs were investigated, the path (where the edges are between sub-
sequent variables), the star graph (where the 50th variable is connected to all
the others), the union of the path and the star graph and finally the complete
graph. An illustration of the different cases car be found at Figure S1.

The model performance was assessed using the correlation between the
estimated components. Additionally, we computed the precision, recall and
F1 metrics between the true uj vectors and the weights wj estimated by the
model. For each configuration, we chose the hyper-parameter γG by running
the model 20 times, with γG ranging from 10−4 to 104 each time. The best γG
was selected using the best average F1 score because our objective is mainly
to recover the variables of interest. For each configuration, we also ran the
model without using a graph and compared the results. The sparsity value
was fixed to

√
25 for the first block (resp.

√
20 for the second block) in all

runs.

Table S1 and Table S2 show the results obtained on the simulated data.
It shows that when we have a high mean/variance ratio, the F1 scores are
higher, which means that the models using the graphs focus on retrieving
the underlying projector u2. This was expected since a low mean/variance
ratio means noisier data.

Overall, the tables also show that using netSGCCA outperformed the
SGCCA without a graph. When c = 2, SGCCA selected very few variables,
about 3, leading to a high precision but very low recall. In contrast, the
graph penalisation allowed the model to select more variables, retrieving all
the variables of interest and a high F1 score. However, this increase of the F1
score came with a slight decrease in the correlation between the estimated
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components, by around 2%. Additionally, when c = 0.5, the F1 score con-
tinues to show improvement when the graph penalisation is used, but to a
lower degree. However, the correlation between the estimated components
also increased by 0.13 on average.

Comparing each graph type, we can see that, when c = 2, the path graph
recovers all the variables of interest perfectly, with an average F1 score of
1 in all cases. The star graph was also able to obtain a perfect recall but
with much lower precision. This is because the star graph selects many
more variables, about 45 on average. Knowing that the sparsity level is the
same for all configurations, the hub in the star graph seems to spread the
weights more into its neighbours compared to the path graph. However, the
correlations between estimated components are comparable. When c = 0.5,
the models seem to select the variables randomly, which is shown by an F1
score close to 0.2. Additionally, the weights do not seem to resemble the
original u2. However, even this result is better than without the graph a
priori, which only selected a couple of features and resulted in an F1 score
close to 0. In this situation, by choosing a greater number of variables,
the star graph performed better in the correlation score compared to the
path graph. Additionally, the union of the star and path graph exhibited
behaviour similar to the ones of path and star graphs. Finally, the models
with the complete graph always failed to outperform all the other models.
This result is expected since the complete graph does not contribute to bring
any information.

If we fix the graph and the mean-variance ratio, for all the cases u2

considered, we observe no significant difference in the precision of the variable
selection process nor in the extracted correlations. This observation holds
for all graph types and mean-to-variance ratios. The correlations between
neighbours in the graph did not change the selected variables.

Overall, netSGCCA seemed to outperform the SGCCA in terms of re-
trieving the variables of interest, in nearly all configurations tested. It ap-
peared that it is through its properties and structures that the graph have an
influence on the behaviour of the model. We seek to investigate these results
on real oncological data in the next sections.
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Table S1: Recovering performances depending on configurations defined by
the different cases defined by the vector u2 and graphs. Corr is the correlation
between the estimated components. Precision, Recall and F1 correspond to
the evaluation of u2 against the computed weights. Bold refers to highest
values between netSGCCA and SGCCA. Low mean to variance ratio (c =
0.5).

Graph Used No graph used
γG Corr Precision Recall F1 Corr Precision Recall F1

Case 1

Path 10−4 0.56± 0.05 0.2± 0.11 0.17± 0.1 0.18± 0.1 0.46± 0.04 0.22± 0.32 0.03± 0.03 0.04± 0.05
Star 1 0.6± 0.04 0.13± 0.07 0.3± 0.15 0.18± 0.09 0.48± 0.04 0.02± 0.09 0.01± 0.02 0.01± 0.04
Union 10−3 0.58± 0.05 0.13± 0.07 0.26± 0.15 0.17± 0.1 0.47± 0.04 0.09± 0.25 0.01± 0.03 0.02± 0.12

Complete 10−2 0.39± 0.04 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.4± 0.04 0.0± 0.0 0.0± 0.0 0.0± 0.0

Case 2

Path 10−4 0.57± 0.04 0.27± 0.1 0.22± 0.09 0.24± 0.09 0.47± 0.05 0.24± 0.32 0.04± 0.05 0.06± 0.07
Star 1 0.6± 0.05 0.2± 0.09 0.48± 0.24 0.28± 0.13 0.47± 0.05 0.24± 0.32 0.03± 0.03 0.05± 0.06
Union 10−4 0.58± 0.03 0.21± 0.08 0.43± 0.15 0.29± 0.1 0.47± 0.04 0.32± 0.39 0.04± 0.06 0.07± 0.1

Complete 10−1 0.35± 0.04 0.01± 0.03 0.01± 0.06 0.01± 0.04 0.38± 0.04 0.01± 0.03 0.0± 0.01 0.0± 0.02

Case 3

Path 10−2 0.56± 0.04 0.16± 0.07 0.3± 0.14 0.21± 0.1 0.45± 0.03 0.1± 0.25 0.01± 0.02 0.02± 0.04
Star 1 0.63± 0.05 0.17± 0.06 0.37± 0.11 0.24± 0.07 0.49± 0.04 0.12± 0.15 0.02± 0.03 0.03± 0.04
Union 10−4 0.59± 0.03 0.2± 0.05 0.39± 0.11 0.26± 0.07 0.46± 0.04 0.16± 0.28 0.02± 0.03 0.04± 0.06

Complete 10−2 0.39± 0.05 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.39± 0.05 0.0± 0.0 0.0± 0.0 0.0± 0.0

Table S2: Recovering performances depending on configurations defined by
the different cases defined by the vector u2 and graphs. Corr is the correlation
between the estimated components. Precision, Recall and F1 correspond to
the evaluation of u2 against the computed weights. Bold refers to highest
values between netSGCCA and SGCCA. High mean to variance ratio (c = 2).

Graph Used No graph used
γG Corr Precision Recall F1 Corr Precision Recall F1

Case 1

Path 10−3 0.73± 0.04 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.76± 0.04 1.0± 0.0 0.2± 0.05 0.32± 0.06
Star 10−4 0.73± 0.05 0.46± 0.03 1.0± 0.0 0.63± 0.03 0.74± 0.03 1.0± 0.0 0.21± 0.06 0.35± 0.07
Union 10−4 0.72± 0.04 0.47± 0.05 1.0± 0.0 0.64± 0.04 0.74± 0.04 1.0± 0.0 0.21± 0.06 0.35± 0.08

Complete 10−4 0.36± 0.09 0.02± 0.07 0.06± 0.23 0.03± 0.11 0.39± 0.09 0.05± 0.22 0.02± 0.09 0.03± 0.13

Case 2

Path 10−3 0.71± 0.04 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.74± 0.04 1.0± 0.0 0.24± 0.08 0.38± 0.11
Star 10−4 0.7± 0.04 0.47± 0.03 1.0± 0.0 0.64± 0.03 0.74± 0.04 1.0± 0.0 0.19± 0.06 0.32± 0.09
Union 10−4 0.71± 0.04 0.47± 0.02 1.0± 0.0 0.64± 0.02 0.74± 0.04 1.0± 0.0 0.22± 0.05 0.36± 0.07

Complete 1 0.32± 0.04 0.02± 0.1 0.05± 0.22 0.03± 0.13 0.39± 0.09 0.05± 0.22 0.02± 0.09 0.03± 0.13

Case 3

Path 10−3 0.73± 0.04 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.74± 0.04 1.0± 0.0 0.21± 0.06 0.34± 0.08
Star 10−4 0.7± 0.05 0.47± 0.04 1.0± 0.0 0.64± 0.04 0.74± 0.05 1.0± 0.0 0.2± 0.06 0.33± 0.08
Union 10−4 0.71± 0.04 0.46± 0.04 1.0± 0.0 0.63± 0.04 0.75± 0.03 1.0± 0.0 0.19± 0.07 0.31± 0.1

Complete 10−4 0.36± 0.09 0.02± 0.07 0.07± 0.23 0.03± 0.11 0.39± 0.09 0.05± 0.22 0.01± 0.07 0.02± 0.1
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(a) Star graph, case 1 (b) Star graph, case 2 (c) Star graph, case 3

(d) Path graph, case 1 (e) Path graph, case 2 (f) Path graph, case 3

Figure S1: Star and Path graphs with different u2 values. Grey nodes corre-
spond to 0 values, red for 1, and blue for -1
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2 TCGA-LGG: Additional Results

Table S3: Comparison between genes selected by the PC graph and genes
selected by the MSIGDB or KEGG.

# of selected genes Selected from PC Size of intersection Dice nPOG
MSIGDB 434.51± 15 975.37± 66 428.33± 38 0.61± 0.07 0.43± 0.05
KEGG 233.78± 30 975.37± 66 197± 65 0.33± 0.11 0.20± 0.07

Table S4: Comparison between genes selected by the PC graph the 10 per-
mutations of the PC graph

# of selected genes Selected from PC Size of intersection Dice nPOG
PERMUTATION1 760.27± 27 975.37± 66 37.64± 5 0.04± 0.0 0.00± 0.00
PERMUTATION2 848.94± 16 975.37± 66 43.53± 4 0.04± 0.0 0.00± 0.00
PERMUTATION3 745.36± 27 975.37± 66 28.74± 5 0.03± 0.0 0.00± 0.00
PERMUTATION4 809.02± 30 975.37± 66 37.04± 4 0.04± 0.0 0.00± 0.00
PERMUTATION5 826.02± 56 975.37± 66 37.77± 4 0.04± 0.0 0.00± 0.00
PERMUTATION6 738.57± 41 975.37± 66 41.10± 3 0.04± 0.0 0.00± 0.00
PERMUTATION7 790.37± 41 975.37± 66 36.77± 4 0.04± 0.0 0.00± 0.00
PERMUTATION8 812.29± 27 975.37± 66 40.47± 4 0.04± 0.0 0.00± 0.00
PERMUTATION9 705.63± 18 975.37± 66 29.34± 6 0.03± 0.0 0.00± 0.00
PERMUTATION10 789.86± 46 975.37± 66 39.76± 4 0.04± 0.0 0.00± 0.00

Table S5: The effect of pruning edges that connect genes selected when using
the full PC graph. Results obtained on 100 samples.

Edges removed # of selected genes Selected from PC Size of intersection Dice
Inner 936± 74 975.37± 66 925± 111 0.97± 0.09
Outer 426± 59 975.37± 66 426± 59 0.61± 0.03
Inner and outer 169± 17 975.37± 66 165± 8 0.29± 0.02
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Figure S2: Diagram showing the basis of the stability analyses performed
in paragraphs 4.1 and 4.2. A. panel: from the n=100 outcomes of the runs
performed on the 100 bootstrap samples we computed DICE and nPOG
metrics on all different pairs of outcomes out of the one hundred ones. From
these (n.(n-1)/2) DICE and nPOG values are derived mean and standard
deviation. The stability study was done in the configurations when only the
raw graph Laplacian or the normalised graph Laplacian was used. B. panel:
the (PathwayCommon) PC-graph is considered as reference. The stability is
computed between PC and each of the MSIGDB, KEGG, Permuted1,... and
Permuted10 graphs. In each cases, n paired outcomes are used to derive a
mean and standard deviation of DICE and nPOG.

7



Figure S3: Evolution of the nPOG metric as γG varies, using the raw and
normalised graph Laplacian.
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(a)

(b)

Figure S4: Degree distribution of selected genes by fold for Raw and Nor-
malised graph Laplacians. (a) For each selected gene, we counted the number
of its neighbours in the PC graph. The black line represents the density of
the degree distribution of all genes in the PC graph. (b) For each selected
gene, we counted the number of its neighbours among selected genes.
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(a) (b)

Figure S5: (a) Correlation distribution of selected genes from 5 random runs.
(b) Correlation distribution of all genes in the dataset

Figure S6: Venn diagram showing the overlap between genes selected by the
PC graph and the MSIGDB and the KEGG Graphs. Only genes selected in
over 80% of runs were used.
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Figure S7: Box plot for the Dice metric between the genes selected by the
PC graph and the permuted PC graph for each run. Results were separated
for each permutation
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3 Additional datasets

To verify the robustness of the presented results, we analysed three other on-
cological datasets using the same experimental design as on the TCGA-LGG.
These datasets comprise the TCGA-KIRP dataset of 167 patients diagnosed
with kidney renal papillary cell carcinoma, the pancreatic adenocarcinoma
dataset TCGA-PAAD with 124 patients, and the TCGA-OV dataset of 219
patients diagnosed with ovarian serous cystadenocarcinoma. These datasets
differ regarding tumour location, sample sizes, survival profiles, and event
rates, as shown in table S6.

Table S6: Description of the different datasets used

tumour location sample size event rate
TGCA-LGG brain 419 0.18
TCGA-KIRP kidney 167 0.12
TCGA-PAAD pancreas 124 0.42
TCGA-OV ovaries 219 0.50

For each dataset, we compared the raw and normalised graph Laplacian
using the Pathway Commons graph and in terms of variable selection and
stability, as done earlier. Additionally, we also analysed the effect of the
removal of graph edges.

3.1 Comparison between normalised and raw graph
Laplacian

Looking at the stability of the models using the Dice metric, as exhibited
in Figure S9, the stability increases as γG grows when the normalised graph
Laplacian is used. In contrast, the stability using the raw graph Laplacian
will often decrease sharply for high values of γG. Out of the four datasets
used in this work, only on TCGA-PAAD did the raw graph Laplacian out-
perform the normalised graph Laplacian when γG is greater than 1. However,
the stability ranges differ between the different datasets, which shows that
obtained results are data-dependent.

Figure S10 the distribution of the selection rate of the genes selected
at least once in the 100 runs, with γG = 103. This distribution is data-
dependent. However, most genes are selected a few times. On the TCGA-
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(a) (b) (c)

Figure S8: Evolution of the number of selected genes as γG varies, using the
raw and normalised graph Laplacian. (a) TCGA-KIRP, (b) TCGA-PAAD,
(c) TGCA-OV.

PAAD and TCGA-OV, the distribution is reflected in the low stability of
the models, as shown previously. On the TCGA-KIRP, we obtained higher
dice stability scores when the normalised graph Laplacian was used, which
is explained by a better distribution of the selection rate.

Figure S8 shows that the number of selected variables increases as γG
grows on the different studied datasets. This is in line with our findings on the
TCGA-LCC dataset. Again, the increase is smoother when the normalised
graph Laplacian is used.

As was previously done for TCGA-LGG, Figure S11 shows the degree
distribution of selected genes, on the whole graph and the sub-graph. Both
Figures exhibit similar patterns between all the studied datasets, demon-
strating that our observations from the TCGA-LGG hold across datasets.
Namely, the graph penalty does not favour highly connected notes, nor does
it select sub-regions from the graph.

3.2 Comparisons between different graphs

Again, we permuted the notes in the graph to study the effects of the graph
semantics while keeping the same graph structure. The low Dice scores shown
in Figure S13 indicate little consistency between the results obtained using
the original PC and permuted graphs. This is in line with results found on
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(a) (b) (c)

Figure S9: Evolution of the Dice metric as γG varies, using the raw and nor-
malised graph Laplacian. (a) TCGA-KIRP, (b) TCGA-PAAD, (c) TGCA-
OV.

(a) (b) (c)

Figure S10: Distribution of the selection rate of the genes selected at least
once in the 100 runs, with γG = 103. (a) TCGA-KIRP, (b) TCGA-PAAD,
(c) TGCA-OV.

TCGA-LGG and demonstrates that the semantics of the chosen graph have
a substantial impact on feature selection.

Having a selected set of genes, we define inner edges as the direct links
between the selected genes, and outer edges as links between a selected gene

14



(a)

(b)

(c)

Figure S11: Degree distribution of selected genes in five random runs for
normalised graph Laplacian. On the left, for each selected gene, we counted
the number of its neighbours in the PC graph. The black line represents
the density of the degree distribution of all genes in the PC graph. On the
right, for each selected gene, we counted the number of its neighbours among
selected genes. (a) TCGA-KIRP, (b) TCGA-PAAD, (c) TGCA-OV.

and a not-selected gene. For each of the 100 runs, and on each dataset, we in-
vestigated the impact of removing each set of edges on the variable selection.
As done on the TCGA-LGG dataset, we compared the results obtained on
each run when the original Pathway Commons graph and its pruned version
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(a) (b)

(c)

Figure S12: Box plot for the Dice metric between the genes selected by the
PC graph and the permuted PC graph for each run. Results were separated
for each permutation. (a) TCGA-KIRP, (b) TCGA-PAAD, (c) TGCA-OV.

were used. Results are shown in Table S7. As seen on TCGA-LGG, removing
direct edges between selected variables did not significantly impact variable
selection. However, making selected variables isolated considerably reduced
the number of selected variables. The existence of paths between variables
is important for the variable selection process.

Finally, we randomly removed edges in the graph and analysed the num-
ber of selected variables. On all datasets, including TCGA-LGG, the number
of selected variables follows the decrease in the number of the graph edges,
thus graph density.
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Table S7: The effect of pruning edges that connect genes selected when
using the full PC graph. Results obtained on 100 samples, on TCGA-KIRP,
TCGA-PAAD, TCGA-OV.

Dataset Edges removed # of selected genes Selected from PC Size of intersection Dice

TCGA-KIRP
Inner 962± 92 972± 95 928± 147 0.96± 0.13
Outer 411± 63 972± 95 394± 49 0.57± 0.05
Inner and outer 180± 34 972± 95 171± 10 0.30± 0.03

TCGA-PAAD
Inner 559± 74 563± 74 551± 86 0.98± 0.08
Outer 196± 121 563± 74 131± 44 0.36± 0.12
Inner and outer 71± 23 563± 74 66± 7 0.21± 0.04

TCGA-OV
Inner 815± 273 841± 282 742± 325 0.89± 0.24
Outer 543± 173 841± 282 401± 177 0.58± 0.19
Inner and outer 259± 142 841± 282 182± 43 0.35± 0.12
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(a) (b)

(c)

Figure S13: The evolution of the number of selected genes when the number
of edges decreases. (a) TCGA-KIRP, (b) TCGA-PAAD, (c) TGCA-OV.
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