

Supplementary Fig. 1 Plant phenotypes of field-grown plants of *mhz9*. Phenotypes of WT (Nipponbare) and *mhz9* at vegetative stage (a) and heading stage (b). Plant height (c) and tiller number (d) of WT and *mhz9* plants at mature stage. Comparison of main stem (e), internodes (f) and panicle (g) between WT and *mhz9*. (h) Lengths of panicle and internodes. (i) Contribution of each panicle and internode of WT and *mhz9* at percentage levels. Magnified tiller base (j) and maximum tiller angle (k) of WT and *mhz9*. (l) Comparison of grains between WT and *mhz9*. (m) Grain length (left), grain width (middle) and grain thickness (right). (c, d, h, i, k, m) Values are means \pm SD. The asterisks indicate significant differences compared with the WT controls (***P* < 0.01; two-tailed Student's *t*-test). Sample size \geq 20 biologically independent samples. Source data are provided as a Source Data file.

Supplementary Fig. 2 Map-based cloning, complementation analysis, RNAi analysis and comparison of the *MHZ9*-silenced plants. (a) Map-based cloning of *MHZ9*. The mutation site is indicated in schematic diagrams. (b) Genetic complementation. The genomic sequence of *MHZ9* was used in complementation, and the transgene is confirmed by PCR. The scale bars indicate 10 mm. (c) Ethylene response of transgenic seedlings with reduced *MHZ9* expression by RNAi analysis. Scale bars, 10 mm. The sequences from coding sequence (CDS) of *MHZ9* at CDS positions 668-1276 bp, 1811-2226 bp, and 3792-4343 were chosen for plasmid construction of RNAi analysis in MHZ9-RNAi-N, MHZ9-RNAi-M and MHZ9-RNAi-C, respectively. The three sites of RNAi are indicated in a schematic diagram below. (b, c) Seedlings were grown in the dark for 3 d in the absence (air) or presence of 10 µL/L of ethylene. (d) Field-grown plant phenotypes of the RNAi plants of *mhz9*. *MHZ9* expression level in these RNAi seedlings was examined by RT-qPCR. *OsActin* was used for normalization. The values are means ± SD (*n* = 3 biologically independent samples). Scale bars, 10 cm. Data are representative of three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 3 *MHZ9* gene carrying GYF-domain mutations still rescued the *mhz9* ethylene response. Ethylene response of seedlings harboring *MHZ9* genes carrying mutations of each of the six signature residues in GYF domain in *mhz9* background. Images of the representative seedlings grown in the air and in 10 μ L/L of ethylene for 3 d are shown. Scale bar = 10 mm. Data are representative of three independent experiments.

Supplementary Fig. 4 Phylogenetic analysis of MHZ9 potential homologous proteins. Sequences were aligned using MUSCLE and a neighbor-joining tree was constructed using the MEGA11.0 program with the bootstrap settings of 1000. The MHZ9 homologues from monocots and clustered with MHZ9 were indicated with a light purple background, and the MHZ9 homologues from *Arabidopsis thaliana* were indicated as red. Another MHZ9 homologue from *Oryza sativa* was indicated as blue.

Supplementary Fig. 5 *MHZ9* expression patterns analysis and comparison of plant height in WT (Nipponbare), *mhz9*, and *MHZ9*-overexpressing plants. (a) *MHZ9* gene expression in WT roots and shoots in response to ethylene treatment. Two-day-old etiolated seedlings were treated with 10 µL/L of ethylene for different time. *OsActin* was used for normalization in RT-qPCR analysis. Values are means \pm SD (n = 3biologically independent samples). The asterisks indicate significant differences compared with the corresponding 0-h controls (*P < 0.05, **P < 0.01; two-tailed Student's *t*-test). (b) Ethylene-induced gene expression in *MHZ9*-OX roots. Total RNAs were isolated from Two-day-old etiolated seedlings treated with air or 10 µL/L of ethylene for 8 h. *OsUBQ5* was used for normalization in RT-qPCR analysis. Values are means \pm SD (n = 3biologically independent samples). The asterisks indicate significant differences compared with the corresponding WT controls (*P < 0.01; two-tailed Student's *t*-test). (c) Promoter-GUS analysis of MHZ9. At least 10 samples for each organ were observed and representative ones are presented. I, seedling shoots; II, seedling roots; II, leaf blade; IV, leaf sheath; V, node; VI, anthers and pistils of young flowers. Scale bar = 2 mm. Four-day-old seedlings were used for I and II, and field-grown plants in the vegetative or reproductive stages were used in III - VI. (d) Height comparison of the *MHZ9*-OX plants. Images of field-grown plants are shown in the left panel, and plant heights are means \pm SD ($n \ge 30$ biologically independent samples). The asterisks indicate significant differences compared with the WT controls (**P < 0.01; two-tailed Student's *t*-test). (c) Promoter-GUS analysis of MHZ9. At least 10 samples for each organ were observed and representative ones are presented. I, seedling shoots; II, seedling roots; II, leaf blade; IV, leaf sheath; V, node; VI, anthers and pistils of young flowers. Scale bar = 2 mm. Four-day-old seedlings were used for

Supplementary Fig. 6 Detection of the phosphorylation status of OsCTR2 in WT and *mhz9* mutant, localization analysis and the influence of MHZ9 on accumulation of OsEIN2 protein levels. (a) Two-day-old etiolated seedlings were treated with air or 10 µL/L of ethylene for 2 h. Total proteins were isolated and immunoblotted for OsCTR2 and BIP (loading control). (b) Co-localization analysis of MHZ9 or OsEIN2-C with OsEIN5 in Osein2 or *mhz9* mutant. The constructs were co-expressed in WT, *mhz9* and *Osein2* protoplasts for subcellular localization analysis. Scale bars, 2 µm. (c) OsEIN2 protein abundance analysis in WT and *mhz9*. Two-day-old etiolated seedlings were treated with 10 µL/L of ethylene for different time. Total proteins were isolated and immunoblotted for OsEIN2 and BIP (loading control). Data are representative of three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 7 Gene Ontology (GO) analysis and putative MHZ9 binding motifs/structures of 626 genes which are overlapped in CLIP-seq and the RIP-seq analyses. (a) GO analysis of the 626 MHZ9-binding genes. (b) Binding motif analysis of MHZ9 in its targets. For motif search, the peak sites were extracted and uploaded to MEME website (https://meme-suite.org/meme/) for further analysis. (c) Predicted RNA secondary structure of MHZ9 targets. The MHZ9 binding CLIP sites with relatively high abundance, together with its 100-nt upstream and 100-nt downstream sequence, were selected for RNA secondary structure prediction using RNAfold web server. The six CLIP sites all showed stem-loop structures but without apparent similarity. Please note that the *MHZ9* mRNA (*LOC_Os01g69990*) is also bound/regulated by the MHZ9 protein itself.

а

Supplementary Fig. 9 MHZ9 effects on OsEBF1/2 mRNA stability, the LUC activities and RNA levels of LUC fusions, expression levels of OsEBF1/2 and OsEIL1, and protein accumulation of OsEIL1 in various seedlings. (a) Quantitation of the decrease in mRNA abundance of OsEBF1/2. The WT and mhz9 protoplasts were treated with cordycepin (100 µM) for different times. The RNA levels were detected by RT-qPCR, and OsUBQ5 was used for normalization. The values are means \pm SD (n = 4 biologically independent samples), and the asterisks indicate significant differences compared with the WT control (**P < 0.01; two-tailed Student's t-test). (b) MHZ9 effects on LUC activities and RNA levels of LUC fusions. The plasmid harboring both the reference Renilla luciferase (R-Luc) gene and the reporter Firefly luciferase gene (F-LUC) - 3'UTR of OsEBF1 or 2 was transiently expressed in protoplasts. LUC activity was defined as F-LUC/R-LUC. F-LUC was used as a control (left). Relative RNA levels of LUC and its fused genes were analyzed through RT-qPCR. R-LUC was used for normalization (right). (c) RNA expression levels of OsEBF1 and OsEBF2 in WT, mhz9 and Osein2 etiolated seedlings. Two-day-old etiolated seedlings were treated with 10 µL/L of ethylene for different time. RNAs were extracted and the RNA levels were detected by RT-qPCR. OsUBQ5 was used for normalization. (d) Accumulation of OsEIL1 protein in shoots of 35S::OsEIL1-FLAG/WT and 35S::OsEIL1-FLAG/mhz9 plants in response to ethylene. Etiolated two-day-old seedlings were treated with 10 uL/L ethylene for the indicated times. (e) RNA expression levels of OsEIL1-FLAG in roots of the corresponding transgenic seedlings. The RNA levels were detected with the same approach as in (c). (b, c, e) The values are means ± SD (n = 3 biologically independent samples), and the asterisks indicate significant differences compared with the corresponding control (*P < 0.05, **P < 0.01; two-tailed Student's t-test). Data are representative of three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 10 Quality assessment in Ribosome footprints analysis. (a) Distribution patterns of ribosome footprints in annotated protein and non-protein coding. **(b)** The abundance of ribosome footprints falling around the start and stop codons of protein-coding genes in the genome. The position of the 14th nucleotide in a read was used, which represents the 5'-end nucleotide in the P site of a ribosome. The frame of codons was marked with distinct colors. The start and stop codons were indicated as red and blue, respectively.