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The supplementary materials are organized as follows: In Section 1, we show simulations and calculations 

to examine the use of Eqs. (1-2) in the main text for our inhomogeneous case. In Section 2, we perform 

simulations to investigate the effects of turbulence-induced beam width variations on our approach. In 

Section 3, we provide additional simulation results of our approach for probing various longitudinal 

distributions of turbulence strength. In Section 4, we show the simulation for comparing the focused 

Gaussian beams and the longitudinally structured beams in terms of their beam width changes along z. In 

Section 5, we describe the method of modal spectrum measurement using off-axis holography used in our 

experiment. In Section 6, we experimentally examine our emulated turbulence by measuring the Strehl ratio 

and the power fluctuation for a Gaussian beam. 

 

Supplementary Note 1. Simulations and calculations to examine the use of Eqs. (1-2) in the 

main text for inhomogeneous turbulence cases 

To help examine the use of Eqs. (1-2) in the main text for inhomogeneous turbulence scenarios, we simulate 

beam propagation through different turbulence distributions each comprising three turbulence regions. As 

shown in Fig. S1, we simulate 𝑃𝑖,𝑗(ℓ = 0) for beam i at the output plane of region j using spatial modal 

decomposition (see “Methods” in the main text). We also calculate 𝑃𝑖,𝑗(ℓ = 0) based on Eqs. (1-2) and 

compare the results to the simulated ones. The calculation methods are as follows: 

• Calculation based on Eqs. (1-2):  
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Eqs. (1-2) describe how much power will be coupled from the ℓ =  0 order to other ℓ ≠  0 orders due to 

turbulence-induced modal coupling [24]. Based on Eqs. (1-2), we can calculate the normalized average 

power remaining on the ℓ = 0 order (𝑃(ℓ = 0)) after the beam propagates through a turbulence region. In 

inhomogeneous turbulence cases with multiple uniform turbulence regions, we define 𝑃𝑖,𝑗(ℓ = 0) as the 

power remaining on the ℓ = 0 order for beam i at the end of region 𝑗. Due to the accumulated effects of 

multiple turbulence regions, there can be increased modal power coupling during beam propagation and 

the resulting 𝑃𝑖,𝑗(ℓ = 0) will decrease with a larger 𝑗.  

For example, after propagation through the first turbulence region, 𝑃𝑖,1(ℓ = 0) can be calculated based 

on Eqs. (1-2) [24], as follows: 

 𝑃𝑖,1(ℓ = 0) = (𝐼0(𝛽𝑖,1) + 𝐼1(𝛽𝑖,1)) 𝑒𝑥𝑝(−𝛽𝑖,1)   (S1) 

and  

 𝛽𝑖,1 ≈ 1.8025(𝐷𝑖,1)
5

3[0.423𝑘2𝐶𝑛,1
2 𝛥𝑧]  (S2) 

where 𝐷𝑖,1 is the beam width of beam i in the first region, and 𝐶𝑛,1
2  is the turbulence strength of the first 

region. 

After propagating through the next turbulence regions, the beam experiences stronger modal coupling, 

and more power on the ℓ = 0  order will be coupled to ℓ ≠ 0  orders. As a result, the relative power 

remaining on the ℓ = 0 will decrease and the 𝑃𝑖,𝑗(ℓ = 0) is calculated as follows [24]: 

 𝑃𝑖,𝑗(ℓ = 0) ≈ 𝑃𝑖,0(ℓ = 0) ∏ (𝐼0(𝛽𝑖,𝑚) + 𝐼1(𝛽𝑖,𝑚)) 𝑒𝑥𝑝(−𝛽𝑖,𝑚)
𝑗
𝑚=1   (S3) 

and 

 𝛽𝑖,𝑚 ≈ 1.8025(𝐷𝑖,𝑚)
5

3[0.423𝑘2𝐶𝑛,𝑚
2 𝛥𝑧]  (S4) 

where the value of  𝑃𝑖,0(ℓ = 0) is 1 at the transmitter, 𝐷𝑖,𝑚 is the beam width in region m, and 𝐶𝑛,𝑚
2  is the 

turbulence strength of region m. 

• Simulation and calculation results: 

As shown in Fig. S1, our simulation and calculation results show that 𝑃(ℓ = 0) becomes smaller after the 

beam propagates through more turbulence regions. This might be because larger accumulated turbulence 

effects cause more power to be coupled from the ℓ = 0 order. Moreover, a stronger turbulence region 

causes a greater decrease in the 𝑃(ℓ = 0) for each beam due to the stronger modal coupling effect in this 

region. The calculated results are in relative agreement with the simulated results and show <5% average 

relative errors. 
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Fig. S1. Simulated and calculated 𝐏(𝓵 = 𝟎)  values for each probe beam under three different 

turbulence strength distribution cases each containing three turbulence regions. For each case, 

𝑃(ℓ = 0) values are simulated and calculated at the end of each region. 

 

Supplementary Note 2. Simulations to investigate the effects of turbulence-induced beam 

width variations on our approach 

We simulate the turbulence-induced beam width variation and its effects on our probing approach. As 

shown in Fig. S2, we simulate different turbulence distribution cases each containing three turbulence 

regions. We design three sequentially transmitted probe beams to probe these distributions along a 10-km 

path. For each probe beam, we first simulate its propagation in the vacuum (without turbulence) and 

calculate its beam width at various distances (see “Methods” in the main text for beam width calculation). 

We can find that the beam width is smaller in one specific region (i.e., smaller-beam-width region) as we 

designed.  

Next, we simulate beam propagation through different turbulence distributions and calculate the beam 

width at different distances under 200 turbulence realizations. The orange shades in Fig. S2 show the range 

of beam width variations induced by turbulence, which is larger for a longer propagation distance due to 

stronger accumulated turbulence effects [1,2]. When the stronger turbulence region is closer to the 

transmitter, the beam width has larger variations (e.g., comparing Case 1 to Case 3). This might be due to 

that severe turbulence distortion near the transmitter causes stronger beam variations after a longer-distance 
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propagation [3]. We also simulate the average beam width in turbulence and compare it to the designed 

beam width in the vacuum. The results show that the average beam width in turbulence is larger than that 

in the vacuum due to turbulence-induced beam spreading [4]. 

 

 

Fig. S2. Simulated beam width for each probe beam with three different turbulence distributions. 

The designed beam width in the vacuum without turbulence is also simulated for comparison. The orange 

shades show the range of beam width variations under 200 turbulence realizations. 

 

Besides the beam spreading, turbulence-induced beam width variations can also change the longitudinal 

location of the smaller-beam-width region [5,6]. An example is indicated in Fig. S2 (a3), where the location 

of the smaller-beam-width region will be shifted closer to the transmitter under turbulence. Previous studies 

have also shown a similar effect for focused Gaussian beams, in which the beam waist location shifts closer 

to the transmitter under turbulence [5,6].  

We subsequently simulate how the turbulence-induced beam width variations affect our probing 

approach. Figure. S3 (a) shows an original turbulence distribution. Figure. S3 (b) shows simulated and 

theoretically calculated 𝑃(ℓ = 0) values for each probe beam at the receiver. We calculate 𝑃(ℓ = 0) using 
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the designed beam width in the vacuum and the average beam width in turbulence. Compared to the 

designed beam width in the vacuum, the calculation results using the average beam width in turbulence are 

slightly closer (~3%) to the simulation results on average. This might be because (i) the average beam width 

in turbulence is larger, corresponding to more turbulence-induced modal coupling, and (ii) the designed 

beam width in the vacuum might underestimate the modal coupling. Subsequently, we use the beam width 

in the vacuum or the average beam width in turbulence to form equations for retrieving turbulence. As 

shown in Fig. S3 (c), the probing error is ~2% smaller when using the average beam width in turbulence. 

 

 

Fig. S3. Simulated 𝑷(𝓵 = 𝟎)  and turbulence probing results with and without considering 

turbulence-induced beamwidth changes. (a) Original turbulence distribution in simulation. (b) Simulated 

and theoretically calculated 𝑃(ℓ = 0) for each probe beam. (c) Simulated probing results when using the 

designed beam width in the vacuum and the average beam width in turbulence to form equations for 

retrieving turbulence. 
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Supplementary Note 3. Simulated performance of our approach for probing various 

turbulence distributions  

In order to show the feasibility of our approach under more general scenarios, we simulate additional 

turbulence distributions with different shapes, as shown in Fig. S4. In this simulation, we set 𝑄 = (1 − 6 ⨯

10−10) ⨯ 𝑘  and 𝑁 = 7 . These distributions include linearly changing distributions (Fig. S4 (a-b)), 

“triangular-shaped” distributions (Fig. S4 (c-d)), and “sine-shaped” distributions (Fig. S4 (e-f)). Figure. S4 

(g) shows the simulation results for an atmospheric turbulence profile based on the Hufnagel-Valley (H-V) 

model [7]. We also simulate our approach and compare it to experimental measurements of 𝐶𝑛
2  by 

radiometers at different altitudes in the literature [8], as shown in Fig. S5 (h). Our results show that (i) the 

probed turbulence distribution over altitudes has a similar trend as the original turbulence and (ii) the 

simulated probing error compared to the H-V model and the experimental data in the literature is ~8% and 

~16%, respectively. From the calculated relative average probing errors for these turbulence distributions, 

more complicated distributions tend to result in larger errors, which might be due to the larger longitudinally 

spatial gradients, characteristic of these simulated distributions. 
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Fig. S4. Simulated turbulence probing results for different turbulence strength distributions. (a) 

Simulation results for probing turbulence with various distributions, including (a-b) linear changing 

distributions, (c-d) “triangular-shaped” distributions, (e-f) “sin-shaped” distributions, and (g) distribution 

based on the Hufnagel-Valley model describing the atmospheric turbulence distribution at different 

altitudes, and (h) experimentally measured Cn
2 at different altitudes by radiometers. 

 

Supplementary Note 4. Simulation for comparing the focused Gaussian beams and the 

longitudinally structured beams in terms of the beam width changes along z  

To compare the focused single Gaussian beam approach  [9,10] with the longitudinally structured beam of 

this paper, we simulate the propagation of a Gaussian beam focused by different lenses with the focal point 

located at z=0.1, 1, 5, and 9 km and compare it to a longitudinally structured beam with its probe region 
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tuned to the same distances of z=0.1, 1, 5, and 9 km in a 10-km free-space link. The longitudinally structured 

beam is generated by a superposition of Bessel-Gauss modes, apodized by a Gaussian aperture [11], which 

has the same width as the focused Gaussian beam at the Tx (z=0). In this simulation, we set 𝑄 = (1 − 6 ⨯

10−10) ⨯ 𝑘 and 𝑁 = 7 for the longitudinally structured beam. Figures S5 (a) and (b) show the simulated 

beam width for the focused Gaussian beam and longitudinally structured beam, respectively. Compared to 

the longitudinally structured beam, the focused Gaussian beam has shaper beam width changes especially 

when the focal point is near to the Tx. This behavior might provide a finer longitudinally spatial resolution 

for turbulence probing as we discussed in the “Simulation” section of the main text. However, after the 

focal point, the focused Gaussian beam diverges faster than the longitudinally structured beam, resulting in 

larger beam widths at the Rx (z=10 km). When the focal point is at z=100 m and z=1 km, the focused 

Gaussian beam has ~8X and ~3X larger beam width than the longitudinally structured beam. In Fig. S5 (c), 

we also simulate the power loss induced by an Rx aperture with a 1-m diameter for these two beams. The 

focused Gaussian beam suffers a larger power loss when the focal point is near the Tx. 

 

 

Fig. S5. Simulated beam width and power loss caused by a limited-size Rx aperture along z in a 10-

km link. (a) A focused Gaussian beam and (b) a longitudinally structured beam when the focal point/probe 

region is located at z=0.1, 1, 5, and 9 km. (c) Simulated power loss caused by a limited-size Rx aperture 

with a 1-m diameter for these two beams when the focal point/probe region is at a different z.  
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Supplementary Note 5. Modal spectrum measurement using off-axis holography  

In the Experimental Validation section of the main text, we show the spatial intensity and phase profiles 

and measured OAM spectra of the turbulence-distorted longitudinally structured beam. Here we present the 

steps we performed to extract the complex beam profiles of a distorted beam using off-axis holography [12]. 

As shown in Fig. S6, we perform the following steps: 

Step 1: Using an infrared camera to record the interferogram between the distorted beam and another 

off-axis undistorted coherent reference Gaussian beam. 

Step 2: Calculating the spatial frequency spectrum of the interferogram through the two-dimensional 

Fourier transform. 

Step 3: Filtering out the 1st-order diffraction and shifting it to the center of the spatial frequency 

spectrum. 

Step 4: Converting the shifted spatial frequency spectrum to the spatial space by the two-dimensional 

inverse Fourier transform to obtain the spatial amplitude and phase profiles of the distorted beam. 

Step 5: Decompose the distorted beam into the Bessel modal basis and calculate the OAM modal 

spectrum using the method described in Method section of the main text. 

 

 

Fig. S6. Off-axis holography approach to extract the complex beam profiles of a distorted 

longitudinally structured beam. The interferogram is recorded by an infrared camera with 320x256 pixels 

(the size of each pixel is 30𝜇m).  
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Supplementary Note 6. Measured Strehl ratio and power fluctuation for a Gaussian beam 

propagating through a turbulence phase plate 

As shown in Fig. S7 (a), we measure the Strehl ratio (SR) [1] for different phase plates (different r0) with 

various path lengths (i.e., L= 0.3 and 0.6 m). To measure each data point, we place the corresponding phase 

plate in the middle of the path (i.e., z = L/2) and propagate a Gaussian beam through it. The width of the 

Gaussian beam is D=3.5 mm. At the receiver, we measure SR values and compare them to the theoretical 

ones, which can be expressed as [1 + (𝐷/𝑟0)5/3](−6/5) [1].  Our results show that the measured values are 

close to the theoretical ones with <8% relative errors. In Fig. S7 (b), we measure the received power 

fluctuation of the Gaussian beam for the phase plate with 𝑟0 = 1 mm. For these measurements, the receiver 

aperture diameter is ~1 mm. Our results show that the probability density function of measured power 

fluctuations follows a lognormal model for each path length. The correlation coefficient R between the 

distribution and its lognormal fitting curve is >0.96. We also calculate the scintillation index 𝜎𝐼
2 [1] and 

find that it increases from 0.093 to 0.161 when L changes from 0.3 to 0.6 m. 

 

 
Fig. S7. Measured Strehl ratio and power fluctuation for a Gaussian beam propagating through a 

turbulence phase plate. (a) Measured SR for different phase plates (different 𝑟0) with different path 

lengths (different L). The beam width of the Gaussian beam is D=3.5 mm. (b) Measured  probability density 

function of power fluctuations of the received beam for the phase plate with 𝑟0 = 1 mm. 
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