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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

The paper "Multi-PGS enhances polygenic prediction: weighting 937 polygenic scores" presents a novel 

approach to using polygenic scores (PGSs) for predicting traits by combining almost a 1000 PRSs using 

lasso regularization to improve prediction accuracy. This approach is demonstrated to have potential 

benefits compared to using a single PRS and has applications for predicting traits without large GWAS 

sumstats available. 

I found this work to be very well-written and informative. The idea of using multiple PRSs to improve 

prediction accuracy has been an approach that I have wanted to try for a long time. Organizing the 1000 

PGS the way they describe is a large task and the results of the study are convincing that this is a good 

approach. The application to predicting traits without large GWAS is particularly useful, as it opens up 

new avenues for research and discovery. Overall, I believe this paper makes a valuable contribution to 

the field and I would highly recommend it to others interested in the use of PRSs for trait prediction. I do 

have a few minor suggestions and corrections for the work: 

• I don’t find Figure 2B very helpful. The lines are mostly overlapped and I don’t see 95% CIs there to 

really distinguish each OR from each other. One alternative is just to show just the highest quintile 

compared to the middle quintile for each of the four models. Then we can see the difference in the ORs 

for just this comparison. Maybe other quintile comparisons in Supplemental? It would also be helpful to 

include a brief description of each Risk Score in the legend particularly the lassoPGS_xgboostCOV one. 

• The same suggestion can be said for Figure 4B as what I stated above. 

• The description of the results for Figure 2 is excellent and the conclusions to use lassoPGS are 

reasonable. 

• I notice that for AFF analyses, both MDD Howard and MDD PGC2 are in the top 3 PRS. This seems to 

imply that each PRS is capturing something in the AFF diagnosis in iPSYCH. This is potentially important 

to point out because this makes me think that we should include all possible GWAS sumstats (with 

adequate training sample size) for a trait rather than just choosing the one with the largest sample size 

(and most heterogeneity). 

• I also think its worth pointing out that this approach could be useful for subphenotype analysis within 

disorders because there are no published GWAS sumstats of subphenotypes (e.g. psychosis within 

bipolar disorder). 

• I clicked on the github links for the Supp Tables and none of them work. I was able to navigate to the 

github instead and find them. It’s also 

• Y-axis label on SF5 should be “Mean adjusted AUC” 

• I’m not sure why the ADHD PRS is not included in Figure 3 for ADHD. It is above chronic pain and BMI 

PRSs in terms of the lasso weight in SF6. 



• I don’t really get some of the paired PRSs selected for Figure 5. For example, F10-F19 is paired with 

PGC_CUD but why not PGC_AUD or MVP_OUD? It’s not really surprising that the lasso did better in this 

case. Because of this, I don’t know if there is much point to include a singleGWAS comparison in these 

cases and I think I would prefer to only see the lassoPGS based on what has been shown previous to this 

Figure that lassoPGS is better than a singlePGS. And to interpret the X-fold increase in performance 

seems misleading. 

Reviewer #2 (Remarks to the Author): 

This manuscript reports on an interesting approach to using information from GWAS for a large number 

of phenotypes to develop polygenic models for six psychiatric disorders. Of particular note is that the 

method is agnostic with respect to any genetic correlation between the phenotypes used to develop the 

model and the phenotype of interest. Fundamentally the methods appear to be sound and the results 

are interesting. 

However, I found this manuscript very difficult to follow and had to read and re-read some of the 

sections multiple times in order to understand what the authors had done and thus to interpret the 

results. I did not find figure 1 very helpul in undertanding each step of the process. I think one reason for 

this is the use of the term PGS (polygenic score) in multiple contexts. It might help to distinguish a 

polygenic model, which is a set of variants and their weights, from a polygenic score which is the result 

of application of a polygenic model to an individual’s genotypes, or to come up with some additional 

terms to refer to different elements that underpin the method. The introduction and the methods 

elements of the results section could be substantially improved (particularly for the non-specialist 

reader). 

Just one example is the sentence: “Next, we investigated which PGS in the multi-PGS model were the 

ones contributing the most to increasing prediction accuracy. The number of non-zero PGS in each 

multi-PGS model ranged from 10 to 154, where the number of PGS included correlated with the number 

of samples in the training set.” 

I have written the following to summarise my understanding of the methods. I think that a similar style 

would help throughout. “We used publicly available summary statistics for 937 different phenotypes to 

develop 937 polygenic models (PGM) using LDpred-auto. These models were then applied to the 

genotypes of individuals in the Lundbeck Foundation Initiative for Integrative Psychiatric Research 

dataset so that each individual had 937 polygenic scores (PGS). These individual level PGS were then 

used to develop prediction models (multiPGM) for each of six psychiatric disorders using both a linear 

model (lasso penalized regression) and a non-linear model (scalable gradient boosted trees). The 

multiPGMs for each phenotype comprises a set of weights for each of the 937 polygenic scores which 

are applied to each individual to derive the multi-polygenic score. We then compared the performance 



of the multiPGM with a standard PGM derived from the summary statistics from the largest publicly-

available GWAS for each disease phenotype.” 

P5, para 1. It is not clear to me how “comparing the performance of linear models (lasso penalized 

regression;multiPGS_lasso) and non-linear models (boosted gradient trees: multiPGS_XGBoost) to 

predict the 6 major psychiatric disorders” enables one to study “the relationship between the covariates 

(sex, age and first 20 PCs) and the 937 PGS”. 

P9, para 2. If I have understood correctly the authors have compared a PGM developed using the 

publicly-available summary statistics from an independent GWAS with a PGM developed using the 

individual level genotypes from the iPSYCH dataset (BLUP method). Given that the sample size of the 

external GWAS and iPSYCH are different (as the authors note) the comparison seem uninformative. 

Furthermore, as the BLUP PGM was fit using the data used for the comparison there is some over-fitting, 

which is not a problem for the external GWAS. 

In this paragraph the authors state that they compare the PGM models described above with “re-

weighting the set of PGS, which uses both types of data”. It is unclear what the ‘set of PGS’ is (?the 937 

PGM) and what is meant by reweighting. Nor can I understand what the result of this comparison was. 

This paragraph has a structure in which it is stated “First, ….”, but then there is no follow-up ‘second’. 

Supp figure 2. The axes should not be labelled with abbreviations. The meanings of the standard 

deviation of the genotyped/imputed data and the standard deviation GWAS summary statistics are not 

clear to me. 
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Thank you for giving us the opportunity to revise and resubmit our manuscript. We believe 

that our revised manuscript has improved significantly based on the suggested revisions. 

Below is a point-by-point response to all the comments provided by the reviewers. Our 

responses are written in blue, the citations from the (new) manuscript text are in green, 

the original comments are in black.

Reviewer #1 (Remarks to the Author): 

The paper "Multi-PGS enhances polygenic prediction: weighting 937 polygenic scores" 

presents a novel approach to using polygenic scores (PGSs) for predicting traits by 

combining almost a 1000 PRSs using lasso regularization to improve prediction accuracy. 

This approach is demonstrated to have potential benefits compared to using a single PRS 

and has applications for predicting traits without large GWAS sumstats available. 

I found this work to be very well-written and informative. The idea of using multiple PRSs 

to improve prediction accuracy has been an approach that I have wanted to try for a long 

time. Organizing the 1000 PGS the way they describe is a large task and the results of 

the study are convincing that this is a good approach. The application to predicting traits 

without large GWAS is particularly useful, as it opens up new avenues for research and 

discovery. Overall, I believe this paper makes a valuable contribution to the field and I 

would highly recommend it to others interested in the use of PRSs for trait prediction. I do 

have a few minor suggestions and corrections for the work: 

We thank the reviewer for this positive assessment and that they find our work to be both 

well-written and informative.

• I don’t find Figure 2B very helpful. The lines are mostly overlapped and I don’t see 95% 

CIs there to really distinguish each OR from each other. One alternative is just to show 

just the highest quintile compared to the middle quintile for each of the four models. Then 

we can see the difference in the ORs for just this comparison. Maybe other quintile 

comparisons in Supplemental? It would also be helpful to include a brief description of 

each Risk Score in the legend particularly the lassoPGS_xgboostCOV one. 

We agree that figures 2B and 4B Figures could be improved. We have now followed the 

reviewer’s suggestion and simplified the comparison to only show the risk score quintiles 

Q3 vs Q5. As an example Figure 2B now looks like this:
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Moreover, we have added supplementary figures with the full OR comparisons which 

includes all risk score quintile OR compared to the middle for both Figure 2 and Figure 4 

(SF6 and SF14). On the second issue raised for Figure 2B, we have now added extra 

text in the legend that reads “The models MultiPGS_lasso and MultiPGS_xgboost were 

generated with lasso regression and XGBoost respectively, using the 937 PGS and the 

covariates as explanatory variables. The model MultiPGS_lassoPGS_xgboostCOV was 

generated with lasso regression, combining the 937 PGS and the predicted values of an 

XGBoost model that included only the covariates.”.

• The same suggestion can be said for Figure 4B as what I stated above. 

We followed the same procedure as above to modify Figure 4B (and SF14).

• The description of the results for Figure 2 is excellent and the conclusions to use 

lassoPGS are reasonable. 

We are glad that the reviewer appreciates these findings.

• I notice that for AFF analyses, both MDD Howard and MDD PGC2 are in the top 3 PRS. 

This seems to imply that each PRS is capturing something in the AFF diagnosis in 

iPSYCH. This is potentially important to point out because this makes me think that we 

should include all possible GWAS sumstats (with adequate training sample size) for a trait 

rather than just choosing the one with the largest sample size (and most heterogeneity). 
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This is an excellent point that we discussed internally but did not include much text about 

in the manuscript. We now include the following text associated with Figure 3, which 

hopefully addresses this issue and also a comment from Reviewer 2.

“Among the top 5-weighted PGS for each psychiatric disorder, we identified the PGS from 

the PGC GWAS excluding iPSYCH samples for all disorders. For affective disorder, three 

depression PGS were selected, two from the PGC (Wray et al. 2018); (Howard et al. 

2019) (tagged MDD-PGC2 and MDD Howard) and one from a UK Biobank GWAS on 

depressive symptoms (Baselmans et al. 2019) (tagged Depressive symptoms). These 

results suggest that non-overlapping signals from multiple GWAS of similar phenotypes 

can be combined to increase overall prediction accuracy. Interestingly, the PGS from the 

PGC ADHD GWAS excluding iPSYCH samples ranked 5th for ADHD. This study had 

only 4,225 cases excluding iPSYCH cases, similarly to the ASD study, with 5,305 cases 

excluding iPSYCH.”

• I also think it's worth pointing out that this approach could be useful for subphenotype 

analysis within disorders because there are no published GWAS sumstats of 

subphenotypes (e.g. psychosis within bipolar disorder). 

We appreciate that the reviewer also sees potential in broader applications of our method. 

The case with psychosis within bipolar disorder (BD) is a perfect example of one of the 

applications we wanted to highlight. Although we showcased this with the autism 

spectrum disorder subphenotypes, we now include some text about psychosis and BD in 

the discussion.

“The multiPGS predictors do not require PGS for the target phenotype of interest to be 

available in the PGS library used. This application is particularly interesting for sub- 

phenotype analyses within diseases, where GWAS summary statistics are not generally 

available for the sub-phenotypes. We demonstrated in practice how these multi-PGS 

could be generated for various psychiatric sub-diagnoses e.g. different ICD10 subcodes 

within Autism Spectrum Disorder (ICD10 F8). Similar multi-PGS method could also be 

applied to other sub-phenotypes of psychiatric disorders like psychosis within bipolar 

disorder, as defined in Hasseris et al. 2023. Another exciting application we explored is 

the case-case prediction, where multi-PGS models can be trained for highly comorbid 

disorders. In this last category, we highlight the relatively high prediction accuracy of our 

predictor of ADHD cases from a pool of ADHD-ASD cases.”

Unfortunately, we were not able to generate psychosis-related multi-PGS due to current 

data availability. However, we plan to use the polarity definitions proposed by Hasseris et 

al 2023 (Hasseris et al. 2023) in future work.
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• I clicked on the github links for the Supp Tables and none of them work. I was able to 

navigate to the github instead and find them. It’s also 

We apologize for the link issue. We have tried the links in different scenarios and still work 

for us, but in case there are further issues we now also provide the datasets as attached

.csv files.

• Y-axis label on SF5 should be “Mean adjusted AUC” 

Fixed (see below). In the case of the AUC measure, it is not “adjusted” as the models did 

not include the covariate adjustment, only PGS.

• I’m not sure why the ADHD PRS is not included in Figure 3 for ADHD. It is above chronic 

pain and BMI PRSs in terms of the lasso weight in SF6. 

We thank the reviewer very much for spotting this error. The PGSs in Figure 3 were 

incorrectly selected by their individual adjusted R2 instead of by their lasso weights, and 

thus the discordance with SF7. Please find below the modified Figure 3 where the top 5 

lasso weighted PGS are presented, ordered by the adjusted R2 for comparison reasons. 

We are interested in presenting the results based on the lasso weight ranking because
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this weight highlights the feature selection quality of the lasso model. We note that the 

ranking based on R2 is not equivalent to the ranking based on lasso weights.

For example, in the particular case of predicting ADHD, the external ADHD PGS explains 

less variance in terms of R2 alone than the multisite chronic pain PGS (1% vs. 1.3% 

respectively) but the lasso weight for the ADHD PGS is larger than for the multisite chronic 

pain PGS (0.76 vs. 0.75 respectively). Because the variance in the outcomes explained 

by some of these PGS is overlapping, the lasso weights are adjusted accordingly in the 

model to get rid of the redundancy. Nevertheless, we consider these differences to be 

minimal.

We also modified SF13, as it had the same original problem as Figure 3.
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• I don’t really get some of the paired PRSs selected for Figure 5. For example, F10-F19 

is paired with PGC_CUD but why not PGC_AUD or MVP_OUD? It’s not really surprising 

that the lasso did better in this case. Because of this, I don’t know if there is much point 

to include a singleGWAS comparison in these cases and I think I would prefer to only see 

the lassoPGS based on what has been shown previous to this Figure that lassoPGS is 

better than a singlePGS. And to interpret the X-fold increase in performance seems 

misleading. 

We thank the reviewer for raising this point, it is true that some of the comparisons were 

chosen just to have something to compare to because the “best” option maybe wasn’t 

available. We still believe it is useful for the reader to be able to see a comparison of 

multi-PGS vs. single-PGS but agree that Figure 5 may not have provided a fully fair 

comparison. To remedy this, we have now created a new Figure 5 where the comparison 

of the multi-PGS is against the PGS with the largest weight in the lasso model. This PGS 

is now labeled in the Figure to minimize confusion of what is being compared. The new 

Figure 5 now aligns better with Figure 4, where top 5 single PGS with the largest lasso 

weights are also shown.

We have also restrained from using X-fold comparisons in this context, we agree with the 

reviewer that the pairs of multi-PGS - single-PGS are not the most fair comparison as 

they are generally not for the same phenotype (also removed from the Abstract). We have 

nevertheless retained the variance explained.
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Reviewer #2 (Remarks to the Author): 

This manuscript reports on an interesting approach to using information from GWAS for 

a large number of phenotypes to develop polygenic models for six psychiatric disorders. 

Of particular note is that the method is agnostic with respect to any genetic correlation 

between the phenotypes used to develop the model and the phenotype of interest. 

Fundamentally the methods appear to be sound and the results are interesting. 

However, I found this manuscript very difficult to follow and had to read and re-read some 

of the sections multiple times in order to understand what the authors had done and thus 

to interpret the results. I did not find figure 1 very helpul in undertanding each step of the 

process. I think one reason for this is the use of the term PGS (polygenic score) in multiple 

contexts. It might help to distinguish a polygenic model, which is a set of variants and 

their weights, from a polygenic score which is the result of application of a polygenic model 

to an individual’s genotypes, or to come up with some additional terms to refer to different 

elements that underpin the method. 

The introduction and the methods elements of the results section could be substantially 

improved (particularly for the non-specialist reader). 

Just one example is the sentence: “Next, we investigated which PGS in the multi-PGS 

model were the ones contributing the most to increasing prediction accuracy. The number 

of non-zero PGS in each multi-PGS model ranged from 10 to 154, where the number of 

PGS included correlated with the number of samples in the training set.” 

I have written the following to summarise my understanding of the methods. I think that a 

similar style would help throughout. “We used publicly available summary statistics for 

937 different phenotypes to develop 937 polygenic models (PGM) using LDpred-auto. 

These models were then applied to the genotypes of individuals in the Lundbeck 

Foundation Initiative for Integrative Psychiatric Research dataset so that each individual 

had 937 polygenic scores (PGS). These individual level PGS were then used to develop 

prediction models (multiPGM) for each of six psychiatric disorders using both a linear 

model (lasso penalized regression) and a non-linear model (scalable gradient boosted 

trees). The multiPGMs for each phenotype comprises a set of weights for each of the 937 

polygenic scores which are applied to each individual to derive the multi-polygenic score. 

We then compared the performance of the multiPGM with a standard PGM derived from 

the summary statistics from the largest publicly-available GWAS for each disease 

phenotype.” 

We thank the reviewer for considering our method and results interesting. We have tried 

throughout the revised version of our manuscript to clarify the methodology for the non-
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specialist reader. We agree that our notation can be confusing, and we have now tried to 

clarify what we mean by these terms in the text. However, we would prefer using PGS 

effect sizes instead of PGM. The reason is that in our previous publications we have 

generally referred to these as PGS or PRS, and would prefer continuing doing so to be 

consistent. We use as example the PGS Catalog, which actually provides PGS effect 

sizes, rather than actual individual scores. We believe it is a common terminology to talk 

about both, because it is straightforward to go from effect sizes (for each genetic variant) 

to scores (for each individual). We have however tried to improve the overall clarity of the 

manuscript and be more specific about what we mean when referring to PGS.

The following text, partially based on the input from the reviewer, is now included in the 

subsection “Overview of methods” within Results, together with a revised, hopefully 

clearer version of Figure 1:

“Here we summarize the framework used for generating the proposed multi-PGS. This 

framework consists of three steps: Step 1 - Build PGS Library, Step 2 - Train Multi-PGS 

Models and Step 3 - Evaluate models (Figure 1). In Step 1, a large, agnostic library of 

PGS is generated by running LDpred2-auto16 on publicly available GWAS summary 

statistics (GWAS Catalog26, GWAS ATLAS27, PGC28 etc.). In Step 2, the PGS library is 

standardized (i.e., mean 0 and variance 1) and used to develop prediction models (multi- 

PGS) for a target outcome using both a linear model (lasso penalized regression) and a 

non-linear model (boosted gradient trees, XGBoost). The multi-PGS models include sex, 

age and 20 first PCs as covariates. Finally in Step 3, the prediction accuracy of the multi- 

PGS is evaluated and benchmarked against the prediction accuracy of single PGS and 

another multivariate PGS method, wMT-SBLUP8. We used 5-fold cross-validation to 

alternate between Step 2 and Step 3 to get out-of-sample prediction accuracy estimates.”

Using the proposed multi-PGS framework, we generated a library of 937 PGS (described 

in detail in Supplementary Text) and projected it into the genotypes of individuals in 

iPSYCH. We then trained multi-PGS models for 6 major psychiatric disorders: attention- 

deficit/hyperactivity disorder (ADHD), affective disorder (AFF), anorexia nervosa (AN), 

autism spectrum disorder (ASD), bipolar disorder (BD) and schizophrenia (SCZ). We 

focus the first part of the results section on these 6 psychiatric disorders and extend the 

multi-PGS application to other 62 ICD10 code disease definitions, continuous phenotypes 

and case-case classification in the last result section.”
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Figure 1: Overview of the multi-PGS framework. 

The way the multi-PGS framework is introduced in the Main section has also been 

updated with the Step by Step notation.

The whole first paragraph on “Comparison between single PGS and multi-PGS 

predictors” describing Figure 3 has now been re-written to be more detailed (See 

comment to Reviewer 1). We hope the reviewer finds the extended version improved.

P5, para 1. It is not clear to me how “comparing the performance of linear models (lasso 

penalized regression;multiPGS_lasso) and non-linear models (boosted gradient trees: 

multiPGS_XGBoost) to predict the 6 major psychiatric disorders” enables one to study 

“the relationship between the covariates (sex, age and first 20 PCs) and the 937 PGS”. 

As previously observed for polygenic traits, genetic effects work in a mostly additive 

fashion (Palmer et al. 2023). Therefore, by combining the covariates together with the 

PGS the hypothesis was that a “boost” in prediction from the non-linear models would 

indicate non-linear interactions between e.g. sex and a/multiple PGS. Then, to further 

investigate if this was the case or if the boost in prediction was only due to nonlinear 

interactions exclusively from the covariates, we created the 

MultiPGS_lassoPGS_xgboostCOV model. Our results, in which we do not observe large 

non-linear interactions between covariates and PGS, and PGS optimally combined 

linearly, are consistent with those in the DeepNull models by the Google Health team 

(McCaw et al. 2022).
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Still, we agree with the reviewer that that specific sentence can be confusing. We have 

now re-written this specific phrase to “We first studied risk prediction models that combine 

the covariates (sex, age and first 20 PCs) and the 937 PGS using linear models (lasso 

penalized regression; multiPGS_lasso) and non-linear models (boosted gradient trees: 

multiPGS_XGBoost) to predict ADHD, AFF, AN, ASD, BD and SCZ.”

Given the positive comments from Reviewer 1 on the section “Linear and non-linear 

combinations of PGS give comparable prediction results” we are reluctant to change 

much on this section. However, we have included extra text in the legend of Figure 2 to 

clarify the “mixed” multi-PGS construction:

“The models MultiPGS_lasso and MultiPGS_xgboost were generated with lasso 

regression and XGBoost respectively, using the 937 PGS and the covariates as 

explanatory variables. The model MultiPGS_lassoPGS_xgboostCOV was generated with 

lasso regression, combining the 937 PGS and the predicted values of an XGBoost model 

that included only the covariates.”

P9, para 2. If I have understood correctly the authors have compared a PGM developed 

using the publicly-available summary statistics from an independent GWAS with a PGM 

developed using the individual level genotypes from the iPSYCH dataset (BLUP method). 

Given that the sample size of the external GWAS and iPSYCH are different (as the 

authors note) the comparison seem uninformative. Furthermore, as the BLUP PGM was 

fit using the data used for the comparison there is some over-fitting, which is not a problem 

for the external GWAS. 

We would like to thank the reviewer for allowing us to increase the interpretability of our 

results to the readers. In previous work, we compared the effect in prediction accuracy of 

training PGS on individual-level data vs. GWAS summary statistics, given the same 

sample size is available (Albiñana et al. 2021). The intention in this manuscript was not 

to compare the single PGS to the BLUP PGS, but to compare the multi-PGS to the BLUP 

PGS, as it uses the exact same individual-level sample for training.

It was not clear from the text that we have also used a 5-fold cross validation scheme to 

train the BLUP model, so that the PGS derived from this method is also not over-fitted. 

We have now added to the paragraph highlighted by the reviewer: “We used 5-fold cross 

validation for deriving both the multi-PGS and BLUP PGS, so that the reported adjusted 

R2 are out-of-sample estimates.”

In this paragraph the authors state that they compare the PGM models described above 

with “re-weighting the set of PGS, which uses both types of data”. It is unclear what the 

‘set of PGS’ is (?the 937 PGM) and what is meant by reweighting. Nor can I understand 
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what the result of this comparison was. This paragraph has a structure in which it is stated 

“First, ….”, but then there is no follow-up ‘second’. 

We strongly agree with the reviewer that the description of the results in the section 

“Combining hundreds of external PGS increases prediction over training only on the 

individual-level data” can be substantially improved, particularly for the non-expert reader. 

Following the intention to make our manuscript more comprehensible, we have 

completely re-written this section. Considering the reviewer’s comments, we have a more 

structured paragraph where the intentionality of the analyses and the description of the 

methods is more detailed.

In our original draft, we used the concept of re-weighting to refer to putting weights on 

individual PGS, which are already weighted allelic effects. Therefore re-weighting. We 

understand now that that terminology can be confusing and have rephrased all “re- 

weighting” to combining, including the title of the manuscript. We have also stopped using 

the word “set” in this context for similar reasons. We also hope that these changes help 

express the innovation of our results and why we then explored a broader application of 

these in the following section.

Supp figure 2. The axes should not be labelled with abbreviations. The meanings of the 

standard deviation of the genotyped/imputed data and the standard deviation GWAS 

summary statistics are not clear to me. 

We thank the reviewer for pointing this out. The axes on SF2 have now been re-labelled 

and are more self-explanatory.
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SF2. Example QC plot. The QC step is described in detail elsewhere (Privé et al. 2022). The 

trait shown is for PMID 30643258 (Karlsson Linnér et al. 2019) GWAS summary statistics 

(Automobile speeding propensity). 
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have sufficiently responded to all of my comments and I enjoy the changes made to satisfy 

the other reviewer in terms of clarity. 

Reviewer #2 (Remarks to the Author): 

All of the reviewers comments have been carefully addressed, except I still think the methods are 

somewhat arcane. The fact that the term PGS is widely used to mean a polygenic model (a set of SNPs 

and their weights) despite the term being an abbreviation of polygenic score - the application of a PGM 

to an individual set of genotypes to calculate a number - is irrelevant. If the common use of a term is 

inaccurate and causes confusion then the answer is to change common practice. 

In the online methods it is stated that "Polygenic scores were derived using LDpred2-auto". I challenge 

the authors to derive a set of polygenic scores with a data set of genotypes and no other information 

using LDpred. LDpred generates a model, not a score. But with a specified polygenci model it would be 

possible to derive the polygenic scores using simple arithmetic. 
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Thank you for giving us the opportunity to revise and resubmit our manuscript. We believe 
that our revised manuscript has improved significantly based on the suggested revisions. 
Below is a point-by-point response to all the comments provided by the reviewers. Our 
responses are written in blue, the citations from the (new) manuscript text are in green, 
the original comments are in black.

REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have sufficiently responded to all of my comments and I enjoy the changes 

made to satisfy the other reviewer in terms of clarity. 

We would like to thank Dr. Coombes for taking their time to review our manuscript and 

for providing constructive feedback that has greatly improved our work.

Reviewer #2 (Remarks to the Author): 

We would like to thank Prof. Pharoah for taking their time to review our manuscript and 

for providing constructive feedback that has greatly improved our work.

All of the reviewers comments have been carefully addressed, except I still think the 

methods are somewhat arcane. The fact that the term PGS is widely used to mean a 

polygenic model (a set of SNPs and their weights) despite the term being an 

abbreviation of polygenic score - the application of a PGM to an individual set of 

genotypes to calculate a number - is irrelevant. If the common use of a term is 

inaccurate and causes confusion then the answer is to change common practice. 

We understand the concern on the ambiguity of using PGS and PGS model thorough 

the manuscript. To address this, we have now been very careful of not using the word 

PGS model when referring to prediction. Therefore, the use of the word model has 

been limited in the manuscript. We only use it when we are explicitly talking about 

training the lasso/XGBoost models (Step 2), but never once the weights from these 

models have been projected into the individuals. After that, we simply talk about the 

prediction accuracy of multi-PGS.
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The following sentence has been added to a re-structured introduction section to reduce 

potential confusion “Multiple PGS and covariates can be combined using either a linear 

model (lasso penalized regression) or a nonlinear model (XGBoost) into a multi-PGS 

model. This model is then evaluated in an independent dataset in terms of the 

prediction accuracy of the multi-PGS.”

In the online methods it is stated that "Polygenic scores were derived using LDpred2- 

auto". I challenge the authors to derive a set of polygenic scores with a data set of 

genotypes and no other information using LDpred. LDpred generates a model, not a 

score. But with a specified polygenci model it would be possible to derive the polygenic 

scores using simple arithmetic. 

We understand the reviewer’s point here. Although this type of sentence is widespread 

in the literature, we have now modified to “Polygenic score weights were derived using 

LDpred2-auto” to be more specific on what was actually derived.
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