Supplement

Supplemental Tables

Supplemental Table 1. qPCR primer sequences.

Gene	Species	Forward (5'-3') Reverse (5'-3')			
Arid1A	Mouse	TGGAGGACAGATGCACTCG	CATTGGGGTAGTTGGCGTTG		
Arid2	Mouse	CATAGAGCAGGTCCAAACCC	CCACTGACAAGCGAACTTCT		
Atp1a2	Mouse	CTGGGCCGAAAATACCAAGT	CGACAGAACTTGACCCACTC		
Aurkb	Mouse	AAATGGTAGATCTATGGTGCATCG	GAACTTCAGGTCCACCTTGACAAT		
SmarcD3	Mouse	GCAAAGCCACGAAAAGCAAA	TGCCCATGTACGGGGAG		
SmarcA4	Mouse	GGAGGTAGACTACAGCGACT	AAGATTTCTTCTGCCGGACC		
Ccn1	Mouse	GGGTTGGAATGCAATTTCGG	CTGGTGTTTACAGTTGGGCT		
Ccnb1	Mouse	TTCATGCAGAACAGTTGTGTGC	TTAGTCACAAAGGCGAAGTCACC		
Ccnb2	Mouse	AAATGTCAACAAGCAGCCGA	ATCAGAGAAAGCTTGGCAGAG		
Cox5a	Mouse	CAGACATTGATGCCTGGGAA	ATTTTGGGCTCAGGAACCAG		
Ctgf	Mouse	CTCCACCCGAGTTACCAATG	GTGTCCGGATGCACTTTTTG		
Esrra	Mouse	CTCAGCTCTCTACCCAAACG	GGACAGCTGTACTCGATGC		
Esrrg	Mouse	CTGGGTACCACTATGGGGTT	TCTCACATTCATTCGTGGCT		
Gapdh	Mouse	TGTCGTGGAGTCTACTGGTG	ACACCCATCACAAACATGG		
Igflr	Mouse	ACGAGTGGAGAAATCTGTGGG	CGATCACCGTGCAGTTTTCC		
<i>Ki67</i>	Mouse	CCTTTGCTGTCCCCGAAGA	GGCTTCTCATCTGTTGCTTCCT		
Mef2A	Mouse	CGAGCATGCTGTCTCCACCC	ATCCCACTTGCACTGCCGGT		
Mef2C	Mouse	AGCGCAGGGAATGGATACGG	CATAGGGGGGAGGAGATTTGGCT		
Myl2	Mouse	ATGACCTAAGGGACACATTTGC	AGGATCAGCCCCTTTAAGTTTC		
Pcna	Mouse	TCGGGTGAATTTGCACGTAT	AACGTTAGGTGAACAGGCTC		
Sytl2	Mouse	GGGCAGCCACCTAAATTCTT	CAGGCCTGAACCCATCATAC		
Taz	Mouse	GGAACCTGAAGTTGATGCGT	AGTCCATCCCTTTCTGGTAGA		
Tead1	Mouse	ACATCAAACTCAGGACGGGA	TCCTTCTGGCAAGAACCTGAA		
Tnni3	Mouse	CCAGCCTTTGGAGTTGGATG	AACTTGCCACGGAGGTCATA		
Yap 1	Mouse	ATTTCGGCAGGAATTAGCTCT	CTGTCTGTGCTCTCATCTCG		
Wpre	Lenti	CGCTATGTGGATACGCTGCT	CGGGCCACAACTCCTCATAA		
ARID1A	Human	CCGAATCTCATGCCTTCCAA	TTGGGTGGAGAACTGATTGC		
ARP	Human	CACCATTGAAATCCTGAGTGATGT	TGACCAGCCCAAAGGAGAAG		
ATP2A2	Human	ACCCACATTCGAGTTGGAAG	CCAACGAAGGTCAGATTGGT		
COX5A	Human	CATTGATGCTGCTTTGCGGG	AGGTCCTGCTTTGTCCTTAACA		
COX6C	Human	TAGTCAGGAAGGACGTTGGT	ATAGCACGAATGCTACAGCC		
CPT1B	Human	ATCTACCTTCGAGGCAGGAG	GTCCAGTTTACGGCGATACA		
GJA1	Human	TTAAGGATCGGGTTAAGGGAAAG	TGTACCCAGGAGGAGACATAG		
MYH7	Human	CACTTGAGTAGCCCAGGCACA	CCGCTCCTTCTCTGACTTGC		
MYL2	Human	CCTTTCCACCATGGCACCTA	AAGCCATCCCTGTTCTGGTC		

PLN	Human	GTCCAATACCTCACTCGCTCAG	TCACGATGATACAGATCAGCAAG
RYR2	Human	GCTGGTTGTGGACTGCAAAG	AACACTCAGGCCTCCGAATG
TNNI3	Human	CTGCGGAGAGTGAGGATCTC	GATGTTCTTGCGCCAGTCTC

Supplemental Table 2. Antibodies.

Protein	Dilution*	Validation
Provider		
Cat#		
ACTN2	1:200 (IF)	Supplier: Species reactivity include human and
Sigma-Aldrich		mouse. Suitable for IF
A7732		
ARID1A	1:200 (IF)	Data in supplemental figures 2B, 2C, 6B and 6E
Abcam	1:1000 (WB)	confirm the sensitivity and specificity of this
AB182560		antibody for mouse in both IF and WB.
Vinculin	1:1000 (WB)	Supplier: Species reactivity include human and
Santa Cruz		mouse. Suitable for WB
sc-25336		
FLAG	1:1000 (WB)	Supplier: Monoclonal ANTI-FLAG® M2
Sigma-Aldrich		antibody has been used in: immunoblotting,
F3165		immunoprecipitation
GAPDH	1:5000 (WB)	Supplier: Species reactivity include human and
Millipore		mouse. Suitable for WB
MAB374		
PLN	1:1000 (WB)	Supplier: Species reactivity include human and
ThermoFisher		mouse. Suitable for WB
MA3-922		
tdTomato	1:500 (IF)	Supplier: Suitable for immunohistochemistry -
SciGen		paraffin sections.
AB8181		I
TNNI	1:1000 (WB)	Supplier: Species reactivity include human and
Abcam		mouse. Suitable for WB
AB47003		
TNNT2	1:200 (IF)	Supplier: Species reactivity include human and
Abcam		mouse. Suitable for IF
AB8295		
YAP1	1:1000 (WB)	Supplier: Species reactivity include human and
Cell Signaling		mouse Suitable for WB
4912S		
YAP1	1:200 (IF)	Supplier: Species reactivity include human and
Novus		mouse Suitable for IF
NB110-58358		
YAP1 n-SER127	1:1000 (WB)	Supplier: Species reactivity include human and
Cell Signaling		mouse Suitable for WB
13008P		
H3K27Ac	1.50 (ChIP)	Supplier: Species reactivity includes mouse ChIP-
Active Motif		grade antibody
39133		
0/100	1	

* IF: Immunofluorescence, WB: Western blot, ChIP: Chromatin Immunoprecipitation

Figure	Description of the image	Objective	Magn.	NA	IM
1E-left	ARID1A expression E12.5	ACS APO 63.0x/1.30 OIL	63.0x	1.30	Oil
1E-middle	ARID1A expression P7	ACS APO 63.0x/1.30 OIL	63.0x	1.30	Oil
1E-right	ARID1A expression adult ACS APO 63x/1.30 OIL		63.0x	1.30	Oil
1G-left	3d IR	3d IR HC PL FLUOTAR 20.0x/0.50 DRY		0.50	Dry
1G-right	3d IR zooms ACS APO 63.0x/1.30 OIL		63.0x	1.30	Oil
2B	P7,P14 HE overview HC PL FLUOTAR 10x/0.30 DRY		10.0x	0.30	Dry
2C	P7,P14 HE zooms	HCX PL FLUOTAR 40x/0.75 DRY	40.0x	0.75	Dry
2E-top	Sirius red	HCX PL FLUOTAR 40x/0.75 DRY	40.0x	0.75	Dry
2E-bottom	WGA	ACS APO 40.0x/1.15 OIL	40.0x	1.15	Oil
3E	P7 EdU	ACS APO 63x/1.30 OIL	63.0x	1.30	Oil
4C	EHM brightfield and fluorescent images	Leica plan APO 1.0x	1.0x		n/a
7C-top	Adult IR Sirius red overview	HC PL FLUOTAR 10x/0.30 DRY	10.0x	0.30	Dry
7C-bottom	Adult IR Sirius red zooms	HCX PL FLUOTAR 40x/0.75 DRY	40.0x	0.75	Dry
7D-top	Adult IR HE overview	HC PL FLUOTAR 10x/0.30 DRY	10.0x	0.30	Dry
7D-bottom	Adult IR WGA zooms	HC PL APO CS2 63x/1.40 OIL	63x	1.40	Oil
7G	Adult EdU zooms	HC PL APO CS2 63x/1.40 OIL	63x	1.40	Oil
S1A-left	ARID1A expression E12.5	ACS APO 63.0x/1.30 OIL	63.0x	1.30	Oil
S1A- middle	ARID1A expression P7	ACS APO 63.0x/1.30 OIL	63.0x	1.30	Oil
S1A-right	ARID1A expression adult	ACS APO 63x/1.30 OIL	63.0x	1.30	Oil
S1C-left	3d MI overview actn2/arid1a	HC PL FLUOTAR 20.0x/0.50 DRY	20.0x	0.50	Dry
S1C-right	3d MI zooms actn2/arid1a	HC PL FLUOTAR 20.0x/0.50 DRY	20.0x	0.50	Dry
S2B	P1 zooms ARID1A cKO cre efficiency	ACS APO 63.0x/1.30 OIL	63.0x	1.30	Oil
S2C	P7 zooms ARID1A cKO cre efficiency	ACS APO 63.0x/1.30 OIL	63.0x	1.30	Oil
S5A	YAP immunostaining P7 hearts	UPL XAPO 20X/0.8 DRY	20.0x	0.8	Dry
S6D	Adult icKO cre efficiency	HCX PL APO 63.0x/1.40 OIL	63.0x	1.40	Oil
S7	Overview EdU in IR ARID1A icKO	UPL XAPO 20X/0.8 DRY	20.0x	0.8	Dry

Supplemental Table 3. Objectives used for imaging.

Magn. Magnification; NA Numerical Aperture; IM immersion medium

Supplemental Figures

Supplemental Figure 1. Arid1a expression in mouse heart after myocardial infarction (MI). A) Representative immunofluorescence staining for cardiomyocytes (ACNT2 or TNNT2, green; top), ARID1A (middle) in embryonic (E12.5), postnatal (P7) and adult mouse (n=3). DAPI marks all nuclei (bottom) B) qPCR analysis of Arid1a expression in border zone of left ventricular wall in sham and 6 hours (6h), 1 day (1d), 3d (P=0.0069), 1 week (1w; P=0.0329), 2w (P=0.0253), 4w, and 12w after MI (n=4, except 12w: n=3; *, P<0.05, ** P<0.01, compared to sham, one-way ANOVA with Dunnett's test for multiple comparisons). C) ARID1A immunostaining in mouse heart 3d after MI shows enhanced expression in border

zone cardiomyocytes (marked by ACTN2, green) compared to cardiomyocytes in remote zone (n=3). Scale bars 1mm (C, left panel), 20 μ m (A; C, right panels). Bar graphs show mean with standard error of the mean. Source data are provided as a Source Data file.

Supplemental Figure 2. Assessment of *Arid1a* expression levels in control and *Arid1a cKO* hearts. A) qPCR for *Arid1a* in ventricular tissue of P7 *control* and *Arid1a cKO* hearts shows a significant reduction of *Arid1a* mRNA levels (P=0.0112), with remaining *Arid1a* expression in *Arid1a cKO* hearts likely reflecting expression in non-cardiomyocytes (n=4; *, P<0.05, two-tailed Student's t-test). B) ARID1A expression (red) in P1 *control* and *Arid1a cKO* hearts. tdTomato (tdTom) staining (magenta) was used for marking $R26^{+/tdTom}$ lineage traced cardiomyocytes (green) at this stage. Cardiomyocytes expressing ARID1A are marked with arrows. Arrowheads indicate cardiomyocytes that are negative for ARID1A. C) ARID1A expression (red) in P7 control and *Arid1a cKO* hearts. WGA (gray) was used to aid in the identification of non-cardiomyocytes. D) Relative counts of ARID1A expressing

cardiomyocytes revealing that at P1, the majority of cardiomyocyte nuclei still express ARID1A in *Arid1a cKO* hearts (n=4; Control, n=3), whereas at P7 (n=6) the expression of ARID1A in cardiomyocytes was lost. **E**) qPCR analysis of *Arid1b* (P=0.7304) and *Arid2* (P=0.5398) reveals no significant difference between controls (n=5) and *Arid1a cKO* (n=4) hearts at P7 (two-tailed Student's t-test). Scale bars 20 μ m. Bar graphs show mean with standard error of the mean. Source data are provided as a Source Data file.

Supplemental Figure 3. Modulation of ARID1A in human iPS-Cardiomyocytes reveals conserved roles in regulation of proliferation and maturation. A) siRNA suppression of ARID1A in iPS-CMs validated at mRNA (left, n=2 independent differentiations with 4 technical replicates each) and protein level (middle, right; n2 independent differentiations, with 3 technical replicates each). Molecular weight marker (kDa) is shown at the right. B) siRNA treatment does not affect relative number of cardiomyocytes in cultures (n=4). C) EdU incorporation in iPS-CMs is significantly induced after suppression of ARID1A (P=0.0194; n=4 independent differentiations; * P<0.05, two-tailed Student's t-test). D) Expression of mature contractility genes TNNI3 (P=0.0089), MYL2 (P=0.0060), and MYH7 (P=0.0384) was reduced after suppression of ARID1A. (n=4 independent differentiations; two-tailed Student's t-test) E) Expression of key calcium handling genes PLN (P=0.0001), ATP2A2 (P=0.1147), RYR2 (P=0.0250), GJA1 (P=0.0534) after suppression of ARID1A (n=4 independent differentiations; two-tailed Student's t-test). F) Expression of metabolism genes COX5A (P=0.0332), COX6C, (P=0.1534) and CPT1B (P=0.2267) after suppression of ARID1A (n=4 independent differentiations; two-tailed Student's t-test). G) Western blot analysis in iPS-CMs after siRNA suppression of ARID1A and quantifications of cTNI (P=0.1411) and PLN (P=0.0962; n= 3 independent differentiations; two-tailed Student's t-test). Bar graphs show mean with standard error of the mean. Box plots show inter quartile range with median and dots for each replicate measurement per differentiation. Source data are provided as a Source Data file.

Supplemental Figure 4. H3K27Ac ChIP-Seq results from *Arid1a cKO* and control hearts. **A)** H3K27Ac signal from control and *Arid1a cKO* samples in genomic regions encoding key cardiac genes **B)** Overlap between peaks called from 4 ChIP-Seq samples (2 controls, 2 *Arid1a cKO* hearts). Peaks present in at least 2 samples were used or further analysis. **C)** Correlation heatmap of read counts shows clustering of samples by genotype. **D)** Distribution of peaks over genomic regions. **E)** qPCR analysis of genes associated with enriched transcription factor motifs in Lost peaks indicates that *Mef2a* (P=0.0532), *Mef2c* (P=0.2282), *Esrra* (P=0.7639), and *Esrrg* (P=0.3218) genes are not significantly differentially regulated in *Arid1a cKO* hearts (n=4) compared to controls (n=5; two-tailed Student's t-test). Bar graphs show mean with standard error of the mean. Source data are provided as a Source Data file.

Supplemental Figure 5. ARID1A interacts with YAP and TAZ in a cardiac context. A) Immunofluorescence staining for YAP (magenta) in P7 control (n=5) and *Arid1a cKO* hearts (n=6). Representative examples of left ventricular free wall, arrows indicate CM nuclei, arrows indicate CM cytosolic staining. Co-staining with a nuclear marker (DAPI, cyan) or cytoplasmic cardiomyocyte marker (TNNT2, green) reveals differences in subcellular distribution. Note

relative intensity between CM nuclei (arrowheads) and surrounding cytoplasm (arrows). Scalebars 1mm (overview), 50 μ m (other images). **B**) Representative example of coimmunoprecipitation of FLAG-TAZ and ARID1A in H10 cells, showing specific coprecipitation of ARID1A with TAZ (n=3). Molecular weight marker (kDa) is shown at the right. **C**) Western blot analysis of ARID1A after siRNA-mediated knockdown shows dose dependent downregulation of ARID1A relative to GAPDH (right), as quantified in **D**) for 0.1 nM (P=0.0007), 1nM (P<0.0001) and 10 nM (P<0.0001; n=4 technical replicates; ***, P<0.001, ****, P<0.0001, one-way ANOVA with Dunnett's multiple comparison test). Bar graphs show mean with standard error of the mean. Source data are provided as a Source Data file.

Supplemental Figure 6. Adult *Arid1a icKO* phenotype and validation. A) Schematic showing timeline for Tamoxifen (Tmx) induced conditional deletion of *Arid1a* from adult cardiomyocytes. B) *Arid1a* mRNA levels in control hearts (*loxP*, *Arid1a^{f/f}* (blue); *mCm*, αMHC -mCm; *Arid1a*^{+/f} (light-blue)) and *Arid1a icKO* (red; P=0.0241) as measured by qPCR 1

IR

Sham

IR

Sham

Sham

IR

IR

Sham

week (w) after tamoxifen (n=6; **, P<0.01, one-way ANOVA with Dunnett's multiple comparisons test, compared to loxP control). C) Western blot analysis and quantification of ARID1A protein levels in *loxP* (n=6), *mCm* (n=6) and *Arid1a icKO* (n=7; P=0.0453) 1w after tamoxifen (n=6-7; *, P<0.05 versus loxP control, one-way ANOVA with Dunnett's multiple comparisons test, compared to *loxP* control). Molecular weight marker (kDa) is shown at the right. D) Immunofluorescence analysis of ARID1A expression in cardiomyocytes 1w after tamoxifen. WGA marks extracellular matrix and together with TNNT2 cardiomyocyte staining is used to identify cardiomyocyte nuclei. Arrowheads mark cardiomyocyte nuclei. Scale bars 25 µm. E) Heart weight to tibia length (HW/TL) of control and mutant hearts at 1w and 8w after tamoxifen in loxP (n=6), mCm (n=6) and Arid1a icKO (n=7). F) Cardiac functional parameters ejection fraction (EF) and left ventricular posterior wall thickness during diastole (LVPWd) as assessed by echocardiography reveals no functional differences at baseline between Arid1a icKO hearts (n=11) and controls (loxP (n=6), mCm (n=6)). For legend to colors see A). G) qPCR of key cell cycle (Ccnb2, P=0.1643; Ki67, P=2707), contraction (Myl2, P=0.2223) and metabolism genes (Cox6c, P=0.4802), in Arid1a icKO and control hearts subjected to Sham (n=3) or IR surgery (Control, n=8; Arid1a icKO, n=11). Two-way ANOVA with Šídák's multiple comparisons test, P-values are shown for IR condition. Bar graphs show mean with standard error of the mean. Source data are provided as a Source Data file.

Supplemental Figure 7. Overview of EdU labeling in control and Arid1a icKO hearts 7 days after IR. Transversal sections of adult mouse hearts 7 weeks after IR (n=8), stained for DAPI (Cyan, nuclei), WGA (White, extracellular matrix), ACTN2 (Green, cardiomyocytes) and EdU (Magenta). Boxed areas are enlarged in lower panels. Panels C,D and I,J illustrate that most EdU+ cells are ACTN2 negative non-cardiomyocytes. Arrowhead in K,L marks EdU+ cardiomyocyte nucleus. Scale bars 800 μ m (A, G), 200 μ m (B,H), 100 μ m (C,D,I,J), 20 μ m (E,F,K,L).