A pivotal role for Nrf2 in smoking induced endothelial detachment- implications for endothelial erosion of stenotic plaques

Authors: Sandro Satta¹, Robert Beal¹, Rhys Smith¹, Xing Luo², Glenn R Ferris¹, Alex Langford-Smith¹, Jack Teasdale³, Tom Tanjeko Ajime⁴, Jef Serré⁴, Georgina Hazell³, Graciela Sala Newby³, Jason L Johnson³, Svitlana Kurinna⁵, Martin J Humphries⁵, Ghislaine Gayan-Ramirez⁴, Peter Libby⁶, Hans Degens^{1,8}, Bo Yu², Thomas Johnson⁷, Yvonne Alexander¹, Haibo Jia², Andrew C Newby³, Stephen J White^{1*}

Supplementary Information

Methods

Tissue culture:

Shear stress models - Confluent monolayers of HCAEC were initially cultured for 24 hours under oscillatory (0 ± 5 dynes/cm², ±0.5 Pa, 1 Hz OSS), normal laminar (15 dynes/cm², 1.5Pa LSS), or elevated laminar shear stress (75 dynes/cm², 7.5Pa ESS) to allow cells to adapt to their shear environment using a parallel plate flow apparatus. Three treatments were administered, 16 hours apart (Figure 1A) of vehicle (control), TNFa (5ng/ml), CSE (10%), or both (T+C). HCAECs were cultured for a total of 72 hours, with 48 hours of treatment.

In addition, the orbital shaker model was also used ¹, as this allows analysis of cells that have detached. For this system, cells were seeded on day 1 into 6 well plates, transduced with virus day 2 at a total pfu/cell of 400. Virus was removed on day 3 and the cells exposed to shear stress for 48 hours prior to analysis. 3 ml of MV2 fresh media was added and the plates were placed on an orbital shaker at 210 rpm for 48 hours to generate a defined shear stress pattern across the well, with low shear stress of approximately 4 dyn/cm² in the centre and high shear stress of approximately 13 dyn/cm² in the periphery. Compounds aimed at modulating cell adhesion (Table S1) were added to the HCAECs on commencement of exposure to shear stress.

Compounds	Work concentration	Brand	Dissolved in
Chloroquine	150 or 300μM	Sigma	MV2 media
Bafilomycin	50nM or 100nM	Sigma	DMSO
Metformin	100μΜ	Sigma	MV2 media
VER-155008	15μΜ	Sigma	DMSO

Table S1 Chemical compounds added during orbital shaker experiment

ELISA

The level of GDF15, HSP70, S100P and IL-8 in patients' serum with OCT-defined plaque rupture or OCT-defined plaque erosion was measured by ELISA kit according to the manufacturer's instructions (CUSABIO, China).

Construction of Adenoviral vectors

OSGIN1 and OSGIN2 were cloned into pCpG-free MCS (Invivogen). The coding regions were amplified by PCR using primers (OSGIN1: F-CCAAGATCTCCACCCACCATGAGCTCCTCCAGAAAGGAC; R-TGGGCTAGCGTTAGGGTGGCTTCCTGGTCTCCTTCC. OSGIN2: F-GTGAGATCTAGAGGCGAAAAGTTAACACCATGCCATTAGTTGAAGAAACTTC; R-GTAAGCTAGCTATCCCATCTCCCC) using KOD proofreading DNA-polymerase, introducing a 5' BgIII site and 3' NheI site. Once inserted into the respective sites in pC-G-free MCS, the whole expression

cassette was shuttled into pDC511 (Microbix Biosystems, Canada) for adenoviral vector production as previously described ².

Construction of lentiviral vectors

Overexpression of KEAP1 was facilitated using lenti-KEAP1. KEAP1 was amplified by PCR using KOD proofreading polymerase and primers SW787F 5' - GCGGATCCTCTAGAACACCATGCAGCCAGATCCC created BamHI which and XbaI sites. and **SW788R** 5' CCCAGTCGACAAGCTAGCCTCAACAGGTACAGTTCTGCTG, which created NheI and SalI sites post stop codon. This fragment was TA cloned into pGEMTeasy and shuttled into lentiviral overexpression vector 326 under the control of the CMV promoter, replacing GFP (326 expressing GFP was used as a control). shRNAs for OSGIN1 & 2 were designed using splash RNA (http://splashrna.mskcc.org/)³ and the top 3 designs were used to replace the first 3 miRs in the miR17 cluster with appropriate mismatches to ensure incorporation of target strand into RISC as described by ⁴. Constructs were synthesised by Eurofins and cloned into plentilox3.1 under the control of the U6 promoter. An empty vector (no-shRNA) was used as a control.

Cytotoxicity, viability and apoptosis analysis

Apotox-Glo triplex assay (Promega, Madison, USA) was performed in the HCAECs, according to manufacturer's instructions, and 40 hours after AdOSGIN1 and AdOSGIN2 infection. To this end, cells were plated into 96-well plates at a density of 5 x 10⁴ cells per well. Results were normalized to DMSO treated control cells. Experiments were performed five times with eight replicates per condition. In addition, Caspase-3 activity was measured using a caspase-3 activity assay kit (Promokine kit), fluorescence was measured at λ max = 505 nm after 3 h of incubation with the substrate and normalized by the protein content of each sample. Each treatment had five technical replicates and performed in triplicate.

Cell cycle analysis in HCAECs

Cell cycle analysis was performed by flow cytometry on ethanol-fixed cells stained with 25 μ g/ml propidium iodide (PI). Analyses were performed using a FACScan flow cytometer (FACS Calibur, BD Transduction Laboratories) using Modfit software. BrdU analysis was performed as described².

Western blotting of HCAEC lysates

HCAECs were lysed in SDS lysis buffer [2% SDS; 50 mM Tris pH 6.8; 10% glycerol]. Protein concentration in the lysate was quantified using bicinchoninic acid-assay (BCA, Pierce BCA Protein Assay). Between 12 and 20 µg of protein were loaded per lane on denaturing SDS–polyacrylamide gels and blotted onto Nitrocellulose or PVDF membranes. See Table S2 for further information. All experiments were conducted in triplicate.

	Primary ab	Blocking Solution	Secondary ab
OSGIN1	Rabbit-antiOSGIN1 (1:1000)	1% BSA	Monoclonal Secondary HRP-anti
(Biorbyt orb100666)	O/N 4°C		rabbit (1:1000-1h) in TBSTween
OSGIN2	Rabbit-antiOSGIN2 (1:500)	1% BSA	Monoclonal Secondary HRP-anti
(Biorbyt orb185683)	O/N 4°C		rabbit (1:1000-1h) in TBSTween
PARP cleavage	Rabbit anti-PARP (1:1000)	0,5% BSA	Monoclonal Secondary HRP-anti
(Cell Signaling D64E10)	O/N 4°C		rabbit (1:2000-1h) in TBSTween
SQSTM1/p62	Mouse anti-p62 (1:1000)	3% Milk	Monoclonal Secondary HRP-anti
(Abcam ab56416)	O/N 4°C		mouse (1:5000-1h) in TBSTween
HSP70	Rabbit anti-HSP70 (1:1000)	5% Milk	Monoclonal Secondary HRP-anti
(Abcam ab45133)	O/N 4°C		rabbit (1:5000-1h) in TBSTween
LAMP1	Rabbit anti-LAMP1 (1:1000)	1,5% Milk	Polyclonal Secondary HRP-anti
(Abcam ab24170)	O/N 4°C		rabbit (1:500-1h) + Monoclonal
			Secondary HRP-anti rabbit
			(1:500-1h) in TBSTween

Table S2. Primary Antibodies, dilutions and methodology used in Western Blotting

Immunocytochemistry of HCAEC

HCAECs were exposed to AdOSGIN1 and AdOSGIN2 infection before being fixed in cold 4% paraformaldehyde for 10 minutes. Cells were permeabilised with 0.1% triton, blocked in 20% goat serum and probed with rabbit anti-OSGIN1 (1:100, Biorbyt) and rabbit anti-OSGIN2 (1:75, Biorbyt), and rabbit anti-VE-Cadherin (Cell Signaling) followed by goat anti rabbit Alexa Fluor 488 (1/200, Invitrogen). Further staining was carried out with mouse anti-Vinculin (1/400, Sigma), mouse anti- β -catenin (1/200, BD Transduction Laboratories), mouse -mab137 (1/100, Sigma) followed by goat anti mouse Alexa Fluor 594 (1/200, Invitrogen). In combination with the previous staining, anti-Phalloidin (1/250, Sigma), and anti-Tubulin (1/1000, Abcam) were added (antibody titration Table S3).

Antibody	Туре	Dilution	Company
OSGIN1	Rabbit	1:100	(Biorbyt orb100666)
OSGIN2	Rabbit	1:75	(Biorbyt orb185683)
VE-Cadherin	Rabbit	1:400	(Cell Signalling D87F2)
β-Catenin	Mouse	1:100	(BD Transduction Laboratories 610153)
Vinculin	Mouse	1:400	(Sigma V4505)
Mab113	Mouse	1:100	(Abcam ab92824)
Tubulin	Already conjugated (Green)	1:1000	(Abcam ab64503)
Phalloidin	Already conjugated (Red)	1:250	(Sigma P1951)
HSP70	Rabbit	1:400	(Abcam ab45133)
LAMP1	Rabbit	1:100	(Abcam ab24170)
SQSTM1/p62	mouse	1:200	(Abcam ab56416)

Secondary Antibody description

Alexa fluor488	Anti mouse or rabbit	1:200	Invitrogen
Alexa fluor647	Anti mouse or rabbit	1:200	Invitrogen

Table S3. Primary Antibodies used in Immunocytochemical analysis

Senescent-associated β-galactosidase staining

Paraformaldehyde fixed HCAECs were rinsed with ice-cold PBS pH 6.0 and submerged in senescent-associated β -galactosidase (SA- β -Gal) staining solution [1 mg/ml 5-bromo-4-chloro-3-indolyl β -d-galactopyranoside (X-gal), 5 mM K₄Fe(CN)₆, 5 mM K₃Fe(CN)₆, 150 mM NaCl₂ and 2 mM MgCl₂ titrated with 1M NaH₂PO₄ to pH 6.0] and incubated overnight at 37°C. After staining, HCAECs were rinsed with ice-cold PBS pH 6.0, and micrographs were taken with a Leica M165 FC stereomicroscope.

RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR)

Total RNA was extracted from HCAECs using the RNeasy Mini Kit (Norgen) according to the manufacturer's protocol. 250ng RNA were reverse transcribed into cDNA with random primer by reverse transcriptase (RT) (Qiagen). cDNA (relative 1ng RNA) was amplified by standard PCR with Taq DNA polymerase (Sensifast, SybrGreen, LOW-ROX Kit, Bioline) and primers. Primers were designed using NCBI software. For each gene, SYBR Green was used in place of a labelled probe (primers sequences Table S4). GAPDH RNA was used as the

internal control for each gene and the target gene was amplified in duplex in PCR mixtures (10 μ l final volume) containing 4 μ l Sybr® Green PCR Master Mix, cDNA template 1 μ l, optimised primers 2 μ l and 3 μ l of H₂O. PCR thermal cycle parameters were: 5 minutes 95°C 30 seconds between at 65°C to 70°C depending on primers optimisation, 30 seconds at 72°C 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Reactions were performed, and fluorescence was monitored in an Applied Biosystem detector (Applied Biosystem). Relative mRNA expression level was defined as the ratio of target gene expression level to GAPDH mRNA expression. Primers sequences can be found in Table S4.

p21	(SW878F/879R)	F CTCAGGGTCGAAAACGGCGG
		R GTGGGCGGATTAGGGCTTCCT
p16	(SW926F/927R)	F CGAGCTCGGCCCTGGAG
		R TCGGGCGCTGCCCATCAT
HSPA1A	(SW355F/356R)	F TGAGGAGCTGCTGCGACAGT
		R GGCTGGAAACGGAACACTGG
HSPA1B	(SW357F/358R)	F TGTTGAGTTTCCGGCGTTCC
		R AACACCCCCACGCAGGAGTA
BAG3	(SW966F/967R)	F GCGGGGCATGCCAGAAACCA
		R CTGGCCGGGTAACGTTCTGCT
ATG7	(SW894F/895R)	F GGACTGGCCGTGATTGCAGGA
		R ATCCGATCGTCACTGCTGCTGG
ATG9A	(SW938F/939R)	F AGAGGCGCTACGGTGGCATC
		R GCCTTGATGCCGACTGCCCA
MAP1LC3B	(SW934F/935R)	F CGCCCAGATCCCTGCACCAT
		R AGCATTGAGCTGTAAGCGCCTTCT
SQSTM1/p62	(SW936F/937R)	F GGACGGGGACTTGGTTGCCTT
		R CGGGTTCCTACCACAGGCCC
GABARAPL1/ATG8	(SW940F/941R)	F CGGACAGGGTCCCCGTGATTG
		R AGCACTGGTGGGAGGGATGGT
GAPDH	(SW180F/181R)	F CGGATTTGGTCGTATTGGGCG
		R GCCTTCTCCATGGTGGTGAAGAC

Table S4. Primer sequences used for real-time PCR

RNASeq data analysis on HCAEC with OSGIN1&2 overexpression

Strand-specific RNA-seq libraries were prepared using the Illumina workflow with the TruSeq® Stranded mRNA Sample Preparation Kit. Paired-end reads of 65bp were generated from each sample on the Illumina platform of HiSeq4000. The fastq files generated were analysed with FastQC⁵, any low quality reads and contaminated barcodes were trimmed with Trimmomactic⁶. All libraries were aligned to the hg38 assembly of human genome using STAR-2.5.3a⁷ and only the unique alignments were reported for each read. The mapped reads were also counted with STAR at gene level against gencode.v25.annotation.gtf. R was used for all the statistical analysis of data⁸. The counts data were normalized and donor effect removed using the R package RUVSeq⁹. Differentially expressed genes were detected with the R package of DESeq2¹⁰ between groups of experimental data sets. Cluster analysis was carried out on the DE genes identified with DESeq2 using a padj cut off of 0.05 with gplots¹¹. The predicted upstream regulators and altered canonical pathways were generated through the use of IPA (QIAGEN Inc., <u>https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis</u>)¹². The cluster analysis was carried out on the differentially expressed genes identified with DESeq2 using a p-adjusted cut off of 0.05, absolute log2 fold change cut off of 0.5, and base Mean cut off of 50. The Pearson distance was clustered with the hclust function and plotted with an R package of gplots.

Patient study population and blood samples

Patients presenting with ST-segment elevation myocardial infarction (STEMI) underwent primary percutaneous coronary intervention (PCI) at the Second Affiliated Hospital of Harbin Medical University were prospectively enrolled in this study. The diagnosis of STEMI was made according to the following criteria: detection of cardiac troponin values with at least one value above the upper reference, typical symptoms of acute myocardial ischemia and new ischemic electrocardiogram changes. Thrombus aspiration was performed in all patients before optical coherence tomography (OCT) examination. OCT imaging of culprit lesion were performed after antegrade flow restoration without any intervention. Patients were divided into plaque erosion and plaque rupture group according to OCT image of culprit lesion. The plaque rupture and plaque erosion were defined by OCT based on our previously established definition¹³. OCT-erosion was identified by the presence of attached thrombus overlying an intact and visualized plaque, while OCT-rupture was identified by disruption of fibrous cap and cavity formation in the plaque. The blood samples around the culprit lesion were collected from intracoronary aspirates during the primary PCI. The serum was separated and stored at -80°C immediately. Written informed consent was obtained from all patients. This study was approved by the institutional research ethics committee of the Second Affiliated Hospital of Harbin Medical University and conforms to the principles outlined in the Declaration of Helsinki.

	PR(n=46)	PE(n=34)	<i>p</i> value
Demographic data			
Female gender, n (%)	14(30.4)	7(20.6)	0.161
Age, year	59.7 ± 10.9	51.1±8.1	< 0.001
Smoking, n(%)	21(45.7)	20(58.8)	0.122
Hypertension, n(%)	17(36.9)	15(44.1)	0.259
Diabetes, n(%)	9(19.6)	4(11.8)	0.175
Hyperlipemia, n(%)	10(21.7)	8(23.5)	0.425
Stroke, n(%)	8(17.4)	4(12.1)	0.243
BMI (kg/m ²)	25.1±3.3	24.8 ± 2.8	0.384
Laboratory data			
TC (mmol/L)	5.0 ± 1.2	4.5 ± 1.3	0.060
TG (mmol/L)	1.4(0.8-1.8)	1.2(1.0-1.9)	0.240
LDL (mmol/L)	3.2 ± 1.0	2.9 ± 0.8	0.112
HDL (mmol/L)	1.4 ± 0.3	1.4 ± 0.4	0.474
White blood cell $(10^9/L)$	10.8 ± 3.6	12.2 ± 4.1	0.061
C-reactive protein (mg/L)	C-reactive protein (mg/L) 4.0(1.6-7.7) 5.0(2.3-10.1)		0.218

Baseline characteristics of ACS patients analysed in this study that experienced either plaque rupture (PR) or plaque erosion (PE)

Immunofluorescence on Mouse Aortas

8μm frozen sections of aortas from mice exposed to air (control mice) or cigarette smoke for 3 months (as described¹⁴) were fixed in ice cold acetone before immunofluorescence was performed using the antibodies described above. The mouse tissue used in this manuscript was not generated for this study, but was surplus to the described study¹⁴, and therefore utilised in this study in line with 3Rs principles. All experimental procedures were carried out in accordance with relevant guidelines and regulations and approved by the Ethical Committee of Animal Experiments of the KU Leuven.

SUPPLEMENTARY DATA

		SC	STC			Ŋ	L	TC
	Genes	ES	ES		Genes	SS	SS	S
1	MAFF			50	GSTT2/GSTT2B	щ	щ	
2	RASD1			<u>4</u> 9	GSTA2			
3	DNAJA4			48	PRKCI			
4	HMOX1			40	MAD2K1			
5	TXNRD1			4/				
6	GCIM			40	DNA IC15			
7	DNA IR1			45	DNAJCI5			
8	FOS			44	SLC35A2			
0	FOSI 1			43	DNAJC5G			
9 10	MAEC			42	DNAJBII			
10				41	PIK3R1			
11	JUNB			40	RALB			
12	HSPB8			39	PRKCH			
13	STIPT			38	MAPK14			
14	SOD2			37	DNAJB5			
15	GSTM3			36	MAP3K5			
16	ATF4			35	MAPK1			
17	PRKCD			34	MAPK7			
18	MAP2K3			33	KRAS			
19	RRAS2			32	PIK3C2B			
20	DNAJB2			31	DNAJC9			
21	DNAJA1			30	DNAJB4			
22	NFE2L2			29	PIK3R2			
23	TXN			28	RAP1A			
24	GSK3B			27	SCARB1			
25	SOD1			26	DNAJC18			
26	JUND			25	ACTB			
27	KEAP1			23	PRKD1			
28	MAPK9			23	AKT1			
29	DNAJB6			23	PIK3CG			
30	PIK3CD			21	PRKCE			
31	NOO1			21				
32	SOSTM1			10	DNAICA			
33	DNAJC7			19				
34	GSR			10	ACTC1			
35	CBR1			1/	EDDO			
36	IIIN			10	EKF29 CSTV1			
37	UBB			13	USINI DDVCZ			
38	PRDX1			14	PKKUZ			
30	PRAS			13	AKK/AZ			
40	FDHY1			12	DNAJC19			
40	MGST1			11	MKAS			
41				10	PPIB			
42	DINAJD12 ETII1			9	GSTMI			
43 11				8	AKR7A3			
44 15	DINAJAJ MADVO			7	GSTM2			
43	MAPKO DNA 105			6	GSTA4			
46	DNAJC5			5	DNAJC10			
41	CCT/			4	UBE2E3			
48	CDC34			3	ENC1			
49	GSTM4			2	GSTT1			
50	MAPK3			1	CAT			

Figure S1. Top 50 genes upregulated and downregulated compared to elevated shear stress (ESS) control.

Figure S2: Cell Adhesion of HCAECs exposed to a combination of elevated shear stress, TNF α and CSE together (ESSTC), with additional Z-VAD-FMK treatment (20 μ M), vs untreated and DMSO controls at ESS for 72 hours. Cell number was quantified using picogreen assay, expressed as mean fold change against control \pm S.E. n=3.

Figure S3: Cell number of HCAECs exposed to a combination of TNF α and CSE together (T+C), with additional GM6001 treatment (10 μ M), vs untreated and DMSO controls at ESS for 72 hours. Cell number was quantified using picogreen assay, expressed as mean fold change against control ± S.E. n=3.

7

Figure S4: Cell Adhesion of HCAECs exposed to a combination of elevated shear stress, TNF α and CSE together (ESSTC), with additional 3µM Rosuvastatin treatment, vs untreated and DMSO controls at ESS for 72 hours. Cell number was quantified using picogreen assay, expressed as mean fold change against ESSTC ± S.E. n=3.

Figure S5: Cell Adhesion of HCAECs exposed to a combination of elevated shear stress, TNF α and CSE together (ESSTC), with additional 200 μ M Apocynin treatment, vs untreated and DMSO controls at ESS for 72 hours. Cell number was quantified using picogreen assay, expressed as mean fold change against control \pm S.E. n=3.

Necrostatin-1

Figure S6: Cell Adhesion of HCAECs exposed to a combination of elevated shear stress, TNF α and CSE together (ESSTC), with additional Necrostatin-1 treatment (10 μ M), vs untreated and DMSO controls at ESS for 72 hours. Cell number was quantified using picogreen assay, expressed as mean fold change against control ± S.E. n=3.

OSGIN1

Figure S7. OSGIN1 mRNA expression in HCAECs cultured under OSS, LSS or ESS, with TNF α (5ng/ml) or CSE (10%) or both (*P=0.05, **P<0.01, ***P<0.001 v LSS CTRL, mean and SEM n=6, two-way ANOVA). Reproduced from reference ¹⁷, under CCL4.0

Figure S7. NRF2 binds and activates OSGIN1 promoter (A, B) UCSC genome browser tracks displaying ChIPseq reads for NRF2 (grey), layered H3K27Ac (shades of blue), H3K4me3 (green), H3K4me1 (light blue), and POLII (grey bars and orange peaks). DNase hypersensitive clusters are in black. Please note higher scale of NRF2 and H3K4me3 at the promoter of OSGIN1, together with the higher levels of H3K4me1 on OSGIN1 compared to OSGIN2. While POLII is bound to promoters of both genes, difference in H3K4 methylation suggests that OSGIN1 is actively transcribed and OSGIN2 is poised for transcription. We found an NRF2 binding site antioxidant response elements (ARE) under the NRF2 binding peak located at 130bp upstream of the transcription start site (TSS) of OSGIN1 (C) and predicted four AREs 4kb upstream of the OSGIN2 TSS. This supports our previously published findings¹⁵.

Figure S8 **a**) Cell viability assay for HCAECs. The cell viability was measured post transfection at 24h (adenovirus overexpression of OSGIN1, OSGIN2 and both together) and did not cause a significant decrease in cell viability. Overexpression of OSGIN1, OSGIN2 and both together did not cause a significant increase or decrease in necrosis. Viability and Necrosis were measured using promega Apotox Glo assay kit. **c**) Total Parp antibody in western blotting showed no parp cleavage by caspase-3. No second band was reported in any sample suggesting no apoptosis activity.

Figure S9. A) AdOSGIN1/2 condition resulted in numerous multinucleated cells. B) Number of multi-nucleated cells were counted and compared against AdCtrl. AdOSGIN2 and AdOSGIN1/2 showed up to four times more multi nucleated cells *P<0.05, and ***P<0.001.

Figure S10: 3D cell model was created using Leica software confocal image stack in combination with Image j: image to stack from 50 layers of confocal images. Cell depth was measured with an increment of cell height up to $25\mu m$ (n=3; P<0.001).

Control

AdControl

AdOSGIN1

Figure S11: EC size analysis was evaluated through Image J custom particles analyser and multi cell outliner (ellipse fit correction). Five random pictures were analysed, and each cell area was automatically measured. AdOSGIN2 and AdOSGIN1+2 condition showed an increment in cell size with almost double the size compared to the Ctrl and AdCtrl. **P<0.01 AdOSGIN2 and ***P<0.001 AdOSGIN1+2 vs AdCtrl.

Control

AdControl

AdOSGIN1+2 AdOSGIN2

Figure S12. Senescence-associated beta-galactosidase (SA-β-galactosidase) senescence staining of HAECs transfected with adenoviral (OSGIN1, OSGIN2 and OSGIN1/2). Overexpression by ad of AdOSGIN1 and AdOSGIN2 induces senescent phenotypes in HCAECs. AdOSGIN1/2 overexpression shows green/blue senescence cells (red arrows) detached or in progress of detaching. SA-β-galactosidase assays were performed 40h after adenovirus transfection.

Supplementary Tables S5 Cluster 1, Genes and top 10 canonical pathways and regulators.

Genes	
AHSA1	HSPB1
ALDH3A2	HSPB8
ATF3	HSPD1
B3GAT3	HSPE1
BAG3	HSPH1
BANF1	IER5L
C3orf52	IL7R
CACYBP	JMJD6
CBARP	LGALS8
CHKA	LUC7L3
CHORDC1	MICB
CPNE8	MLKL
CRYAB	MRPL18
CRYZ	MSX1
DEDD2	NAPG
DNAJA1	NDRG1
DNAJB1	OSGIN1
DNAJB6	P4HA2
EVI2B	PATL1
FKBP4	PAXBP1
FTL	PLAUR
GDF15	PLEKHB2
HIF3A	PRPF38B
HIST2H2BE	PTGES3
HMOX1	RNF19B
HSP90AA1	RSRP1
HSP90AB1	SNX3
HSPA1A	SPATS2L
HSPA1B	SQSTM1
HSPA4	STIP1
HSPA6	TRIM16
HSPA8	TSPYL2

Ingenuity	Canonical
Pathways	
Aldosterone	Signaling in
Epithelial Cells	
Protein	Ubiquitination
Pathway	
NRF2-mediated	d Oxidative
Stress Respons	e
Unfolded prote	in response
Glucocorticoid	Receptor
Signaling	
eNOS Signalin	g
Aryl Hydroca	rbon Receptor
Signaling	
Huntington's	Disease
Signaling	
Xenobiotic	Metabolism
Signaling	

Upstream Transcriptional Regulator
HSF1
FBXW7
PML
SP100
NFE2L2 TP53
ETS1
HSF2
HTT
NUPR1

Supplementary Tables S6 Cluster 2, Genes and top 10 canonical pathways and regulators.

Conos	
ANKRD10	MX1
ADOL 6	MX2
AFOLO	IVIA2
BATF2	OAS1
C19orf66	OAS2
DDMEO	
DDX58	OASL
DDX60	OSGIN2
DDX60L	PARP14
DINGO	D + D DO
DHX58	PARP9
DNAJA4	PLSCR1
DTX3L	PMAIP1
EIF2AK2	PPP1R18
EPSTI1	RSAD2
GBP1	SAMD9
GCH1	SAMD9L
HERC6	SERPINH1
IFI35	SLC15A3
IFI44L	SLC37A1
IFIH1	SP110
IFIT1	TAP1
IFIT2	TRIM21
IFIT3	TRIM26
IFIT5	TRIM69
IFITM1	UBC
IRF7	UBE2L6
ISG15	XAF1
LY6E	

Ingenuity Canonical Pathways		
Interferon Signaling		
Activation of IRF by Cytosolic Pattern		
Recognition Receptors		
Role of Pattern Recognition Receptors		
in Recognition of Bacteria and Viruses		
Role of RIG1-like Receptors in		
Antiviral Innate Immunity		
Tetrahydrobiopterin Biosynthesis I		
Tetrahydrobiopterin Biosynthesis II		
Retinoic acid Mediated Apoptosis		
Signaling		
Toll-like Receptor Signaling		
Death Receptor Signaling		
Protein Ubiquitination Pathway		

Upstream	Transcriptional
Regulator	_
IRF7	
STAT1	
IRF1	
NKX2-3	
IRF3	
IRF5	
TRIM24	
CNOT7	
STAT3	
STAT2	

Supplementary Tables S7 Cluster 3, Genes and top 10 canonical pathways and regulators

Genes	
ADM	PRDX6
ANGPT2	SBDSP1
F2RL2	SEC61G
GCLM	SELO
INA	SLC17A9
LENG9	SNRPA1
ME1	TBXAS1
MLLT11	TKT
NQO1	TMEM156
P4HA1	TRIM16L
PDE4B	UPP1
PLPP2	ХРОТ
PRDX1	ZDHHC6

Ingenuity Canonical Pathways	
NRF2-mediated Oxidative Stress	
Response	
Glutathione Biosynthesis	
Pentose Phosphate Pathway	
(Non-oxidative Branch)	
Superoxide Radicals Degradation	
Prostanoid Biosynthesis	
Phagosome Maturation	
Pentose Phosphate Pathway	
γ-glutamyl Cycle	
Glutathione Redox Reactions I	
Gluconeogenesis I	

Upstream	Transcriptional
Regulator	
MAFG	
BACH1	
NFE2L2	
KEAP1	
MAFK	
NFE2	
PML	
KLF2	
NFE2L1	
PDX1	

Supplementary Tables S8. Cluster 4, Genes and top 10 canonical pathways and regulators.

Genes
ANGPTL4
CTD-2015G9.2
HOXA9
HOXB7
MT-CYB
RPSAP58
TNFSF18

	Upstream Transcriptional
Ingenuity Canonical Pathways	Regulator
Oxidative Phosphorylation	PHF1
Mitochondrial Dysfunction	COMMD3-BMI1
Sirtuin Signaling Pathway	KMT2A
	MLLT1
	ASB2
	NKX2-3
	PSIP1
	HOXB3
	BHLHE41

PLAGL1

Supplementary Tables S9. Cluster 5, Genes and top 10 canonical pathways and regulators.

MFSD11
NUP107
NUP160
PACS1
PAN2
PCMTD2
PIGQ
PLA2G4C
PLD1
PPCS
PPCS RCBTB1
PPCS RCBTB1 RFC3
PPCSRCBTB1RFC3RNF123
PPCSRCBTB1RFC3RNF123SESTD1
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B SMARCC2
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B SMARCC2 STK38L
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B SMARCC2 STK38L SYNE2
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B SMARCC2 STK38L SYNE2 TGFA
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B SMARCC2 STK38L SYNE2 TGFA UQCRC2
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B SMARCC2 STK38L SYNE2 TGFA UQCRC2 VPS13C
PPCS RCBTB1 RFC3 RNF123 SESTD1 SLC35E2B SMARCC2 STK38L SYNE2 TGFA UQCRC2 VPS13C WDR59

Ingenuity Canonical Pathways		
Coenzyme A Biosynthesis		
N-acetylglucosamine		
Degradation I		
Phospholipases		
Endothelin-1 Signaling		
N-acetylglucosamine		
Degradation II		
Role of BRCA1 in DNA		
Damage Response		
Non-Small Cell Lung Cancer		
Signaling		
Phospholipase C Signaling		
Antioxidant Action of Vitamin C		
Pancreatic Adenocarcinoma		
Signaling		

Upstream	Transcriptional
Regulator	
FOXH1	
CITED1	
Ncoa6	
GSX2	
BHLHA15	
FOS	
VAV2	

Supplementary Tables S10. Cluster 6, Genes and top 10 canonical pathways and regulators.

		Upstream	Transcriptional
Genes	Ingenuity Canonical Pathways	Regulator	
	Role of BRCA1 in DNA Damage	CCND1	
BRIP1	Response		
ESCO2		UXT	
		FOXM1	
		IRF1	

TCF4 TCF3 FOXO1 Supplementary Tables S11 Cluster 7, Genes and top 10 canonical pathways and regulators

Conos	
Genes	
ABCA1	LAMA2
AEBP1	LGALS9
AGRN	LYPD1
APOL1	LYVE1
BNC1	MELTF
CARD11	MGP
CCDC3	MYOM3
CDU11	
CDHII	NEATI
CEU	NEEH
СГН	NEFH
CLDN11	PCDH10
CSF2RB	PCDH17
CTHRC1	PLCB2
CX3CL1	PLCD1
DDR2	PLCL1
DGKA	POSTN
DKK2	PSMB9
DOCK5	PTPRU
DOCK8	SAT1
DPP4	SELENBP1
ERAP1	SEMA7A
FAM129A	SLITRK4
FRAS1	ST6GALNAC1
GATSL3	STXBP2
HSPA12B	TACSTD2
IGFBP5	TFAP2A
IL18R1	TRPV2
ITGB3	TUSC3
KLF4	VCAM1
KRT19	

selles and top 10 earlo	mear painwa
Ingenuity	Canonical
Pathways	
Adrenomedullin	signaling
pathway	
Role of Ma	crophages,
Fibroblasts and I	Endothelial
Cells in Rheumatoid	Arthritis
Antioxidant Action	of Vitamin
С	
P2Y Purigenic	Receptor
Signaling Pathway	
Phospholipases	
Wnt/Ca+ pathway	
Melatonin Signaling	
GPCR-Mediated Int	egration of
Enteroendocrine	Signaling
Exemplified by an L	Cell
Aldosterone Sign	aling in
Epithelial Cells	-
Agrin Interaction	ons at
Neuromuscular Junc	tion

y	s and regulators.				
	Upstream Transcriptional				
	Regulator				
	HTT				
	NKX2-3				
	HOXA10				
	CREB1				
	SMARCA4				
	MECP2				
	STAT1				
	FOXF1				
	IRF2				
	ATF4				

Supplementary Tables S12. Cluster 8, Genes and top 10 canonical pathways and regulators.

Genes	HSPG2
A2M	IGFBP2
ABCA7	IL17RD
ACE	IL33
ACP5	ITGA10
ADCY4	ITPR1
ANK1	KCND1
ANK3	KCNN4
APLNR	LIMCH1
APOB	LPL
APOL4	LRP1
AQP1	MAMDC2
AQP3	MAN1C1
ARHGEF9	MAN2B2
ATHL1	MFAP2
ATP2A3	MMP17
B3GNT9	MYO18A
BTN3A3	NPR1
C10orf10	PBX1
C10orf128	PCMTD1
C10orf54	PEG10
C14orf132	PIDD1
C1RL	PIK3R3
CALCOCO1	PLPP3
CCND2	PPARGC1B
CD24	PPP1R14A
CD40	PTGIS
CECR1	RAPGEF5
CFI	RP1-152L7.5
CKB	RRAGB
CMKLR1	SCUBE3
COL17A1	SEMA3G
COLIA2	SGCE
COL4A5	SIAE
COLECI2	SID12
DPYSL4	SLC16A14
DYSF	SLC46A3
EDA2R	SLCO2A1
ENIPDI	SLCO2BI
EPS8L2	SNEDI
ERV3-1	SURT I
FBLN2	SIABI
	SULFI TMOD1
ГКВРУ	TMODI
CAL2ST4	TINEKSE14
GAL3514	TDCN1
UJA4	ITUNI

Ingenuity Canonical Pathways			
Atherosclerosis Signaling			
Inhibition of Matrix Metalloproteases			
Adrenomedullin signaling pathway			
Gap Junction Signaling			
GP6 Signaling Pathway			
eNOS Signaling			
Hepatic Fibrosis / Hepatic Stellate Cell Activation			
Renin-Angiotensin Signaling			
Breast Cancer Regulation by Stathmin1			
Dopamine-DARPP32 Feedback in cAMP Signaling			

Upstream Transcriptional
Regulator
KLF2
TP53
SP1
TCF4
CALR
CEBPA
BRD7
ETS1
IKZF1
ASB9

GJA5	TRIM66
GPR146	USHBP1
HEG1	VASH1
HHAT	VCAN
HMCN1	ZNF366

Supplementary Tables S13. AdOSGIN1 vs AdControl, Genes and top 20 canonical pathways and regulators.

						Upstream
					Ingenuity Canonical	Transcription
Genes					Pathways	al Regulator
					Aldosterone Signaling in	
A2M	CMKLR1	HSPA1B	OSGIN2	SLITRK4	Epithelial Cells	TP53
					Adrenomedullin signaling	
ABCA1	COL17A1	HSPA4	P4HA1	SNED1	pathway	EPAS1
ABCA7	COL1A2	HSPA6	PACS1	SNRPA1	Atherosclerosis Signaling	HIF1A
ACE	COL4A5	HSPB8	PAN2	SORT1	eNOS Signaling	KLF2
	002.000	1101 20		ST6GAI	Hepatic Fibrosis / Hepatic	
ACP5	COLEC12	HSPD1	PBX1	NAC1	Stellate Cell Activation	NKX2-3
ADCV4	CPNE5	HSPG2	PCDH10	STAB1	Sperm Motility	NEUROG1
ADC14	CINLS	1151 02	TCDIII0	SIADI	Cellular Effects of	THEOROOT
	CDVAD	ICEPD2		STV 281	Sildenafil (Viagra)	SP1
ADIVI	CKIAD		FCDH1/	SIKJOL	Donomino DAPD22	511
					Foodbook in a AMD	
	CCEADD	ICEDD5	DCMTD1	GTVDD2	Signaling	NEVDIA
AEBPI	CSF2KB	IGLRD	PUMIDI	STABP2	Signamig	ΝΓΚΟΙΑ
AGRN	2015G9.2		PCMTD2	SUILE1	Gan Junction Signaling	FTS1
	201309.2			SULFI	Prostanoid Biosynthesis	
ALDHIA3		ILIOKI	PDE4B	SINE2 TACSTD		
АМПНП?	CX3CL1	П.33	PEG10	$\frac{1}{2}$	Endothelin-1 Signaling	STAT3
ANGDT2					GP6 Signaling Pathway	NI IDP 1
ANOF 12	DDK2	INA	FIDDI	IDAASI	GPCP Mediated	NUIKI
					Urtegration of	
					Enternanda entre	
					Signating Engrandition 1 has	
	DOWA	ITCA 10	DIVADA		Signaling Exemplified by	
ANGP1L4	DGKA	IIGAI0	PIK3R3	IFAP2A	an L Cell	1 WISTI
	DUDGA			TOTA	Synaptic Long Term	MARC
ANKI	DHRSI	TIGB3	PLA2G4C	TGFA	Depression	MAFG
					Neuropathic Pain	
					Signaling In Dorsal Horn	
ANK3	DKK2	ITPR1	PLCB2	TKT	Neurons	MYB
ANKRD33	Dogue			TMEM15		
В	DOCK5	TTPR3	PLCDI	6	Dendritic Cell Maturation	KEAPI
AP3M2	DOCK8	JMJD6	PLCL1	TMOD1	Phospholipases	KDM3A
				TNFRSF1	Inhibition of Matrix	
APLNR	DPP4	KCND1	PLPP2	4	Metalloproteases	BACH1
APOB	DPYSL4	KCNN4	PLPP3	TNFSF18	Thrombin Signaling	NFE2L2
					Protein Ubiquitination	
APOL1	DYSF	KLF4	POSTN	TNS1	Pathway	HOXA10
			PPARGC1			
APOL4	EDA2R	KRT19	В	TPCN1		
AQP1	ENTPD1	LAMA2	PPP1R14A	TRIM16		
AQP3	EPS8L2	LENG9	PRDX1	TRIM16L		
ARHGEF9	ERAP1	LETMD1	PRDX6	TRIM66		
ATHL1	ERV3-1	LGALS9	PSMB9	TRPV2		
ATP2A3	EVL	LIMCH1	PTGES3	TUSC3		
B3GNT9	F2RL2	LPL	PTGIS	UPP1		

BNC1

BTN3A3

FAM129A

FBLN2

LRP1

LRRC16A

PTPRU

RAPGEF5

UQCRC2

USHBP1

C10orf10	FBN1	LYPD1	RCBTB1	VASH1
C10orf128	FKBP4	LYVE1	RNF123	VCAM1
			RP1-	
C10orf54	FKBP9	MAMDC2	152L7.5	VCAN
C14orf132	FRAS1	MAN1C1	RPSAP58	VPS13C
C1RL	GAA	MAN2B2	RRAGB	XPOT
CACYBP	GAL3ST4	ME1	SAT1	ZNF366
CALCOC				
01	GATSL3	MELTF	SCUBE3	
CAPN11	GCLM	MFAP2	SEC61G	
			SELENBP	
CARD11	GDF15	MFSD11	1	
CCDC3	GJA4	MGP	SELO	
CCND2	GJA5	MLLT11	SEMA3G	
CD24	GPR146	MMP17	SEMA7A	
CD40	HEG1	MT-CYB	SGCE	
CDH11	HHAT	MYO18A	SIAE	
CECR1	HMCN1	MYOM3	SIDT2	
CFH	HMOX1	NEAT1	SLC16A14	
CFI	HOXA9	NEFH	SLC17A9	
CHORDC1	HOXB7	NPR1	SLC35E2B	
	HSP90AA			
CKB	1	NQO1	SLC46A3	
CLDN11	HSPA12B	NUP160	SLCO2A1	
CLIP4	HSPA1A	OSGIN1	SLCO2B1	

Satta et. al.

Nrf2 as a trigger of ACS Supplementary Tables S14. AdOSGIN2 vs AdControl, Genes and top 20 canonical pathways and regulators.

Genes	Ingenuity Canonical Pathways			
HERC6	Interferon Signaling			
	Role of Lipids/Lipid Rafts in the			
HSPA6	Pathogenesis of Influenza			
IFIT1	Unfolded protein response			
IFIT3	Aldosterone Signaling in Epithelial Cells			
MX2	eNOS Signaling			
OASL	Huntington's Disease Signaling			
OSGIN2	Protein Ubiquitination Pathway			
RSAD2	Glucocorticoid Receptor Signaling			
XAF1				

Upstream Transcriptional Regulator
IRF7
STAT3
STAT1
IRF1
IRF5
IRF3
STAT2
SPI1
TRIM24
NFATC2
IRF9
MSC
BRCA1
SP100
IKZF3
SIRT1
CNOT7
SQSTM1
POU2AF1
HOXD10

Supplementary Tables S15. AdOSGIN1&2 vs AdControl, Genes and top 20 canonical pathways and regulators.

					Upstream
				Ingenuity Canonical	Transcriptional
Genes				Pathways	Regulator
	CCLM	NU ID 107		Aldosterone Signaling in	1017
AHSAI	GCLM	NUP107	TRIM16	Epithelial Cells	IRF /
	CDF15	04.01		Protein Ubiquitination	
ALDH3A2	GDF15	OASI	TRIMI6L	Pathway	HSF1
AMDHD2	HAS3	OAS2	1 RIM21	Interferon Signaling	NKX2-3
		OASI		NRF2-mediated Oxidative	
ANAPC5	HERC2	UASL	TRIM26	Stress Response	SIAII
ANCDTO	LIEDCA	OSCINI		Activation of IRF by Cylosofic	IDE5
ANGP12		OSCINI	TSDVI 2	Lufelded protein regrange	
ANKKDIU	ПГЗА	USGIN2	1 SP I L2	Role of Pettern Recognition	ІКГІ
				Role of Pattern Recognition	
A D2M2	UISTOUODE			Receptors in Recognition of Restorie and Viruses	CNOT7
AI JIVI2		1411A1	OBC	Pole of PIG1 like Pecentors in	
APOL 6	HMOX1	ΡΔΗΔ2	LIBE2L6	Antiviral Innate Immunity	TRIM24
ATE3	Ηςρούα α 1	PACS1	UOCRC2	eNOS Signaling	IRF3
AIIS		TACSI		Glucocorticoid Receptor	
ATXN2	HSP90AB1	PARP14	UTP3	Signaling	STAT2
				Aryl Hydrocarbon Receptor	511112
B3GAT3	HSPA1A	PARP9	VPS13C	Signaling	STAT3
2001110				Pathogenesis of Multiple	
BAG3	HSPA1B	PATL1	WDR59	Sclerosis	IRF9
				Hypoxia Signaling in the	
BANF1	HSPA4	PAXBP1	XAF1	Cardiovascular System	SPI1
				Huntington's Disease	
BATF2	HSPA6	PIGQ	ZC3H7A	Signaling	PML
BRIP1	HSPA8	PLAUR	ZDHHC6	Choline Biosynthesis III	BRCA1
				Primary Immunodeficiency	
C19orf66	HSPB1	PLD1	ZFAND2A	Signaling	SIRT1
				Xenobiotic Metabolism	
C22orf29	HSPB8	PLEKHB2	ZNF207	Signaling	IRF2
				Mitotic Roles of Polo-Like	
C3orf52	HSPD1	PLSCR1	ZNF622	Kinase	NFE2L2
				IL-17A Signaling in Gastric	
CACYBP	HSPE1	PMAIP1		Cells	FBXW7
CBARP	HSPH1	PPCS		Coenzyme A Biosynthesis	TP53
CHD1L	IER5L	PPP1R18			
CHKA	IFI35	PRDX1			
CHORDCI	IFI44L	PRPF38B			
CLIP4	IFIHI	PIGES3			
CPNE8	IFITI	RCBTBI			
CRYAB	IFIT2	KFC3			
CRYZ	IFIT3	KNF123			
DDX58		KNF19B			
DDX60		KSAD2			
DDX60L	IL/K	KSKPI			
DEDD2	IKF /	SAMD9			

DFNA5	ISG15	SAMD9L	
DHRS1	ITPR3	SBDSP1	
DHRS11	JMJD6	SEC61G	
DHX58	KRIT1	SELO	
DNAJA1	LGALS8	SERPINH1	
DNAJA4	LUC7L3	SESTD1	
DNAJB1	LY6E	SLC15A3	
DNAJB6	MED12	SLC35E2B	
DTX3L	MFSD11	SLC37A1	
EEF2K	MICB	SMARCC2	
EIF2AK2	MLKL	SNX3	
EPSTI1	MLLT11	SP110	
ESCO2	MRPL18	SPATS2L	
EVI2B	MSX1	SQSTM1	
EVL	MX1	STIP1	
FKBP4	MX2	SYNE2	
FTL	NAPG	TAP1	
GBP1	NDRG1	TGFA	
GCH1	NQO1	TKT	

Figure S14. ESSTC and OSGIN1&2 coregulated genes: a) Genes significantly regulated under conditions of ESSTC (compared to ESS >2-fold change, p adj <0.05) and OSGIN1/2 (compared to virus control, >1.5-fold change, p adj < 0.05). B) neighbor network analysis was carried out using cytoscape. ATF3 was observed to be the gene regulator of GDF15 and HSP70 (HSPA1A).

Supplementary Tables S16, Genes significantly regulated under conditions of ESSTC (compared to ESS >2 -fold change, p adj <0.05) and OSGIN1/2 (compared to virus control, >1.5-fold change, p adj < 0.05)

Upregulated Ger	nes		
	GDF15		ΙΝΙΔ
		GCIM	
		RAC2	
			VPDC
		FUSLI	BSGAIS
	IVISX1	SHPI	TIVIEIVI156
DINAJA4	UBC UBC	FKBP4	DNAJB6
AKRIBIU	ISPYL2	AHSA1	CACYBP
OSGIN1	HSPA1B	HSPH1	MRPL18
CDKN1A	СЕВРВ	SPATS2L	PLEKHB2
DNAJB1	FAM46A	RNF19B	ULBP2
Downregulated §	genes		
TGFB2	ABCA8	ADCY4	GJA4
PECR	VCAN	OPRL1	IGFBP5
CDC25C	ALCAM	СКВ	CAPN11
ANKRD35	PLD1	EEF2K	MAMDC2
ANXA2P1	LIMCH1	NPPC	VIPR1
PLCB2	PALM	EVL	ACP5
SHMT1	ARHGEF6	ACAD11	GJA4
PIK3IP1	FABP4	AQP1	IGFBP5
DHRS11	CROT	CCND2	CAPN11
DDR2	CAND2	APLN	MAMDC2
RGS5	ABCA6	CAPN11	VIPR1
ABCA7	ASAP3	MAMDC2	ACP5
ITPR3	SLC14A1	VIPR1	GJA4
GRB14	LYPD1	ACP5	IGFBP5
RGS11	FGFR3		

Figure S15, GFD15 regulation. A) Transcriptomic evaluation of GDF15 in HCAECs cultured under oscillatory (OSS), laminar (LSS) and elevated (ESS) shear stress on HCAECs treated with control, 3 doses of 5ng/ml TNF α (T), 3 doses of 10%CSE (C) or the combination of TNF α and CSE (TC), n=3 per condition, as described in Fig 1A. ESSTC significantly increased compared to ESS control (adj p = 1.2E-06). B) comparison of the effect of smoking on GDF15 levels in ACS patient serum combining both plaque rupture and plaque erosion patients.

Figure S16: a) Immunocytochemical analysis indicated loss of focal adhesions, stress fibres and tubulin (n=3; P<0.05, P<0.01 and P<0.001), LAMP1 accumulation around nuclei was reported. b) GABARAPL1 (in AdOSGIN1 and AdOSGIN1+2) and ATG7 (AdOSGIN1+2) gene expression level increased compared to AdCTRL *P<0.05.

Figure S17. Images of HCAECs treated with chloroquine (150 μ M), bafilomycin (50nM), or OSGIN1&2 overexpression induced comparable, non-synergistic detachment (mean \pm SD, two-way ANOVA, **P<0.01, ***P<0.001 v AdCTRL, n=4) corresponding to the analysis presented in Fig 7C in the main text.

RESCUE EXPERIMENT

Figure S18: Confluent layer of ECs was seeded on a six-well plate. Adenoviral overexpression (AdCTRL, AdOSGIN1+2, and AdNRF2 was carried out. Following adenoviral transfection, EC were flowed on orbital shaker (210rpm, 3ml) in combination with DMSO, Metformin, and VER-155008) for 72hrs. (See quantification Figure 5E main text)

Figure S19. Comparison of different normalisation techniques. Because of the change in cell size, depth (and therefore assumed volume) and increase in number of nuclei per cell (Figures S14c,d; S15; S16), we calculated cell detachment as % coverage (Figure 5E main text). We repeated the analysis of detachment using by A) DNA quantification ^{2, 16, 17} or B) protein content of the cell lysate. These gave equivalent result as presented in Figure 5E. OSGIN1+2 or Nrf2-mediated cell detachment was reduced by co-treatment with Ver155008 (15 μ M), or Metformin (100 μ M); (*P<0.05, **P<0.01, ***P<0.001, n=3, Two-way ANOVA).

Figure S20. HSP70 quantification in serum of ACS serum. A) No significant differences were observed between patients with OCT-defined plaque rupture (PR) and plaque erosion (PE). B) subgroup analysis of PR and PE in non-smokers (NS) and smokers (S), indicating a significant difference between PR and PE only in smokers. C) comparison between smokers and non-smokers between PR and PE groups didn't observe a significant interaction. D) There was no overall effect of smoking on HSP70 levels in ACS patients.

Total Protein

Figure S21: a) Overexpression of OSGINs was evaluated through western blotting. b) PARP cleavage antibody didn't show any cleave of the PARP protein confirming it was no apoptotic pathway related. c) Total protein (e) quantification was used to determine p62 and HSP70 accumulation

Satta et. al. Nrf2 as a trigger of ACS

AdOSQN1-2

Addial

AdOSGN3-2

NC N 214U

Add3011/2

ACTIN

Figure S22: Rescue experiment was carried on orbital shaker using Metformin and VER155008. Following orbital shaker experiment ECs were lysate and total protein (d) quantification was used to determine (a)p62, (b)HSP70 and (c)LAMP1(western blotting analysis).

References

- 1. Warboys CM, Berson RE, Mann GE, Pearson JD, Weinberg PD. Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules. *Am. J. Physiol.-Heart Circul. Physiol.* 2010;298:H1850-H1856
- 2. Hazell GGJ, Peachey AMG, Teasdale JE, Sala-Newby GB, Angelini GD, Newby AC, White SJ. Pi16 is a shear stress and inflammation-regulated inhibitor of mmp2. *Scientific reports*. 2016;6:39553
- Pelossof R, Fairchild L, Huang C-H, Widmer C, Sreedharan VT, Sinha N, Lai D-Y, Guan Y, Premsrirut PK, Tschaharganeh DF, Hoffmann T, Thapar V, Xiang Q, Garippa RJ, Rätsch G, Zuber J, Lowe SW, Leslie CS, Fellmann C. Prediction of potent shrnas with a sequential classification algorithm. *Nature Biotechnology*. 2017;35:350-353
- 4. Betancur J, Yoda M, Tomari Y. Mirna-like duplexes as rnai triggers with improved specificity. Frontiers in Genetics. 2012;3
- 5. Andrews S. Fastqc a quality control tool for high throughput sequence data. 2018;2018
- 6. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for illumina sequence data. *Bioinformatics*. 2014;30:2114-2120
- 7. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. Star: Ultrafast universal rna-seq aligner. *Bioinformatics*. 2013;29:15-21
- 8. R:CoreTeam. R: A language and environment for statistical computing. *R Foundation for Statistical Computing, Vienna, Austria.* 2014
- 9. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of rna-seq data using factor analysis of control genes or samples. *Nat Biotechnol.* 2014;32:896-902
- 10. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. *Genome Biol.* 2014;15:550
- 11. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B. Gplots: Various r programming tools for plotting data. 2016
- 12. Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. *Bioinformatics*. 2014;30:523-530
- 13. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, Kato K, Yonetsu T, Vergallo R, Hu S, Tian J, Lee H, Park S-J, Jang Y-S, Raffel OC, Mizuno K, Uemura S, Itoh T, Kakuta T, Choi S-Y, Dauerman HL, Prasad A, Toma C, McNulty I, Zhang S, Yu B, Fuster V, Narula J, Virmani R, Jang I-K. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. *Journal of the American College of Cardiology*. 2013;62:10.1016/j.jacc.2013.1005.1071
- 14. Ajime TT, Serré J, Wüst RCI, Messa GAM, Poffé C, Swaminathan A, Maes K, Janssens W, Troosters T, Degens H, Gayan-Ramirez G. Two weeks of smoking cessation reverse cigarette smoke-induced skeletal muscle atrophy and mitochondrial dysfunction in mice. *Nicotine & Tobacco Research*. 2020
- 15. Teasdale JE, Newby AC, Timpson NJ, Munafo MR, White SJ. Cigarette smoke but not electronic cigarette aerosol activates a stress response in human coronary artery endothelial cells in culture. *Drug Alcohol Depend.* 2016;163:256-260
- 16. White S, Hayes E, Lehoux S, Jeremy J, Horrevoets A, Newby A. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. *J. Cell. Physiol.* 2011;226:2841 2848
- 17. Teasdale JE, Hazell GGJ, Peachey AMG, Sala-Newby GB, Hindmarch CCT, McKay TR, Bond M, Newby AC, White SJ. Cigarette smoke extract profoundly suppresses tnfα-mediated proinflammatory gene expression through upregulation of atf3 in human coronary artery endothelial cells. *Scientific reports*. 2017;7:39945