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Figure S1. Rheological data of G’ and G” as a function of angular frequency for PVA/TA  /PAA hydrogel ink.
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Figure S2. The water content of various mass ratios of PVA/TA/PAA hydrogel ink.
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Figure S3. (A) Mechanical properties of various ratios of printed hydrogel inks. (B) Optical photograph mechanical property of printed PVA/TA ,/PAA
hydrogel.
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Figure S4. Strain-stress curves of bulk and printed PVA/TA, /PAA hydrogel ink.
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Figure S5. Photographs of printed PVA/TA  /PAA hydrogel self-healing hydrogel. Scale bar: 7 mm.
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Figure $6. Strain-stress curves of bulk PVA/TA /PAA hydrogel ink with varying pH conditions and temperature.

Table S1. A comparison table of recently reported multi-functional hydrogels for bioelectronics.

Material Strength/kPa Elongation/%  Self-healing ability ~ Printability Conductivity Ref
2-ureido-4[1H]-pyrimid-  Not reported 670 Yes Resolution of ~1.2 mm 13 S/m and GF “]
inone (UPy) and polyani- but not 3D-printed of3.4
line/poly(4-styrenesulfon-
ate) (PANI/PSS)
Cassava starch, boric-acid, 1010 1500 Yes (=72% efficiency 3D printable GF of 2.027 @
and rubber latex in 90 min) (resolution was not
reported)
Halloysite nanotube 140-560 30,000 Yes (=99% efficiency  Resolution of ~1.5 mm 0.005-0.01 S/m 3l
(HNT), polydopamine ina360s) nozzle and 3D printable and
(PDA), PVA, and ferric GF of 2.6
ions (Fe**)
PANI and PAA with 500-2000 500 Yes (=99% efficiency ~ Not reported 12 S/m (GF was 1l
phytic acid ina24h) not reported)
PVA, TA, PAA,and CNT  45.6 650 Yes (=86% efficiency  Resolution of ~100 um 0.3-1S/mand GF  This work
ina300s) and 3D printable of 4.457
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Figure S7. Rheological property of (A) viscosity as a function of shear rate. (B) Storage modulus (G’) and loss modulus (G”) as a function of temperature.
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Figure S8. Printability of PVA/TA  /PAA/CNT hydrogel ink. (A) 2D-printing performance of various shapes through 400-, 200-, and 100-um diameter
nozzles. (B) 3D-printed hydrogel by stacked structure.
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Figure $9. (A) Photographs of bulk PVA/TA, /PAA/CNT hydrogel self-healing hydrogel (scale bar: 7 mm). (B) Strain-stress curves of PVA/TA  /PAA
hydrogel and PVA/TA, /PAA/CNT hydrogel ink after self-healing for 180 s.
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Figure $10. Photographs of PVA/TA/PAA hydrogel adhesion on porcine skin.
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Figure S11. (A) Fluorescent images of in vitro biocompatibility test after 1, 3, and 5 days. (B) The percentage of cell viability of in vitro biocompatibility test
of the hydrogel (ns: no significant differences; n = 3; n is the sample size for each group).
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