Supplementary Information for:

Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy

Tianqun Lang^{1,2,#}, Runqi Zhu^{1,3,#}, Xiao Zhu^{1,3}, Wenlu Yan^{1,3}, Yu Li⁴, Yihui Zhai^{1,3}, Ting Wu⁵, Xin Huang^{1,3}, Qi Yin^{1,2,3}*, Yaping Li^{1,2,3,4,6}*

- ¹ State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- ² Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- ³ University of Chinese Academy of Sciences, Beijing 100049, China
- ⁴ School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- ⁵ Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
- ⁶ Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- [#] These authors contributed equally: Tianqun Lang, Runqi Zhu

[*] Corresponding authors: Prof. Qi Yin (qyin@simm.ac.cn); Prof. Yaping Li (ypli@simm.ac.cn); Tel/Fax: +86-21-2023-1979.

Supplementary Figure 1. Synthesis and structure confirmation of Sxy and Scap. a,
The diagram of the synthesis of Sxy and Scap. b, The ¹H NMR spectra of Sxy and Scap.
c, The MALDI-TOF-MS spectra of Sxy and Scap.

Supplementary Figure 2. Hydrolysis of Scap. **a**, The spectra of Scap after or before incubation with lipase, Cap, and Cap+Scap mixture detected by HPLC. **b**, The spectra of liver extracts taken from the mice at 30 min, 1 h, and 2 h post oral administration with Scap. The Cap solution mixed with the liver extract from the untreated mice was detected as control.

Supplementary Figure 3. In vivo bioluminescence imaging of CT26-luc tumorbearing mice receiving mutli-dose of different formulations. n = 6 mice.

Supplementary Figure 4. The variation of relative tumor volumes in the CT26-luc tumor-bearing mice calculated according to the photons amount detected by IVIS during the therapy period. Data are shown as mean \pm SD. n equals to the number of surviving mice in each group, of which the maximum value is 6. On day 15, n = 3 for Saline, Xylan and Sxy group, n = 4 for Cap and Scap group, n = 5 for Xylan+Cap group; On day 20, n=1 for Saline, Xylan, Sxy, Cap and Scap group, n = 3 for Xylan+Cap and Sxy+Scap group, n=5 for SCXN group. For all of other points, n = 6. Source data are provided as a Source Data file.

Supplementary Figure 5. The variation of average body weights of the CT26-luc tumor-bearing mice during the therapy period. Data are shown as mean \pm SD. n equals to the number of surviving mice in each group, of which the maximum value is 6. On day 15, n = 3 for Saline, Xylan and Sxy group, n = 4 for Cap and Scap group, n = 5 for Xylan+Cap group; On day 20, n=1 for Saline, Xylan, Sxy, Cap and Scap group, n = 3 for Xylan+Cap and Sxy+Scap group, n=5 for SCXN group. For all of other points, n = 6. Source data are provided as a Source Data file.

Supplementary Figure 6. The variation of average tumor volumes in the MC38 tumorbearing mice during the therapy period. Data are shown as mean \pm SD (n = 6 mice). Source data are provided as a Source Data file.

Supplementary Figure 7. The variation of average body weights of the MC38 tumorbearing mice during the therapy period. Data are shown as mean \pm SD (n = 6 mice). Source data are provided as a Source Data file.

Supplementary Figure 8. The variation of body weight of each MC38 tumor-bearing mouse during the therapy period. n = 6 mice. Source data are provided as a Source Data file.

Supplementary Figure 9. The gating strategy for CD11c⁺ cells in the draining lymph nodes of the CT26 tumor-bearing mice.

Supplementary Figure 10. The gating strategy for CD3⁺ and CD4⁺ cells in the tumors of the CT26 tumor-bearing mice.

Supplementary Figure 11. The relative abundance at the class level of the intestine microbial community in CT-26 tumor-bearing mice receiving multi-dose of different formulations. **a**, **b**, Barplot (a) and heatmap (b) of samples from individual mice. **c**, **d**, Barplot (c) and heatmap (d) of samples from each group. n = 5 mice. Source data are provided as a Source Data file.

Supplementary Figure 12. The relative abundance at the family level of the intestine microbial community in CT-26 tumor-bearing mice receiving multi-dose of different formulations. **a**, **b**, Barplot (a) and heatmap (b) of samples from individual mice. **c**, Barplot of samples from each group. n = 5 mice. Source data are provided as a Source Data file.

Supplementary Figure 13. The relative abundance at the genus level of the intestine microbial community in CT-26 tumor-bearing mice receiving multi-dose of different formulations. Heatmap (a) and barplot (b) of samples from individual mice. n = 5 mice. Source data are provided as a Source Data file.

Supplementary Figure 14. Heatmap showing average relative abundance of the intestine microbial community at the genus level in CT-26 tumor-bearing mice receiving multi-dose of different formulations. n = 5 mice. Source data are provided as a Source Data file.

Supplementary Figure 15. SCFA levels in the faeces from individual CT-26 tumorbearing mice receiving multi-dose of different formulations. n = 5 mice. Source data are provided as a Source Data file.

Parameter	Cap	SCXN
C_{max} (µg mL ⁻¹)	2.90±0.25	4.19±0.36
T _{1/2} (h)	2.48±0.09	6.78±1.08
$MRT_{(0-\infty)}(h)$	3.59±0.25	7.94±0.33
$AUC_{(0-t)}(h \cdot \mu g m L^{-1})$	9.98±0.92	22.45±1.30
$AUC_{(0-\infty)}(h\cdot \mu g m L^{-1})$	10.44±0.90	24.11±1.06
Plasma clearance (mL h ⁻¹ kg ⁻¹)	64.10±5.82	27.68±1.53

Supplementary Table 1. Pharmacokinetic parameters of Cap in mice after orally administrated with free Cap and SCXN at the dose of 100 mg kg⁻¹ Cap. n = 3 mice.

Supplementary Table 2. Hematological parameters of the blood collected from mice treated with multi-dose of saline, xylan, Sxy, Cap, Scap, xylan+Cap, Sxy+Scap, or SCXN. n = 3 mice.

Group	RBC	WBC	PLT	GRAN	RDW	MCV
	[10 ¹² L ⁻¹] ^a	[10 ⁹ L ⁻¹] ^b	[10 ⁹ L ⁻¹] ^c	[10 ⁹ L ⁻¹] ^d	[%] ^e	[fL] ^f
Saline	6.52±0.55	3.43±1.10	446.33±78.49	1.00±0.29	14.40±0.46	49.00±1.41
Xylan	6.84±0.32	3.93±2.21	409.00±58.39	0.87 ± 0.09	15.77±2.28	46.43±1.19
Sxy	8.02±0.51	4.50±0.43	595.00±104.10	1.17±0.09	14.80±0.75	48.17±1.17
Cap	5.95±0.81	3.73±1.43	624.67±246.29	0.77±0.45	17.20±4.86	45.77±5.78
Scap	5.77±1.49	2.37±1.05	402.33±153.02	1.03±0.45	15.57±1.32	47.10±2.26
Xylan+Cap	7.42±0.27	2.30±0.53	429.67±57.57	0.8±0.1	21.03±9.59	44.60±6.18
Sxy+Scap	7.52±0.38	4.30±1.18	402.33±114.75	1.23±0.35	17.70±5.34	47.10±6.93
SCXN	8.05±0.25	4.20±0.69	571.33±108.15	1.20±0.40	14.40±0.51	49.73±0.71

a: red blood cells;

b: white blood cells;

c: platelets;

d: granulocytes

e: red cell distribution width;

f: mean corpuscular volume.