#### 1 Supplementary Information for

# Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide

4

<sup>†</sup> These authors contributed equally, \*Corresponding Authors: amy.hahs@unimelb.edu.au;
bertrand.fournier@uni-potsdam.de; johan.kotze@helsinki.fi; marco.moretti@wsl.ch

7

Authors: Amy K. Hahs<sup>†\*1</sup>, Bertrand Fournier<sup>†\*2</sup>, Myla F. J. Aronson<sup>3</sup>, Charles H. Nilon<sup>4</sup>, 8 Adriana Herrera-Montes<sup>5</sup>, Allyson B. Salisbury<sup>6</sup>, Caragh G. Threlfall<sup>7,8</sup>, Christine C. Rega-9 Brodsky<sup>9</sup>, Christopher A. Lepczyk<sup>10</sup>, Frank A. La Sorte<sup>11</sup>, Ian MacGregor-Fors<sup>12</sup>, J. Scott 10 MacIvor<sup>13</sup>, Kirsten Jung<sup>14</sup>, Max R. Piana<sup>15</sup>, Nicholas S.G. Williams<sup>1</sup>, Sonja Knapp<sup>16,17,18</sup>, 11 Alan Vergnes<sup>19</sup>, Aldemar A. Acevedo<sup>20</sup>, Alison M. Gainsbury<sup>21</sup>, Ana Rainho<sup>22</sup>, Andrew J. 12 Hamer<sup>23</sup>, Assaf Shwartz<sup>24</sup>, Christian C. Voigt<sup>25</sup>, Daniel Lewanzik<sup>25</sup>, David M. Lowenstein<sup>26</sup>, 13 David O'Brien<sup>27</sup>, Desiree Tommasi<sup>28</sup>, Eduardo Pineda<sup>29</sup>, Ela Sita Carpenter<sup>30</sup>, Elena 14 Belskava<sup>31</sup>, Gábor L. Lövei<sup>32,33</sup>, James C. Makinson<sup>34</sup>, Joanna L. Coleman<sup>35</sup>, Jon P. Sadler<sup>36</sup>, 15 Jordan Shroyer<sup>4</sup>, Julie Teresa Shapiro<sup>37</sup>, Katherine C. R. Baldock<sup>38,39,40</sup>, Kelly Ksiazek-16 Mikenas<sup>41</sup>, Kevin C. Matteson<sup>42</sup>, Kyle Barrett<sup>43</sup>, Lizette Siles<sup>44</sup>, Luis F. Aguirre<sup>45</sup>, Luis 17 Orlando Armesto<sup>46</sup>, Marcin Zalewski<sup>47</sup>, Maria Isabel Herrera-Montes<sup>48</sup>, Martin K. Obrist<sup>49</sup>, 18 Rebecca K. Tonietto<sup>50</sup>, Sara A. Gagné<sup>51</sup>, Sarah J. Hinners<sup>52</sup>, Tanya Latty<sup>53</sup>, Thilina D. 19 Surasinghe<sup>54</sup>, Thomas Sattler<sup>55</sup>, Tibor Magura<sup>56,33</sup>, Werner Ulrich<sup>57</sup>, Zoltan Elek<sup>58</sup>, Jennifer 20 Castañeda-Oviedo<sup>59</sup>, Ricardo Torrado<sup>60</sup>, D. Johan Kotze<sup>†\*,12</sup>, Marco Moretti<sup>†\*,61</sup> 21 22

| 24 | Institutes: <sup>1</sup> School of Agriculture, Food and Ecosystem Sciences, The University of                     |
|----|--------------------------------------------------------------------------------------------------------------------|
| 25 | Melbourne, Burnley Campus 500 Yarra Blvd, Richmond 3121 VIC Australia; <sup>2</sup> Institute of                   |
| 26 | Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25,                            |
| 27 | 14476 Potsdam, Germany; <sup>3</sup> Department of Ecology, Evolution and Natural Resources,                       |
| 28 | Rutgers, The State University of New Jersey, New Brunswick, NJ 08816 USA; <sup>4</sup> School of                   |
| 29 | Natural Resources, University of Missouri, Columbia, MO 65211 USA; <sup>5</sup> Department of                      |
| 30 | Environmental Science, College of Natural Sciences, University of Puerto Rico, San Juan,                           |
| 31 | Puerto Rico; <sup>6</sup> The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532, USA; <sup>7</sup> School  |
| 32 | of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006,                                    |
| 33 | Australia; <sup>8</sup> School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;             |
| 34 | <sup>9</sup> School of Science and Mathematics, Pittsburg State University, Pittsburg, KS 66762 USA;               |
| 35 | <sup>10</sup> School of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849,                   |
| 36 | USA; <sup>11</sup> Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850 USA; <sup>12</sup> Faculty of |
| 37 | Biological and Environmental Sciences, Ecosystems and Environment Research Programme,                              |
| 38 | University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland; <sup>13</sup> Department of Biological            |
| 39 | Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4,                                |
| 40 | Canada; <sup>14</sup> Institute of Evolutionary Ecology and Conservation Genomics, Ulm University,                 |
| 41 | Albert-Einstein-Allee 11, 89069 Ulm, Germany; <sup>15</sup> USDA Forest Service, Northern Research                 |
| 42 | Station, Amherst, MA 01002 USA; <sup>16</sup> Helmholtz Centre for Environmental Research – UFZ,                   |
| 43 | Department of Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany;                              |
| 44 | <sup>17</sup> German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße           |
| 45 | 4, 04103 Leipzig, Germany; <sup>18</sup> Technische Universität Berlin, Department of Plant Ecology,               |
| 46 | Rothenburgstraße 12, 12165 Berlin, Germany; <sup>19</sup> CEFE, Univ Montpellier, CNRS, EPHE,                      |
| 47 | IRD, Univ Paul Valéry Montpellier 3, Montpellier, France; <sup>20</sup> Departamento de Ciencias                   |
| 48 | Ecológicas, Facultad de Ciencias, Laboratorio de Genética y Evolución, Universidad de Chile,                       |

| 49 | Las Palmeras 3425, Ñuñoa, Santiago, Chile; <sup>21</sup> University of South Florida, St. Petersburg      |
|----|-----------------------------------------------------------------------------------------------------------|
| 50 | Campus, Department of Integrative Biology, St. Petersburg, FL, 33701, USA; <sup>22</sup> cE3c – Centre    |
| 51 | for Ecology, Evolution and Environmental Changes at the Dept. of Animal Biology, Faculty                  |
| 52 | of Sciences, Univ. of Lisbon, Lisboa, Portugal; <sup>23</sup> Institute of Aquatic Ecology, Centre for    |
| 53 | Ecological Research, Karolina u. 29, 1113 Budapest, Hungary; <sup>24</sup> Faculty of Architecture and    |
| 54 | Town Planning, Technion – Israel Institute of Technology, Haifa, 32000, Israel; <sup>25</sup> Dept. of    |
| 55 | Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str.                |
| 56 | 17, 10315 Berlin, Germany; <sup>26</sup> Michigan State University Extension, Macomb County, 21885        |
| 57 | Dunham Rd - Suite 12, Clinton Twp, MI 48036, USA; <sup>27</sup> Scottish Natural Heritage                 |
| 58 | (NatureScot), Great Glen House, Inverness, IV3 8NW, UK; <sup>28</sup> Institute of Marine Sciences,       |
| 59 | University of California Santa Cruz, Santa Cruz, CA 95064, USA; <sup>29</sup> Red de Biología y           |
| 60 | Conservación de Vertebrados. Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351,                |
| 61 | Xalapa, 91073, Mexico; <sup>30</sup> U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177     |
| 62 | Admiral Cochrane Dr. Annapolis, MD 21401, USA; <sup>31</sup> Institute of Plant and Animal Ecology,       |
| 63 | Ural Branch, Russian Academy of Sciences, Eighth March Street 202, Yekaterinburg 620144,                  |
| 64 | Russia; <sup>32</sup> Department of Agroecology, Aarhus University, Flakkebjerg Research Centre, DK-      |
| 65 | 4200 Slagelse, Denmark; <sup>33</sup> ELKH-DE Anthropocene Ecology Research Group, University of          |
| 66 | Debrecen, H-4032 Debrecen, Egyetem square 1, Hungary; <sup>34</sup> Hawkesbury Institute for the          |
| 67 | Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia;                   |
| 68 | <sup>35</sup> Queens College at the City University of New York, Flushing NY USA; <sup>36</sup> School of |
| 69 | Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston,                         |
| 70 | Birmingham B15 2TT, UK; <sup>37</sup> University of Lyon, French Agency for Food, Environmental           |
| 71 | and Occupational Health & Safety (ANSES), Laboratory of Lyon, 31 Avenue Tony Garnier,                     |
| 72 | 69364, Lyon Cedex 07, France; <sup>38</sup> Department of Geography and Environmental Sciences,           |
| 73 | Northumbria University, Newcastle upon Tyne, UK; <sup>39</sup> School of Biological Sciences,             |

| 74 | University of Bristol, Bristol, UK; <sup>40</sup> Cabot Institute, University of Bristol, Bristol, UK;        |
|----|---------------------------------------------------------------------------------------------------------------|
| 75 | <sup>41</sup> Department of Biology, Elmhurst University, Elmhurst, IL 60126 USA; <sup>42</sup> Department of |
| 76 | Biology/Project Dragonfly, Miami University, Oxford, OH, USA; <sup>43</sup> Department of Forestry            |
| 77 | and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC                            |
| 78 | 29631, USA; <sup>44</sup> Área de Mastozoología, Museo de Historia Natural Alcide d'Orbigny.                  |
| 79 | Avenida Potosí 1458, Cochabamba. Cochabamba, Bolivia; <sup>45</sup> Centro de Biodiversidad y                 |
| 80 | Genética, Universidad Mayor de San Simón, c Sucre, frente Parque La Torre s/n,                                |
| 81 | Cochabamba, Bolivia; <sup>46</sup> Tecnoacademia, CEDRUM, Servicio Nacional de Aprendizaje                    |
| 82 | (SENA), Cúcuta, Colombia; <sup>47</sup> Museum and Institute of Zoology of the Polish Academy of              |
| 83 | Sciences, Wilcza 64, Warsaw 00-679, Poland; <sup>48</sup> Grupo de Ecologia Animal, Universidad del           |
| 84 | Valle, Cali, Colombia; <sup>49</sup> Swiss Federal Institute for Forest, Snow and Landscape Research          |
| 85 | WSL, Biodiversity and Conservation Biology, CH-8903 Birmensdorf, Switzerland;                                 |
| 86 | <sup>50</sup> Department of Natural Sciences, University of Michigan-Flint, 303 E Kearsley St., Flint,        |
| 87 | Michigan, 48502, USA; <sup>51</sup> University of North Carolina at Charlotte, 9201 University City           |
| 88 | Blvd., Charlotte, North Carolina, USA, 28223; <sup>52</sup> Department of City and Metropolitan               |
| 89 | Planning, University of Utah, Salt Lake City, Utah, USA; <sup>53</sup> Sydney Institute of Agriculture,       |
| 90 | School of Life and Environmental Sciences; University of Sydney, Sydney, Australia;                           |
| 91 | <sup>54</sup> Department of Biological Sciences, Bridgewater State University, Bridgewater, MA 02325,         |
| 92 | USA; <sup>55</sup> Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach, Switzerland;                   |
| 93 | <sup>56</sup> Department of Ecology, Faculty of Science and Technology, University of Debrecen, H-            |
| 94 | 4032 Debrecen, Egyetem square 1., Hungary; <sup>57</sup> Department of Ecology and Biogeography,              |
| 95 | Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; <sup>58</sup> Centre for                     |
| 96 | Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Herman                     |
| 97 | Ottó út 15, Budapest 1022, Hungary; <sup>59</sup> Grupo de Investigación en Ecología y Biogeografía,          |
| 98 | Universidad de Pamplona, Pamplona, Colombia; <sup>60</sup> Secretaría de Educación del Municipio de           |

| 99  | Cúcuta, Cúcuta, Colombia; <sup>61</sup> Swiss Federal Research Institute WSL, Biodiversity and |
|-----|------------------------------------------------------------------------------------------------|
| 100 | Conservation Biology, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland                        |

102

#### **103 Table of Contents**

- 104 Supplementary Fig. 1: Global distribution of data included in this study
- 105 Supplementary Fig. 2: Additional information about functional diversity indices
- 106 Supplementary Fig. 3: Species accumulation curves for each taxonomic group
- 107 Supplementary Fig. 4: Correlations of diversity metrics across taxonomic groups
- 108 Supplementary Fig. 5: Correlations among environmental variables
- 109 Supplementary Table 1: Summary of the dataset used in the analyses
- 110 Supplementary Table 2: Summary of number of cities with different numbers of taxa sampled
- 111 Supplementary Table 3: Additional information about traits
- 112 Supplementary Table 4: Detailed description of Amphibian traits.
- 113 Supplementary Table 5: Detailed description of **Bat** traits.
- 114 Supplementary Table 6: Detailed description of Bee traits.
- 115 Supplementary Table 7: Detailed description of Bird traits.
- 116 Supplementary Table 8: Detailed description of Carabid beetle traits.
- 117 Supplementary Table 9: Detailed description of Reptile traits.
- 118 Supplementary Table 10: Factor loadings on global climate PCA axes
- 119 Supplementary References



120

Supplementary Fig. 1: Global distribution of data included in this study. Locations of cities 121 (orange dots) with sampling plots for each taxonomic group individually. All data come from 122 the UrBioNet contributor network except for birds (eBird). Image credits: Ghedo and T. 123 Michael Keesey (https://creativecommons.org/licenses/by-sa/3.0/) for the reptile. Michael 124 Keesey (vectorization); Thorsten Assmann, Jörn Buse, Claudia Drees, Ariel-Leib-Leonid 125 Friedman, Tal Levanony, Andrea Matern, Anika Timm, and David W. Wrase (photography) 126 (https://creativecommons.org/licenses/by/3.0) for the carabid beetle. All other silhouette 127 images come from www.phylopic.org and are public domain images. 128



Supplementary Fig. 2. Additional information about functional diversity indices. Expected 132 responses of functional richness (FRic), functional evenness (FEve) and functional dispersion 133 (FDis) to increased urbanisation. Functional richness is expected to decrease as a result of the 134 loss of some functional groups (environmental filtering). Functional evenness is expected to 135 increase as a result of increased competition for more scarce resources (competitive exclusion 136 of functionally similar species). Functional dispersion is expected to decrease because increased 137 138 urbanisation is expected to select for generalist species with broad environmental tolerances (species close to the centroid). The right column provides a short definition of each index. 139



*Supplementary Fig. 3.* Species accumulation curves for each taxonomic group. These curves
were used to estimate the total number of species present in the global species pool
(extrapolated species richness in the species pool based on bootstrap resampling). Grey areas

- 146 represent the variability in species richness estimates ( $\pm 2$  standard deviation).
- 147

| Functional | metric correlogi  | ram (pooled)      |                   |                   |                   |                   |                   |                    |                   |                   |                   |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|
| richness   | shannon           | FDis              | FDrao             | FD_q2             | FDis.mFD          | TOP               | FRic.mFD          | TED                | FEve.Villegier    | FEve.mFD          | FEve.Ricotta      |
|            | Corr:<br>0.782*** | Corr:<br>0.358*** | Corr:<br>0.383*** | Corr:<br>0.509*** | Corr:<br>0.111*** | Corr:<br>0.558*** | Corr:<br>0.321*** | Corr:<br>-0.100*** | Corr:<br>-0.033   | Corr:<br>-0.007   | Corr:<br>0.179*** |
| F.         | ·h                | Corr:<br>0.686*** | Corr:<br>0.688*** | Corr:<br>0.824*** | Corr:<br>0.311*** | Corr:<br>0.641*** | Corr:<br>0.436*** | Corr:<br>-0.279*** | Corr:<br>0.075*   | Corr:<br>0.086**  | Corr:<br>0.469*** |
|            | <b>.</b>          | h                 | Corr:<br>0.981*** | Corr:<br>0.913*** | Corr:<br>0.924*** | Corr:<br>0.471*** | Corr:<br>0.551*** | Corr:<br>-0.359*** | Corr:<br>0.193*** | Corr:<br>0.168*** | Corr:<br>0.193*** |
| in.        | -                 | J                 | h                 | Corr:<br>0.907*** | Corr:<br>0.904*** | Corr:<br>0.481*** | Corr:<br>0.605*** | Corr:<br>-0.352*** | Corr:<br>0.191*** | Corr:<br>0.167*** | Corr:<br>0.181*** |
| <b>P</b>   |                   | J                 | V                 | h                 | Corr:<br>0.726*** | Corr:<br>0.552*** | Corr:<br>0.469*** | Corr:<br>-0.285*** | Corr:<br>0.327*** | Corr:<br>0.324*** | Corr:<br>0.456*** |
|            |                   | K                 | 1                 |                   | $\bigwedge$       | Corr:<br>0.238*** | Corr:<br>0.632*** | Corr:<br>-0.118*** | Corr:<br>0.198*** | Corr:<br>0.181*** | Corr:<br>0.176*** |
|            |                   | <u>Î.</u>         |                   |                   |                   |                   | Corr:<br>0.458*** | Corr:<br>-0.175*** | Corr:<br>0.003    | Corr:<br>-0.009   | Corr:<br>0.171*** |
|            |                   |                   |                   |                   |                   |                   |                   | Corr:<br>-0.147*** | Corr:<br>0.021    | Corr:<br>0.026    | Corr:<br>0.042    |
|            |                   |                   | initise           | in the second     | identicity of     | )<br>)<br>)       | ing and the       |                    | Corr:<br>0.084**  | Corr:<br>0.077*   | Corr:<br>0.211*** |
| tor .      |                   |                   |                   |                   |                   | ie                |                   |                    | $\bigwedge$       | Corr:<br>0.701*** | Corr:<br>0.305*** |
|            |                   |                   |                   |                   |                   |                   |                   |                    |                   | $\bigwedge$       | Corr:<br>0.256*** |
| ter .      |                   |                   |                   |                   |                   |                   |                   |                    |                   |                   | $\sim$            |



149 Supplementary Fig. 4. Correlations of diversity metrics across taxonomic groups. For each 150 taxonomic group, 300 sites were randomly chosen and pooled to ensure that each group 151 contributes equally to this analysis. For each functional diversity facet of interest, we selected 152 the metric showing the lowest correlations to species richness (functional dispersion = 153 FDis\_mFD, richness = FRic\_mFD, evenness = FEve\_mFD). Stars indicate significant 154 correlations (\* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001).

| (A)              | Urban (%) 100 | Urban (agg) 100 | Urban (%) 500 | Urban (agg) 500 | Forest (%) 100 | Forest (agg) 100 | Forest (%) 500 | Forest (agg) 500 | latitude | Climate PC1 | Climate PC2 | Climate PC3 | Climate PC4 | (B)               | Urban (%) 1000 | Urban (agg) 1000 | Forest (%) 1000 | Forest (agg) 1000 | latitude | Climate PC1 | Climate PC2 | Climate PC3 | Climate PC4 |     |     |
|------------------|---------------|-----------------|---------------|-----------------|----------------|------------------|----------------|------------------|----------|-------------|-------------|-------------|-------------|-------------------|----------------|------------------|-----------------|-------------------|----------|-------------|-------------|-------------|-------------|-----|-----|
| Urban (%) 100    | 1.00          | 0.18            | 0.90          | 0.38            | -0.24          | -0.13            | -0.26          | -0.21            | -0.07    | -0.10       | -0.12       | -0.04       | -0.06       | Urban (%) 1000    | 1.00           | 0.80             | -0.42           | -0.25             | -0.12    | -0.10       | -0.10       | -0.04       | 0.00        |     |     |
| Urban (agg) 100  | 0.18          | 1.00            | 0.10          | 0.34            | -0.09          | -0.06            | -0.10          | -0.07            | -0.05    | -0.03       | -0.08       | -0.07       | 0.00        |                   |                |                  |                 |                   |          |             |             |             |             |     |     |
| Urban (%) 500    | 0.90          | 0.10            | 1.00          | 0.40            | -0.26          | -0.14            | -0.27          | -0.22            | -0.08    | -0.09       | -0.11       | -0.06       | -0.08       | Urban (agg) 1000  | 0.80           | 1.00             | -0.34           | -0.15             | -0.08    | -0.09       | -0.14       | -0.05       | -0.01       |     |     |
| Urban (agg) 500  | 0.38          | 0.34            | 0.40          | 1.00            | -0.17          | -0.11            | -0.18          | -0.13            | -0.15    | -0.10       | -0.12       | -0.20       | 0.03        | Forest (%) 1000   | -0.42          | -0.34            | 1.00            | 0.51              | 0.10     | -0.13       | -0.29       | 0.18        | -0.13       | 1   |     |
| Forest (%) 100   | -0.24         | -0.09           | -0.26         | -0.17           | 1.00           | 0.50             | 0.88           | 0.65             | 0.20     | 0.11        | 0.07        | 0.12        | 0.01        | Entert (and) 1000 | -0.25          | -0.45            | 0.54            | 1.00              | 0.00     | -0.01       | -0.40       | 0.04        | -0.04       | - 0 | 5   |
| Forest (agg) 100 | -0.13         | -0.06           | -0.14         | -0.11           | 0.50           | 1.00             | 0.42           | 0.45             | 0.13     | 0.11        | 0.08        | 0.06        | 0.01        | Forest (agg) 1000 | -0.25          | -0.15            | 0.51            | 1.00              | 0.09     | -0.01       | -0.10       | 0.04        | -0.04       |     | .0  |
| Forest (%) 500   | -0.26         | -0.10           | -0.27         | -0.18           | 0.88           | 0.42             | 1.00           | 0.72             | 0.19     | 0.11        | 0.09        | 0.10        | 0.03        | latitude          | -0.12          | -0.08            | 0.10            | 0.09              | 1.00     | 0.44        | 0.08        | 0.31        | -0.08       | 0   |     |
| Forest (agg) 500 | -0.21         | -0.07           | -0.22         | -0.13           | 0.65           | 0.45             | 0.72           | 1.00             | 0.22     | 0.17        | 0.12        | 0.10        | 0.03        | Climate PC1       | -0.10          | -0.09            | -0.13           | -0.01             | 0.44     | 1.00        | 0.66        | 0.22        | -0.19       |     | 0.5 |
| latitude         | -0.07         | -0.05           | -0.08         | -0.15           | 0.20           | 0.13             | 0.19           | 0.22             | 1.00     | 0.45        | 0.18        | 0.44        | 0.14        | Cilinate I CI     |                | 0.00             | 0.10            | 0.01              |          |             |             |             |             |     | 0.0 |
| Climate PC1      | -0.10         | -0.03           | -0.09         | -0.10           | 0.11           | 0.11             | 0.11           | 0.17             | 0.45     | 1.00        | 0.79        | 0.16        | -0.06       | Climate PC2       | -0.10          | -0.14            | -0.29           | -0.10             | 0.08     | 0.66        | 1.00        | -0.34       | 0.23        | -   | 1   |
| Climate PC2      | -0.12         | -0.08           | -0.11         | -0.12           | 0.07           | 0.08             | 0.09           | 0.12             | 0.18     | 0.79        | 1.00        | -0.19       | 0.26        | Climate PC3       | -0.04          | -0.05            | 0.18            | 0.04              | 0.31     | 0.22        | -0.34       | 1.00        | -0.40       |     |     |
| Climate PC3      | -0.04         | -0.07           | -0.06         | -0.20           | 0.12           | 0.06             | 0.10           | 0.10             | 0.44     | 0.16        | -0.19       | 1.00        | -0.23       |                   |                |                  |                 |                   |          |             |             |             |             |     |     |
| Climate PC4      | -0.06         | 0.00            | -0.08         | 0.03            | 0.01           | 0.01             | 0.03           | 0.03             | 0.14     | -0.06       | 0.26        | -0.23       | 1.00        | Climate PC4       | 0.00           | -0.01            | -0.13           | -0.04             | -0.08    | -0.19       | 0.23        | -0.40       | 1.00        |     |     |

157

*Supplementary Fig. 5:* Correlations among environmental variables. A = all taxa except
birds; B = birds. Correlations between predictors are relatively low between urban land cover,

160 forest land cover, latitude, and climate while being relatively high between percent cover and

aggregation, as well as among different scales. Blue = positive correlations; Red = negative

162 correlations. Bolded values indicate significant correlations (p < 0.05).

163

*Supplementary Table 1:* Summary of the dataset used in the analyses and whether the data
were compiled from directly contributed datasets, or e-Bird. The geographical distribution of

| 167 | the sampling plot | ts for each | taxonomic | group is s | shown in | Fig. 1 | l and Suppl | ementary F | Fig. 1 |  |
|-----|-------------------|-------------|-----------|------------|----------|--------|-------------|------------|--------|--|
|-----|-------------------|-------------|-----------|------------|----------|--------|-------------|------------|--------|--|

| Taxa       | N. Plots | N. Cities | N. Species | Source                       |
|------------|----------|-----------|------------|------------------------------|
| Amphibians | 1 202    | 191       | 140        | UrBioNet contributor network |
|            |          |           |            |                              |
| Bats       | 540      | 43        | 84         | UrBioNet contributor network |
| Bees       | 471      | 25        | 486        | UrBioNet contributor network |
| Birds      | 68 558   | 177       | 4 167      | e-Bird                       |
| Carabids   | 882      | 17        | 327        | UrBioNet contributor network |
| Reptiles   | 324      | 71        | 98         | UrBioNet contributor network |

168

Supplementary Table 2: Summary of number of cities with different numbers of taxa sampled.
For example, only one city has been sampled for 5 taxa (Melbourne, Australia), and 3 cities
have been sampled for 4 taxa (Lugano, Luzern and Zürich, Switzerland). The geographical
distribution of the sampling plots for each taxonomic group is shown in Fig. 1 and
Supplementary Fig. 1.

| Number Taxa Sampled in the City | Number of Cities |
|---------------------------------|------------------|
| 1                               | 254              |
| 2                               | 109              |
| 3                               | 12               |
| 4                               | 3                |
| 5                               | 1                |

.

175 Supplementary Table 3: Information about the evaluated traits presented in Fig. 2 of the 176 manuscript. Specific traits are presented here but have not been shown in Fig. 2 of the 177 manuscript. Further information around these traits and the data sources used for each 178 individual taxonomic group can be found in Supplementary Tables 4-9.

| Taxonomic<br>group | Body size                            | Feeding                                             | Mobility                                                       | Reproductive<br>Strategy                                    | Specific traits                                                                                                                                               |
|--------------------|--------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amphibians         | Body<br>length<br>[cm]               | Diet breadth<br>(specialist=0;<br>generalist=1)     | Movement<br>Distances<br>(reduced=0;<br>moderate=1;<br>high=2) | Clutch size<br>(0=small; 1 =<br>intermediate;<br>2=large)   | Aquatic habitat<br>affinity index<br>(0=low;1=medium;<br>2=high)                                                                                              |
| Bats               | Forearm<br>length<br>[mm]            | Hunting strategy<br>(gleaning=1;<br>others=0)       | Aspect ratio                                                   | Roosting<br>requirements<br>(specialist=0;<br>generalist=1) | Wing loading (nb) /<br>Echolocation (kHz) /<br>Dispersal strategy<br>(mobility in open<br>habitats=1; others=0)                                               |
| Bees               | Inter-<br>tegula<br>distance<br>[mm] | Tongue length<br>(short tongue=1; long<br>tongue=0) | Inter-tegula<br>distance [mm]                                  | Sociality (Solitary<br>=1; other=0)                         | Nesting strategy<br>(Below ground<br>(Below ground =1;<br>others=0) / Above<br>ground (Above<br>ground =1; others=0) /<br>Parasite (Parasite=1;<br>others=0)) |

| Birds    | Body mass | Trophic niche        | Hand-wing index   | Clutch size      | Foraging strata index  |
|----------|-----------|----------------------|-------------------|------------------|------------------------|
|          | [g]       | (omnivorous=1;       |                   | (number of eggs) | (Habitat [0=aquatic;   |
|          |           | others=0 / Fruit-    |                   |                  | 1=terrestrial;         |
|          |           | nectar=1; others=0 / |                   |                  | 2=aerial]; Aquatic [0- |
|          |           | Invertebrate=1;      |                   |                  | 2]; Terrestrial [0-4], |
|          |           | others=0 / Plant-    |                   |                  | Aerial [0-1])          |
|          |           | seed=1; others=0 /   |                   |                  |                        |
|          |           | Vertebrates-         |                   |                  |                        |
|          |           | scavenger =1;        |                   |                  |                        |
|          |           | others=0)            |                   |                  |                        |
|          |           |                      |                   |                  |                        |
| Carabids | Body      | Trophic guild        | Wing              | Overwintering    | Abiotic tolerance      |
|          | length    | (Herbivore=1;        | morphology        | strategy (imago  | (0=hygro-; 1=meso-;    |
|          | [cm]      | others=0, Carnivore= | (0=brachypterous; | hibernator=1;    | 2=xerophilous)         |
|          |           | 1; others=0,         | 1=dimorphic;      | others=0)        |                        |
|          |           | Omnivore=1;          | 2=macropterous)   |                  |                        |
|          |           | others=0)            |                   |                  |                        |
|          |           |                      |                   |                  |                        |
| Reptiles | Body      | Diet breadth         | Movement          | Clutch size      | Aquatic habitat        |
|          | length    | (specialist=0,       | distances         | (0=small; 1 =    | affinity index         |
|          | [cm]      | generalist=1)        | (reduced=0;       | intermediate;    | (0=low;1=medium;       |
|          |           |                      | moderate=1;       | 2=large)         | 2=high)                |
|          |           |                      | high=2)           |                  |                        |
|          |           |                      |                   |                  |                        |

| 181 Supple | ementary Table 4 | : Detailed | description | of Amphibian | traits. |
|------------|------------------|------------|-------------|--------------|---------|
|------------|------------------|------------|-------------|--------------|---------|

| Trait                 | Description and unit                                                                                                                                                                                                                                                                                                                                                                       | Trait type                                 | Sources                                                                                                                                  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| D 1 '                 |                                                                                                                                                                                                                                                                                                                                                                                            |                                            | D 1 ( 1 2011)                                                                                                                            |
| Body size<br>Mobility | <ul> <li>Mean body length (in cm) from the tip of the snout to the most posterior opening of the cloacal slit, snout– vent length (SVL). In the case of salamanders, total length measurements include body and tail.</li> <li>Mobility. Three categories: reduced (≤ 100 m), moderate (101 – 1000 m), and high (&gt; 1000 m) levels of mobility in relation to regional pools.</li> </ul> | Continuous<br>Semi-continuous (0,<br>1, 2) | Baker et al. 2011 <sup>1</sup><br>Beebee &<br>Griffiths 2000 <sup>2</sup><br>Frost 2021 <sup>3</sup><br>Lips et al.<br>2003 <sup>4</sup> |
| Reproductive          | <b>Clutch size.</b> Three categories: small clutches ( $\leq 20$ eggs), medium (21 – 300 eggs), and large (> 300 eggs).                                                                                                                                                                                                                                                                    | Semi-continuous (0, 1, 2)                  | Stevens et al. 2014 <sup>5</sup><br>Trochet et al. 2014 <sup>6</sup>                                                                     |
| Feeding               | <b>Diet.</b> Two categories: specialists (those who ingest 1-2 food types), and generalists (consuming 3 or more food types). When this information is not available, use mouth size as a proxy of feeding traits, with larger mouths representing generalist species and smaller mouths representing specialists.                                                                         | Semi-continuous (0,<br>1)                  | amphibiaweb.org<br>animaldiversity.org<br>iucnredlist.org<br>research.amnh.org                                                           |
| Taxon specific        | Aquatic index. Three categories: exclusively<br>terrestrial, occupying ponds or multiple habitats, or<br>exclusively riparian.                                                                                                                                                                                                                                                             | Semi-continuous (0, 1, 2)                  | Expert knowledge for<br>single species scarcely<br>documented.                                                                           |

## *Supplementary Table 5:* Detailed description of **Bat** traits.

| Trait          | Description and unit                                              | Trait type        | Sources                            |
|----------------|-------------------------------------------------------------------|-------------------|------------------------------------|
| Body size      | Forearm length (in mm)                                            | Continuous        | Denzinger & Schnitzler             |
| Mobility       | Aspect ratio: the <b>ratio of wing span to wing area</b> . Higher | Continuous        | 2013/                              |
|                | aspect ratio enables fast, but less manoeuvrable flight.          |                   | Jung & Threlfall 2018 <sup>8</sup> |
| Reproductive   | Bats were grouped into species specialized on certain             | Categorical       |                                    |
| strategy       | roosting requirements (e.g., caves, foliage) or those that        |                   | Expert knowledge for               |
|                | are flexible in their choice of roosting sites.                   |                   | single species scarcely            |
| Feeding        | Species were classified as those catching aerial insects in       | Categorical       | documented.                        |
|                | flight (aerial hunters) and others, which include                 |                   |                                    |
|                | gleaning prey from surfaces or the vegetation (gleaning),         |                   |                                    |
|                | or perch hunting (the latter two categories were not              |                   |                                    |
|                | abundant enough to keep separate and hence were merged            |                   |                                    |
|                | for analysis).                                                    |                   |                                    |
| Taxon specific | Wing loading: wing area per body mass                             | Continuous        |                                    |
|                | Echolocation (kHz): frequency of maximum amplitude or             | Continuous        |                                    |
|                | characteristic frequency (in the case of zero-cross-based         | Categorical (0,1) |                                    |
|                | recordings, i.e. Anabat recording systems) of echolocation        |                   |                                    |
|                | calls.                                                            |                   |                                    |
|                | Habitat preference classified as foraging in open                 |                   |                                    |
|                | habitats, or edge or cluttered habitats. The latter two were      |                   |                                    |
|                | grouped due to insufficient numbers of species. The two           |                   |                                    |
|                | categories were: foraging in open space=1; and others=0           |                   |                                    |
|                | (clutter, edge space).                                            |                   |                                    |

## *Supplementary Table 6:* Detailed description of **Bee** traits.

| Trait          | Description and unit                                                      | Trait type  | Sources                             |
|----------------|---------------------------------------------------------------------------|-------------|-------------------------------------|
| 17444          |                                                                           | Truit type  | Sources                             |
| Body size      | Body size was given using the <b>inter-tegula distance</b> , ITD          | Continuous  | Hinners et al. 2012 <sup>9</sup>    |
|                | (in mm), given the two measures are highly correlated.                    |             | Normandin et al. $2017^{10}$        |
|                | ITD is the space between the two tegulae, which are the                   |             |                                     |
|                | insertion points for each forewing. ITD measurements                      |             | Threlfall et al. 2015 <sup>11</sup> |
|                | were obtained from the authors of each study, and are                     |             | Cariveau et al. 2016 <sup>12</sup>  |
|                | usually measured using an ocular micrometer or handheld                   |             |                                     |
|                | calipers.                                                                 |             |                                     |
| A. 1. 11.      |                                                                           |             | Expert knowledge for                |
| Mobility       | Inter-tegula distance, 11D (mm) as above.                                 | Continuous  | single species scarcely             |
| Reproductive   | Sociality was used as a proxy for reproductive strategy                   | Categorical | documented.                         |
| strategy       | since it integrates several reproduction features (e.g.,                  |             |                                     |
|                | number of brood cells, gender organisation etc.). We                      |             |                                     |
|                | classified sociality as 'solitary' and 'other', where the                 |             |                                     |
|                | latter included eusocial, primitively-social or semi-social.              |             |                                     |
|                |                                                                           |             |                                     |
| Feeding        | <b>Tongue length</b> , categorised as short or long mouthparts.           | Categorical |                                     |
|                | If species data were missing, tongue length was estimated                 |             |                                     |
|                | using bee family and inter-tegula distance as per Cariveau                |             |                                     |
|                | et al. (2016) <sup>12</sup> , and subsequently assigned as short or long. |             |                                     |
| Taxon specific | Bees use a diversity of nesting locations or substrates,                  | Categorical | -                                   |
|                | some of which can be heavily impacted upon by features                    |             |                                     |
|                | of the urban environment. To simplify across the various                  |             |                                     |
|                | nesting strategies that have been documented (Michener                    |             |                                     |
|                | $2000^{13}$ ) we classified species to the following:                     |             |                                     |
|                | Below ground (Below ground=1; others=0) Above ground                      |             |                                     |
|                | (Above ground=1; others=0) Parasite (Parasite=1;                          |             |                                     |
|                | others=0)                                                                 |             |                                     |
|                |                                                                           |             |                                     |

## *Supplementary Table 7:* Detailed description of **Bird** traits.

| Trait          | Description and unit                                                         | Trait type     | Sources                          |
|----------------|------------------------------------------------------------------------------|----------------|----------------------------------|
| Body size      | Geometric mean of <b>body mass</b> average values for both                   | Continuous     | Jetz et al. 2008 <sup>14</sup>   |
|                | sexes [in g].                                                                |                | Sheard et al. 2020 <sup>15</sup> |
| Mobility       | Hand-wing index, ratio of the difference between wing                        | Continuous     | Wilman et al. 2014 <sup>16</sup> |
|                | length (from carpal joint to tip of longest primary feather)                 |                |                                  |
|                | and secondary length (from carpal join to tip of $1^{st}$                    |                |                                  |
|                | secondary feather) by wing length [(wl-sl)/wl].                              |                |                                  |
| Reproductive   | Clutch size [average number of laid eggs per nest].                          | Continuous     | -                                |
| strategy       |                                                                              |                |                                  |
| Feeding        | Categorical <b>diet</b> assigned based on the dominant among five            | Categorical    | -                                |
|                | diet categories, based in the summed scores of individual                    |                |                                  |
|                | diets [fruit-nectar (e.g., fruits, drupes, nectar, pollen, plant             |                |                                  |
|                | exudates, gums), invertebrates (e.g., shrimp, krill,                         |                |                                  |
|                | crustaceans, molluscs, cephalopods, gastropods, insects,                     |                |                                  |
|                | worms, etc.), plant-seed (e.g., seeds, nuts, grains, and other               |                |                                  |
|                | plant materials not included in fruit-nectar), vertebrates-                  |                |                                  |
|                | scavenger (e.g., vertebrates, carrion, garbage, etc.),                       |                |                                  |
|                | omnivorous (score of $\leq$ 50 of all specific categories)].                 |                |                                  |
| Taxon specific | <b>Foraging strata index</b> . <i>Habitat</i> [0=aquatic; 1=terrestrial;     | Semi-          | -                                |
|                | 2=aerial] = (below surface + around surface) + 2*(ground +                   | continuous and |                                  |
|                | understory + mid high + canopy) + 3*(aerial);                                | categorical    |                                  |
|                | Aquatic: $[0 = \text{does not forage in aquatic systems}, 1 = \text{forage}$ |                |                                  |
|                | on or just below water surface ( $<12.7$ cm), 2 = forage below               |                |                                  |
|                | water surfaces] = below surface + 2*around surface;                          |                |                                  |
|                | Terrestrial [0=does not feed in terrestrial systems, 1=feed                  |                |                                  |
|                | on the ground, 2=feeds on the understory below 2 m,                          |                |                                  |
|                | 3=feeds between 2 m and tree canopy, 4=feeds in the tree                     |                |                                  |

| canopy] = ground + 2* understory + 3 * mid high + 4          |  |
|--------------------------------------------------------------|--|
| *canopy.                                                     |  |
| Aerial [0=does not feed well above vegetation or any         |  |
| structures, 1=feed well above vegetation or any structures]. |  |

### *Supplementary Table 8*: Detailed description of Carabid beetle traits.

| Trait             | Description and unit                                                                     | Trait type                   | Sources                                                                               |
|-------------------|------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|
| Body size         | Mean <b>body length</b> from the tip of the head to the tip of the abdomen (in mm)       | continuous                   | Klaiber et al. 2017 <sup>17</sup><br>Lindroth 1985 <sup>18</sup> , 1986 <sup>19</sup> |
| Feeding           | Trophic guild. Three categories: <i>herbivore</i> , <i>carnivore</i> , <i>omnivore</i> . | Categorical (0=no,<br>1=yes) | carabids.org                                                                          |
| Mobility          | Hind wing development. Three categories:                                                 | Semi-continuous (0,          |                                                                                       |
|                   | brachypterous (short-winged or wingless), dimorphic                                      | 1, 2)                        |                                                                                       |
|                   | (short and long-winged individuals present in the same                                   |                              |                                                                                       |
|                   | species), macropterous (long-winged).                                                    |                              |                                                                                       |
|                   |                                                                                          |                              |                                                                                       |
| Reproductive      | Overwintering strategy. Two categories: spring                                           | categorical (y/n)            |                                                                                       |
| strategy          | breeder (imago/adult hibernators, these species                                          |                              |                                                                                       |
|                   | reproduce in the spring to early summer, their larvae                                    |                              |                                                                                       |
|                   | develop in the summer and a new adult generation                                         |                              |                                                                                       |
|                   | appears in the autumn, with these adults                                                 |                              |                                                                                       |
|                   | overwintering); autumn breeder (larval hibernators -                                     |                              |                                                                                       |
|                   | these species reproduce in the summer or autumn and                                      |                              |                                                                                       |
|                   | overwinter as larvae).                                                                   |                              |                                                                                       |
|                   |                                                                                          |                              |                                                                                       |
| Taxon specific:   | Tolerance to drought conditions. Three categories:                                       | Semi-continuous (0,          |                                                                                       |
| Drought tolerance | hygrophilic (wetness preference), mesophlic                                              | 1, 2)                        |                                                                                       |
|                   | (intermediate preference) and xerophilic (drought                                        |                              |                                                                                       |
|                   | preference).                                                                             |                              |                                                                                       |
|                   |                                                                                          |                              |                                                                                       |

| 107 | Sunnlomontary | Table 9. | Detailed | description | of <b>Rentile</b> | traite |
|-----|---------------|----------|----------|-------------|-------------------|--------|
| 197 | Supplementary | Tuble 9. | Detalleu | description | of Kepule         | trans. |

| Trait           | Description and unit                                                  | Trait type          | Sources                          |
|-----------------|-----------------------------------------------------------------------|---------------------|----------------------------------|
| Body size       | Total <b>body length</b> for lizards, snakes, and crocodiles.         | continuous          | Stevens et al. 2014 <sup>5</sup> |
|                 | <b>Carapace length</b> for turtles (in cm).                           |                     | reptile-database.org             |
| Mobility        | <b>Mobility.</b> Three categories: $0$ =reduced ( $\leq 100$ m),      | Semi-continuous (0, | animaldiversity.org              |
|                 | 1=moderate (101 - 1000 m), and 2=high (> 1000 m)                      | 1, 2)               |                                  |
|                 | levels of mobility in relation to their year-round                    |                     | iucnredlist.org                  |
|                 | activities.                                                           |                     | research.amnh.org                |
| Reproductive    | <b>Clutch size.</b> Three categories: $0=$ small clutches ( $\leq 20$ | Semi-continuous (0, |                                  |
| strategy        | eggs), 1=medium (21 – 100 eggs), and 2=large (> 100                   | 1, 2)               | Evenue in availada a far         |
|                 | eggs).                                                                |                     | Expert knowledge for             |
|                 |                                                                       |                     | single species scarcely          |
| Feeding         | <b>Diet.</b> Two categories: specialists (those who ingest 1-2        | Semi-continuous (0, | documented.                      |
|                 | food types), and generalists (consuming 3 or more food                | 1)                  |                                  |
|                 | types). When this information is not available, use                   |                     |                                  |
|                 | mouth size as a proxy of feeding traits, with larger                  |                     |                                  |
|                 | mouths representing generalist species and                            |                     |                                  |
|                 | smaller mouths representing specialists.                              |                     |                                  |
| Taxon specific: | Aquatic index. Three categories: 0=exclusively                        | Semi-continuous (0, |                                  |
|                 | terrestrial, 1=occupying ponds or multiple habitats, or               | 1, 2)               |                                  |
|                 | 3=exclusively riparian.                                               |                     |                                  |
|                 |                                                                       |                     |                                  |

*Supplementary Table 10*: Factor loadings on global climate PCA axes. Only the first four axes

that were retained for further analyses are shown. PC1 = cold-warm temperature; PC2 = broad

- 203 (e.g. deserts) narrow diurnal range (e.g. tropics); PC3 = high-low variability of temperatures;
- PC4 = high-low seasonality of precipitation.

|                                            | PC1 (55%) | PC2 (19%) | PC3 (9%) | PC4 (6%) |
|--------------------------------------------|-----------|-----------|----------|----------|
| clim01: Annual Mean Temperature            | -0.284    | 0.197     | 0.049    | -0.063   |
| clim02: Mean Diurnal Range                 | -0.137    | 0.401     | 0.084    | 0.009    |
| clim03: Isothermality                      | -0.270    | 0.032     | -0.264   | -0.007   |
| clim04: Temperature Seasonality            | 0.223     | 0.096     | 0.479    | 0.125    |
| clim05: Max Temperature of Warmest         |           |           |          |          |
| Month                                      | -0.253    | 0.267     | 0.185    | -0.031   |
| clim06: Min Temperature of Coldest Month   | -0.296    | 0.121     | -0.089   | -0.094   |
| clim07: Temperature Annual Range           | 0.174     | 0.216     | 0.512    | 0.141    |
| clim08: Mean Temperature of Wettest        |           |           |          |          |
| Quarter                                    | -0.248    | 0.223     | 0.235    | 0.055    |
| clim09: Mean Temperature of Driest Quarter | -0.271    | 0.150     | -0.140   | -0.152   |
| clim10: Mean Temperature of Warmest        |           |           |          |          |
| Quarter                                    | -0.259    | 0.249     | 0.180    | -0.037   |
| clim11: Mean Temperature of Coldest        |           |           |          |          |
| Quarter                                    | -0.294    | 0.141     | -0.084   | -0.082   |
| clim12: Annual Precipitation               | -0.249    | -0.281    | 0.092    | 0.151    |
| clim13: Precipitation of Wettest Month     | -0.245    | -0.193    | 0.014    | 0.370    |
| clim14: Precipitation of Driest Month      | -0.163    | -0.325    | 0.269    | -0.239   |
| clim15: Precipitation Seasonality          | 0.030     | 0.150     | -0.200   | 0.677    |
| clim16: Precipitation of Wettest Quarter   | -0.246    | -0.198    | 0.016    | 0.362    |
| clim17: Precipitation of Driest Quarter    | -0.166    | -0.327    | 0.265    | -0.234   |
| clim18: Precipitation of Warmest Quarter   | -0.192    | -0.205    | 0.287    | 0.237    |
| clim19: Precipitation of Coldest Quarter   | -0.185    | -0.266    | 0.001    | 0.015    |

#### 208 Supplementary References

- Baker, J. *et al. Amphibian habitat management handbook*. Amphibian and Reptile
   Conservation, Bournemouth, vol. 39. (2011)
- Beebee, T. J. C. & Griffiths, R. A. *Amphibians and reptiles: A Natural History of the British Herpetofauna*. The new naturalist, Collins, London, p. 45–56. (2000)
- 3. Frost, D. R. Amphibian species of the world: an online reference, version 5.4.
  American Museum of Natural
  History. http://research.amnh.org/vz/herpetology/amphibia. (2021)
- 4. Lips, K. R., Reeve, J. D., & Witters, L. R. Ecological traits predicting amphibian population declines in Central America. *Conserv. Biol.* 17(4), 1078-1088. (2003).
- 5. Stevens, V. M. *et al.* A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. *Ecol. Lett.* 17, 1039–1052. (2014)
- 220 6. Trochet, A. *et al.* A database of life-history traits of European amphibians. *Biodiver*.
  221 *Data J.* 2. (2014)
- 7. Denzinger, A. & Schnitzler, H. U. Bat guilds, a concept to classify the highly diverse
  foraging and echolocation behaviors of microchiropteran bats. *Front. Physiol.* 4, 164.
  (2013)
- 8. Jung, K. & Threlfall, C. G. Trait-dependent tolerance of bats to urbanization: a global
  meta-analysis. *Proc Roy. Soc. B*, 285(1885), p. 20181222. (2018)
- 9. Hinners, S. J., Kearns, C. A. & Wessman, C. A. Roles of scale, matrix, and native
  habitat in supporting a diverse suburban pollinator assemblage. *Ecolog. Applic.* 22, 1923–1935. (2012)
- 10. Normandin, E. *et al.* Taxonomic and functional trait diversity of wild bees in different
   urban settings. *PeerJ* 5, e3051. (2017)
- 11. Threlfall, C. G. *et al.* The conservation value of urban green space habitats for
  Australian native bee communities. *Biolog. Conserv.* 187, 240–248. (2015)
- 234 12. Cariveau, D. P. *et al.* The allometry of bee proboscis length and its uses in ecology.
   235 *PloS one*, **11**, e0151482. (2016)
- 13. Michener, C. D. *The bees of the world*. Johns Hopkins University Press, Baltimore.,
   MD. (2000)
- 14. Jetz, W., Sekercioglu, C.H.& Böhning-Gaese, K. The worldwide variation in avian
  clutch size across species and space. *PLoS biology*, 6, e303. (2008)
- 240 15. Sheard, C. *et al.* Ecological drivers of global gradients in avian dispersal inferred from
  241 wing morphology. *Nat. Commun.* 11, 2463. (2020)
- 16. Wilman, H. *et al.* EltonTraits 1.0: Species-level foraging attributes of the world's birds
  and mammals: Ecological Archives E095-178. *Ecology*, **95**, 2027. (2014)
- 17. Klaiber, J. et al. Fauna Indicativa. WSL Berichte 54 : 198 S. (2017)

- 18. Lindroth, C. H. *The Carabidae (Coleoptera) of Fennoscandia and Denmark*. Fauna
  Entomologica Scandinavica 15, part 1. Scandinavian Science Press Ltd, Copenhagen,
  Denmark. Brill Archive (1). (1985)
- 248 19. Lindroth, C. H. *The Carabidae (Coleoptera) of Fennoscandia and Denmark*. Fauna
  249 Entomologica Scandinavica 15, part 2. Scandinavian Science Press Ltd, Copenhagen,
  250 Denmark. Brill Archive (1). (1986)