20230405201350841085309659541504



10

11

12

13

14

Balancing adipocyte production and lipid metabolism to treat

diabetes-associated obesity with a novel proteoglycan from

Ganoderma lucidum

YingXin Wang !, Fanzhen Yu !, Xinru Zheng ?]iaqi Li!, Zeng Zhang %,
1
Qiangian Zhang !, Jieying Chen !, Yanming He >, Hongjie Yang >* and Ping

Zhou ",

! State Key Laboratory of Molecular Engineering of Polymers, Department of

Macromolecular Science, Fudan University, Shanghai 200433, China

2 Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,

Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China

* Correspondence to: pingzhou@fudan.edu.cn (P.Z.), Tel/Fax: +86-21-31244038;

yanghongjie1964 @aliyun.com (H.Y.); heyanming176@163.com (Y.H.)




15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Abstract

Obesity is often accompanied by metabolic disorder and insulin resistance, resulting in
type 2 diabetes. Based on previous findings, FYGL, a natural hyperbranched
proteoglycan extracted from the G. lucidum fruiting body, can decrease blood glucose

and reduce body weight in diabetic mice. In this article, the underlying mechanism of

FYGL in ameliorating diabetes-associated obesity was further estigated both in vivo
and in vitro. FYGL upregulated expression of metabolic genes related to fatty acid
biosynthesis, fatty acid B-oxidation and thermogenesis; downregulated the expression
of insulin resistance-related genes; and significantly increased the number of beige
adipocytes in db/db mice. In addition, FYGL inhibited preadipocyte differentiation of
3T3-L1 cells by increasing the expression of FABP-4. FYGL not only promoted fatty
acid synthesis but also more significantly promoted triglyceride degradation and
metabolism by activating the AMPK signalling pathway, therefore preventing fat
accumulation, balancing adipocyte production and lipid metabolism, and regulating

metabolic disorders and unhealthy obesity. F¥GL could be used as a promising

pharmacological agent for the treatment of metabolic disorder-related obesity.

Keywords: metabolic disorder; obesity; diabetes; Ganoderma lucidum; adipocytes;

lipid metabolism; 3T3-L1; AMPKa signalling pathway
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Introduction

Type 2 diabetes mellitus (T2DM) is a chronic degenerative disease, and 60% of T2DM

patients are obese as a result of metabolic disorder and insulin resistance as well as

impaired energy homoeostasis [1-6]. Adipose tissues play an important role in surplus

energy storage and energy metabolism [7]. Adipose tissue comprises white adipose

tissue (WAT) and brown or beige adipose tissue (BAT). WAT mainly functions to store

fat in the form of lipid droplets and secrete adipokines to regulate the metabolism of
tissues such as muscle and liver tissues [8]. BAT mainly functions to dissipate excess
energy through thermogenesis to maintain a stable body weight, and it secretes many
batokines to affect the physiology of a variety of organ systems and tissues, such as the

liver, heart and muscle [9,10]. Accumulating evidence has suggested that a high ratio

of white to beige adipocytes is associated with insulin resistance [3,5].

Adipocytes are differentiated from preadipocytes; therefore, many dies have
focused on inhibiting the differentiation of preadipocytes in addition to lipid
metabolism to treat obesity [11,12]. Mesenchymal stem cells (MSCs) undergo a two-
step process to differentiate into adipocytes: MSCs first differentiate into preadipocytes,
and preadipocytes continue to differentiate into mature adipocytes [13,14]. During
adipogenesis, peroxisome proliferator-activated receptor gamma (PPARy) and
CCAAT/enhancer-binding protein o (C/EBPa) are marker proteins for preadipocytes
differentiating into mature adipocytes [15,16]. Subsequently, fatty acids are synthesized

in conjunction with the expression of acetyl-CoA carboxylase (ACCa) and fatty acid

synthase (FAS). Moreover, mature adipocytes further synthesize triglycerides, which
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aggregate to form lipid droplets [17]. In addition, the triglycerides in lipid droplets are
degraded in conjunction with e expression of adipose triglyceride lipase (ATGL),
hormone-sensitive lipase (HSL), and lipoprotein lipase (LPL) [18,19], which are
regulated by AMP-activated protein kinase o (AMPK a) signalling pathway;
thermogenesis in BAT is also regulated by this pathway [20,21]. Based on these results,
finding an effective agent to regulate metabolic disorders and alleviate diabetes-
associated obesity is very important.

Some antiobesity drugs, such as orlistat and liraglutide, have been applied
clinically in recent years [22,23]. Orlistat controls body weight by inhibiting pancreatic
lipases but has side effects, such as faecal incontinence and flatulence. [24]. Liraglutide
controls body weight by suppressing gastric emptying and food intake, increasing
satiety, and limiting nutrient absorption by increasing pancreatic f cell proliferation,
regenerating [} cells, and alleviating insulin resistance but also has side effects such as
nausea, vomiting, and diarrhoea [25]. Metformin, a first-line therapeutic agent for
diabetes, is an AMPK activator capable of increasing insulin sensitivity and decreasing
body weight, but it also has side effects such as abdominal distension, diarrhoea and
gastrointestinal intolerance [26]. In recent years, some natural medicinal plants Ewc
been used in the treatment of obesity and metabolic diseases because of their safety
[27). Hibiscus rosa-sinensis flowers were reported to be capable of decreasing obesity
by reducing adipogenesis and activating AMPK to promote fatty acid oxidation [12].
Momordica charantia extracts can activate the AMPK signalling pathway, reduce

adipogenic gene expression and peroxisome proliferator-activated receptor (PPAR)
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signalling in adipose tissue, and increase lipid oxidation in adipose tissue, thereby

reducing obesity and insulin resistance [28,29]. In addition, cannabidiol can promote

adipocyte browning for the treatment of metabolic diseases [30].

Previously, Teng et al. extracted a proteoglycan called /' YGL (Fudan-Yueyang G.
lucidum) from the fruiting body of Ganoderma lucidum, a traditional Chinese medicinal
herb used for immunoregulation, anti-inflammation, anti-diabetes and anti-
cancer[31,32]. The dominant sequence of FYGL is shown in Figure | [33,34]. FYGL is
a hyperbranched proteoglycan with a molecular weight of 2.6x10° Da and a saccharide:
protein ratio of 77:17 [33,34]. FYGL has been proven capable of decreasing fasting

1
blood glucose through inhibition of the activity of protein tyrosine phosphatase 1 B
(PTP1B), an insulin resistance receptor, both in vitro [35] and in vivo [36,37], as well
as reducing body weight in ob/ob mice [38]. However, the underlying mechanism by
which FYGL controls body weight is unknown.

In this work, the mechanism of FYGL antidiabetic associated with obesity was
investigated both in vivo and in vitro. In in vive studies, adipose tissue from db/db
diabetic mice was used to analyse % expression of genes related to fatty acid
biosynthesis and metabolism, thermogenesis, and insulin sensitivity, which are

beneficial for BAT functions. In in vitro studies, the 3T3-L1 cell line was used to

investigate the underlying mechanism by which FYGL alleviates obesity. 3T3-L1 cells
are preadipocytes and normally differentiate into mature adipocytes [39]. The effects

of FYGL on preadipocyte differentiation and mature adipocyte lipid metabolism were

investigated by multiple approaches, including analysis of protein expression in
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preadipocytes and the signalling pathways of lipid metabolism in mature adipocytes.
Materials and Methods

Materials

Fruiting bodies of G. lucidum grown in northeastern China were purchased from

Leiyunshang Pharmaceutical Co. Ltd (Shanghai, China). The preparation of FYGL was

described in previous work [36]. Dulbecco's modified Eagle's medium (DMEM), foetal

bovine serum (FBS), and penicillin/streptomycin antibiotics were purchased from

Gibco Co. Ltd (USA). 3T3-L1 cells were obtained from Procell Life Science &

Technology Co. Ltd (Wuhan, China). Fluorescein isothiocyanate (FITC), 4'.,6-

diamidino-2-phenylindole (DAPI), rhodamine-labelled phalloidin and super ECL

detection reagent were provided by Yeasen Co. Ltd (Shanghai, China). A cell counting

kit-8 (CCK-8), a modified oil red O staining kit, a bicinchoninic acid (BCA) kit,
newborn calf serum (NCS), RIPA lysis buffer, dexamethasone, 3-Isobutyl-I-
methylxanthine (IBMX), paraformaldehyde, Triton X-100, anti-rabbit IgG (H + L), and
a horseradish peroxidase (HRP)-labelled secondary antibody were purchased from
Beyotime Co. Ltd (Shanghai, China). Dimethyl sulfoxide (DMSQO) was provided by
Sigma—Aldrich (Taufkirchen, Germany). Triglyceride (TG) ay kits were obtained
from Jiancheng Bioengineering Institute (Nanjing, China). The RN Aprep pure cell kit
was acquired from TIANGEN Biotech Co. Ltd (Beijing, China). The HiScript 111 All-
in-one m SuperMix kit (#R333) and Taq Pro Universal SYBR qPCR Master Mix kit

(#Q712) were purchased from Vazyme Biotech Co. Ltd (Nanjing, China). Primary

antibodies against peroxisome proliferator-activated receptor gamma (PPAR, A11183),
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lipoprotein lipase (LPL, A16252), and p-actin (AC026) were purchased from ABclonal

Technology Co. Ltd (Wuhan, China). Primary antibodies against CCAAT/enhancer-
binding protein o (C/EBPa, ab40764), fatty acid synthase (FAS, ab128870), fatty acid
binding protein 4 (FABP-4, ab92501), adipose triglyceride lipase (ATGL, ab109251),
AMPKal (ab32047), AMPKal (phospho T183) + AMPKa2 (phospho T172) (p-
AMPKua, ab133448) were purchased from Abcam (Cambridge, MA, USA). Primary
antibodies against mone-sensitive lipase (HSL, #4107) were purchased from Cell
Signaling Technology (CST, Beverly, MA, USA).

Animal trial

All male BKS-DB (db/db) mice (4 weeks old) and wild-type BKS-DB (db/m) mice
were purchased from GemPharmatech Co. Ltd, Nanjing, China. Mice were housed in
the specific pathogen-free (SPF) Animal Experimental Center of the School of

Pharmacy, Fudan University, at a constant temperature (22 + 2 °C) on a 12 h/12 h

light/dark cycle and were provided standard od and water. All animal trials were
conducted following protocols approved by the Fudan University Institutional Animal
Care and Use Committee. Subsequent experimental procedures were erforrned
according to the method described in previous works [40,41]. ﬁice were randomly
divided into six groups (n = 12 mice per group): (1) normal group (wild-type KS mice
treated with saline); (2) control group (db/db mice treated with saline); (3) positive
control group (db/db mice eated with 225 mg/kg metformin); (4) low-dose group

(db/db mice treated with 225 mg/kg FYGL); (5) middle-dose group (db/db mice treated

with 450 mg/kg FYGL); and (6) high-dose group (db/db mice treated with 900 mg/kg
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FYGL). After 7 weeks of drug treatment, all the mice were sacrificed.
Histopathological analysis of beige adipose tissue
Beige adipose tissue (BAT) was extracted from the scapulae of db/db mice and were
fixed, sectioned, and mounted. The sections were stained with haematoxylin and eosin
(H&E) and observed by microscopy (NanoZoomer 2.0-HT, Japan). Adipocyte numbers

are shown as ratios of the adipocyte number to the area of the selected region (a

randomly selected circle with an area of 0.1 mm?) in the images.

RNA sequencing (RNA-seq) analysis of BAT

Total RNA was extracted from beige adipose tissue. A purity was checked using a
NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). RNA integrity was
assessed using the RNA Nano 6000 Assay Kit for the Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). Sequencing libraries were generated using the NEBNext®
UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) following the
manufacturer’s recommendations, and index codes were added to attribute sequences
to each sample. Clustering of the index-coded samples was performed on a cBot Cluster
Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to
the manufacturer’s instructions. After cluster generation, the library preparations were
sequenced on the Illumina NovaSeq platform, and 150 bp paired-end reads were
generated. Every group was analysed with three biological replicates. Differential
expression analyses between 0 conditions or groups (two biological replicates per

condition) were performed using the DESeq2 R package (1.16.1). Genes with an

adjusted P value of < 0.05 determined by DESeq2 were considered differentially
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expressed. Gene Ontology (GO) enrichment analysis of the differentially expressed
genes was implemented in the cluster Profiler R package, in which gene length bias was
corrected. GO terms with a corrected P value of less than 0.05 were considered
significantly enriched with differentially expressed genes. The clusterProfiler R
package was used to test the statistical enrichment of the differentially expressed genes
in KEGG pathways.

Cell culture and treatment

3T3-L1 preadipocytes were maintained in DMEM supplemented with 10% NCS and
1% penicillin—streptomycin (basal medium 1, BMI). When the cells were confluent
(Day 0), adipocyte differentiation was induced by treatment with a cocktail of 5 pg/mL
insulin, 1 pM dexamethasone, and 0.5 mM isobutyl methylxanthine in DMEM
supplemented with 10% FBS and 1% penicillin—streptomycin (differentiation medium
1, DMI). After 48 h (Day 2), the medium was changed to DMEM containing 10% FBS,
1% penicillin—streptomycin, and 5 pg/mL insulin for 48 h (differentiation medium 11,

DMII). On Day 4, insulin was removed from the medium, and the cells were maintained

in DMEM supplemented with 10% FBS d 1% penicillin-streptomycin (basal
medium I, BMII), and the medium was changed every two days thereafter [42]. During
differentiation, cells were treated with different concentrations of FYGL (0, 50, 100,
200, 400, and 800 pg/mL). Undifferentiated cells cultured in BMI were used as the
blank control group, and differentiated cells cultured in BM1 without F'YGL were used

as the model groups.

Uptake of FYGL in 3T3-L1 cells
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Three milligrams of FITC fluorescence agent was dissolved in 0.3 mL of DMSO to

prepare a FITC solution with a concentration of 10 mg/mL, and then the solution was
diluted to 1 mg/mL with sodium buffer (SB). FYGL (10 mg) was dissolved in 10 mL
SB to form a | mg/mL FYGL solution, which was mixed with the diluted FITC solution
at a volume ratio of 10: 1. The mixture was stirred at low temperature (ice bath) to allow

the formation of fluorescent FITC-FYGL complexes. After the coupling reaction was
allowed to proceed overnight, the solution was dialyzed with a | kDa dialysis bag to
filter free FITC and then cryodesiccated.

3T3-L1 cells were seceded on microscope cover glasses in a 24-well plate at a

density of 1 x 10* cells per well and were incubated with FITC-FYGL complexes (200

pg/mL) for 4 h. Nuclei and F-actin (filamentous actin) in 3T3-L1 cells were stained by

DAPI and phalloidin-TRITC (phalloidin-tetramethyl rhodamine), respectively. ell
images were acquired with a C2" laser scanning confocal microscope (Nikon, Japan).
Moreover, 3T3-L1 cells were treated with the indicated concentrations of FITC—FYGL
(0, , 100, 200, 400, 800 pg/mL) for 4 h, and then the fluorescence intensity was
determined by flow cytometry (Gallios, Beckman Coulter) to visualize % uptake of
FYGL in the cells.

Measurement of cell viability

Cell viability was measured by a cell counting kit-8 (CCK-8) assay. In brief, 3T3-L1
ells were plated into 96-well plates at a density of 5 x 10° cells per well and incubated
to near confluence. Some cells were incubated in DMI with different concentrations of

FYGL (0,100, 200, 400, and 800 pg/mL) for 24 h. After treatment for 24 h, the medium
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was discarded, and fresh DMI containing CCK-8 solution was added to the 96-well
plates. Approximately 1 h later, a multimode microplate reader (Cytation3, BioTek,

U.S.A.) was used to measure the optical density (OD) at 450 nm.

Triglyceride quantification

Triglyceride (TG) concentrations were determined using a commercial kit (Jiancheng
Bioengineering Institute, China). Briefly, differentiated 3T3-L1 lls were washed
twice with phosphate-buffered saline (PBS) and harvested by scraping from the culture
plate in PBS containing 1% Triton X-100 on Day 6. cll homogenates were obtained
by sonication, and TG concentrations were determined using a commercial kit
according to the manufacturer's instructions. Protein concentrations were measured
using the bicinchoninic acid (BCA) protein assay kit (Beyotime, China) and used for
quantification of proteins in samples.

Oil red O staining and quantification

Lipid accumulation in cells was measured by oil red O staining. Differentiated 3T3-L1
cells were subjected to oil red O staining with modified oil red O staining kits
(Beyotime, China). Briefly, Ee cells were washed with phosphate-buffered saline (PBS,
pH 7.4) and then fixed with 10% (v/v) paraformaldehyde at room temperature for 10
min. Then, the fixation solution was removed, and the cells were washed twice with
PBS. The cells were immersed in washing solution for 20 secs. After the washing
solution was discarded, modified oil red O as added and incubated with the cells at

room temperature for 20 min. Then, the staining solution was removed, and the cells

were washed with washing solution once and PBS twice. Finally, cells stained with oil
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red O were examined via a polarizing microscope (DM2500P, Leica, Germany). In

addition to this gross evaluation, the dye was dissolved in 60% isopropanol solution,

and the absorbance was measured at 510 nm.
RNA extraction and RT—qPCR analysis

Total RNA was isolated from differentiated 3T3-L1 cells using RNAprep pure cell kits

(TIANGEN, China) according to the manufacturer's instructions. Conversion of total

RNA to single-stranded cDNA was performed using HiScript III All-in-one RT
SuperMix Kits (Vazyme, China). The series of primers shown in Table | for

amplification of B-actin (as an internal reference), C/EBPo, FABP4, ATGL, and LPL
were synthesized by Sangon Co. The primers were mixed with the cDNA templates,
and gPCR was then performed with a Taq Pro Universal SYBR qPCR Master Mix kit
(Vazyme, China) on a gqPCR instrument (Bio-Rad, Germany) to amplify the DNA of
C/EBPa, FABP4, ATGL, and LPL. The melt curves of the cDNA were analysed to
determine the specificity of amplification, and quantification of relative mRNA levels
was performed using the 24 method with normalization to B-actin mRNA.

Protein extraction and immunoblot analysis

Immunoblot analysis was performed according to the method described in a previous
report with a minor modification [43]. Differentiated 3T3-L1 cells were lysed in RIPA
lysis buffer and centrifuged (12000 x g, 10 min, 4 °C). Proteins in the lysates were
separated by 10% SDS-PAGE and transferred to polyvinylidene fluoride membranes.

Then, the membranes were blocked in TBST/5% nonfat dry milk powder; incubated

overnightat4 °C with antibodies against FABP4, PPARy, CEBPu, AMPKa, p-AMPKa,
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ATGL, HSL, LPL, and B-actin; and incubated with a goat anti-rabbit secondary

antibody at room temperature for | h. Finally, enhanced chemiluminescence solution
(ECL) was used to detect the proteins on the membranes. The luminescence signals

were recorded with a Chemiscope3300 mini (Clinx Science Instruments, China). Data

were collected from three independent experiments.

Statistical analysis

All data were analysed by SPSS 20.0 (SPSS, Inc., U.S. and are expressed as the mean
+S.D. values. One-way ANOVA followed by the Bonferroni correction was performed
to analyse the statistical significance of differences among the groups. A value of P <

0.05 was considered statistically significant.

Results and Discussion

Effect of FYGL on BAT histopathology in vive

Teng previously proved that FYGL can decrease triglycerides and total cholesterol in

SD rats with STZ-induced diabetes [33], which is closely related to lipid biosynthesis
and metabolism. In the present work, BAT in db/db mice was subjected to
histopathological analysis. Figure 2A shows that the size of beige adipocytes was larger
and the numbers were E&rm‘ in the control group than in the normal group, whercas
treatment with metformin and #YGL reduced the size of adipocytes. Semiquantitative
analysis of H&E staining in Figure 2B showed that FYGL significantly increased
number of adipocytes per unit area of BAT in a dose-dependent manner and even
outperformed metformin.

Cypess et al. proved that the amount and activity of BAT are inversely correlated
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with body mass index [44]; the smaller the size and the greater the number of beige
adipocytes, the healthier the body [45-47]. Ouellet et al. demonstrated that the activity
of beige adipocytes is positively correlated with the level of glucose uptake in cells,
which modulates the blood glucose content [48]. Therefore, increasing the number or
activation of beige adipocytes could be otential approach to treat type 2 diabetes-
associated obesity [49]. Consistent with those studies, the results of this study showed
that beige adipocytes were significantly enlarged and increased in number in db/db

mice, while these changes were significantly reversed after F'YGL treatment.

Effect of FYGL on lipid metabolism in vivo

Type 2 diabetes is strongly associated with genes of lipid metabolism[50]. In this work,
BAT transcriptome sequencing was performed to explore the potential molecular
mechanism of lipid metabolism in vivo. As shown in Figure 3A, the screening results
of the differentially expressed genes (DEGs) showed that the ratio of upregulated:
downregulated: all significant differentially expressed genes was approximately
0.5:0.5:1 in the metformin and FYGL oups compared with the control group, nearly
the same as the ratio in the normal group compared to % control group. Figure 3B
shows the hierarchical clustering heatmap. The large coloured square patterns represent
the upregulated or downregulated genes in the different groups. The change in colour
from blue to red indicates a change in the gene expression from downregulation to
upregulation. The narrow columns on the left show the pathway-related genes. Figure

3B shows that the colour patterns of the DEGs in the control group were different from

those in the normal group for most genes except Pppir3b, while the colour patterns in
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the F'YGL group were similar to those in the normal group. From the pathway indication
in the upper-left corner in Figure 3B, it can be seen that the DEGs were involved in the

pathways of fatty acid synthesis (black), fatty acid oxidation (green), insulin resistance

(vellow), and thermogenesis (purple).

As shown in Figure 3B, FYGL increased the mRNA levels of Ppplr3b, Fasn,

Acaca, CPT2, and Acadl in the BAT ofdb mice compared to those in the control
group. The Pppir3b gene encodes protein phosphatase 1, which is a critical protein in
glycogen metabolism regulated by insulin [51]. The Fasn (encoding FAS [52]) and
Acaca (encoding ACCa [53]) genes are involved in fatty acid synthesis [52,53]. CPT2
(encoding CPT-1I, carnitine palmitoy! transferase 1l [54]) and 4 cad! (encoding ADL,
acyl-CoA dehydrogenase long chain [55]) are involved he f-oxidation of long-chain
fatty acids in mitochondria [54,55]. The imbalance between fatty acid synthesis and
degradation can lead to dyslipidaemia, diabetes and cardiovascular disease [56, 57].
Transcript analysis of those genes in BAT indicated that #'YGL could upregulate fatty
acid metabolism in vivo. Additionally, as shown in Figure 3B, FYGL upregulated fatty
acid degradation genes (CPT2 and Acadl) more significantly than fatty acid synthesis
genes (Fasn and Acaca). In addition, shown in Figure 3C, FYGL increased the levels
of Cd8!1 (encoding CD81 [58]) and Slc25a4 (encoding SLC25A4 [59]) compared to
se in the control group, and the levels of these mRNAs in the F'YGL group were even
higher than those in the metformin group. CD81 is a marker of beige adipocyte

progenitors. The absence of CD81 leads to diet-induced obesity, insulin resistance, and

adipose tissue inflammation [58]. SLC25A4, a mitochondrial ATP/ADP transporter,




322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

regulates BAT thermogenesis through UCPl-independent mechanisms [60]. Beige
adipocytes can produce heat by metabolizing fatty acids. Transcriptome analysis
indicated that F'YGL could increase the expression of thermogenesis genes (CdS8/ and
Slc25a4) in BAT, as indicated by the transition from blue to red in Figure 3C.
Furthermore, FYGL and metformin increased the mRNA levels of Aks2 (encoding
AKT?2 [61]) and Slc2a4 (encoding GLUT-4, glucose transporter-4 [62]), as shown in
Figure 3B. Deficiency of AKT2 and GLUT-4 leads to type 2 diabetes and insulin
resistance [61,63].

The GO (Gene Ontology) database is a comprehensive database describing gene
functions and includes the biological process (BP), cellular component (CC), and
molecular function (MF) ontological categories. Figure 4A shows the bubble plot of the
biological processes in the GO enrichment analysis (FYGL vs. control), where the
redder the dot is, the more significant the enrichment of the biological process. Figure
4A shows that Gs were mainly enriched in terms related to the biological processes
of cellular respiration, fatty acid metabolism, tricarboxylic acid metabolism, fatty acid
oxidation, etc., and that FYGL restored BAT functions in db/db mice through those
biological processes. Figurc 4B is directed acyclic graph (DAG, FYGL vs. control) of
the GO biological process enrichment analysis results and indicates the relationship of
functions from upregulated to downregulated biological processes. Figure 4C shows
that the biological processes were eventually refined to include only fatty acid

metabolism and cellular respiration. FYGL upregulated the fatty acid metabolism

process and promoted thermogenesis in brown adipocytes.
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KEGG enrichment analysis aims to identify connections between differentially
expressed genes and signalling pathways. Figure 4C shows the bubble plot of the
signalling pathways in the KEGG enrichment analysis (FYGL vs. control), where the
redder the dot is, the more significant the enrichment of the signalling pathway. Figure
4B shows that DEGs were predominantly enriched in signalling hways related to
oxidative phosphorylation, thermogenesis, the citrate cycle (TCA cycle), fatty acid
metabolism, and fatty acid biosynthesis. The data in Figure 4B suggest that FYGL
promotes the functions of BAT through those signalling pathways.

These findings indicated that FYGL could balance fatty acid biosynthesis and
metabolism to effectively dissipate energy, therefore reducing insulin resistance and
increasing insulin sensitivity in vivo.

Cellular uptake of FYGL

To reveal the underlying mechanisms of FYGL in mediating biological functions,
investigations at the cellular level are necessary. Figure SAows the uptake of FYGL
(200 pg/mL and 400 pg/mL) in 3T3-L1 cells, as measured by confocal laser scanning
microscopy, where green fluorescence was found in the cells cultured with FITC-FYGL,
indicating that FYGL could be taken up well into 3T3-L1 cells. Morcover, the results
of flow cytometric analysis of FYGL uptake in T3-Ll cells are shown in Figure 5B
and Figure 5C; the peak of the curve shifted to the right as the FITC-FYGL
concentration increased, and the uptake of FYGL in cells occurred in a dose-dependent

manner.

Effect of FYGL on cell viability
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To examine the cytotoxicity of #¥GL in 3T3-L1 adipocytes, cell viability was measured

using the CCK-8 assay. Adipocytes were treated with various concentrations of FYGL
(0-800 pg/mL). The CCK-8 assay results shown in Figure 5D demonstrate that FYGL
had no obvious cytotoxicity at concentrations up to 800 ug/mL.

Effect of FYGL on the accumulation of intracellular triglycerides and lipids

Lipid accumulation in adipocytes is a hallmark of adipogenesis. Mature differentiated
cells accumulate triglycerides, which then converge to form lipid droplets (LDs). FYGL
significantly decreased the triglyceride content, as shown in Figure 6A. Moreover, cell
differentiation and lipid accumulation can be identified by oil red O staining and
triglyceride assays. Figure 6B shows that the number of lipid droplets (red staining)
was markedly increased in cells cultured in differentiation medium (DM) but s
significantly decreased when the cells were cultured with FYGL (200-400 pg/mL), and
Figure 6C quantitatively shows effect of FYGL on lipid droplet accumulation.
Excessive accumulation of lipid droplets in adipocytes leads to obesity and insulin
resistance [17]. FYGL inhibited triglyceride accumulation and d droplets in

differentiated adipocytes. The mechanism of inhibition was further investigated as

follows.

Effect of FYGL on the expression of adipogenic and lipolytic genes and proteins

Several reports have shown that peroxisome proliferator-activated receptor y (PPARY)

and CCAAT/enhancer-binding protein o (C/EBPa) are marker proteins of adipocyte

differentiation and adipogenesis [64-66]. Tali et al. found that fatty acid binding

protein-4 (FABP-4)-null preadipocytes can enhance PPARY expression and activity,
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while the overexpression of FABP-4 inhibits PPARYy expression and adipogenesis [67].
Furuhashi et al. further found that FABP-4-null mice exhibit decreased lipolysis in
adipocytes and pancreatic B cells and reduced insulin secretion [68]. To reveal the
mechanisms by which FYGL inhibits the accumulation of intracellular triglycerides and

lipids, the effect of FYGL on the expression of adipogenic and lipolytic genes and

proteins was investigated. Interestingly, FYGL significantly increased the transcript
level of FABP-4 (Figure 7A) in 3T3-L1 preadipocytes and considerably increased the
transcript level of C/EBPa in adipocytes cultured in differentiation medium (Figure 7B).
Moreover, FYGL increased the mRNA level of lipolytic genes, such as ATGL (Figure
7C) and LPL (Figure 7D).

Furthermore, Western blotting was used to analyse the protein expression of FABP-

4, PPARy, and C/EBPo, as shown in Figure 8A. FYGL greatly increased FABP-4
expression, as shown in Figure 8B, and markedly decreased gPARy and C/EBPa
expression, as shown in Figure 8C and 8D. This work proved that FYGL ld inhibit
the differentiation of 3T3-L1 preadipocytes and promote lipolysis in adipocytes,
therefore reducing lipid droplet accumulation.

Effect of FYGL on lipid metabolism and the AMPKa signalling pathway

Studies have shown that fatty acid synthase (FAS) plays an important role in lipogenic
pathways, which are involved in fatty acid biosynthesis [69]. In addition, the AMPKa
signalling pathway also plays a critical role in lipolysis [20,70,71]. Activating the

AMPK signalling pathway can increase the activity of the lipases ATGL, HSL, and

LPL, thus promoting the utilization of lipid storage [20,70-72]. ATGL and HSL catalyse
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triglyceride degradation, releasing the fatty acids in lipid droplets of adipocytes [73],
while adipocytes secrete LPL to degrade triglycerides in VLDL in vessels [74]. s
shown in Figure 9A and 9B, FYGL increased the protein expression of FAS.
Additionally, FYGL increased the phosphorylation of AMPKa (Figure 9C&D) and
consequently increased the protein expression of lipolysis markers, such as ATGL
(Figure 9E), HSL (Figure 9F), and LPL (Figure 9G).

e results of this study indicated that FYGL promoted the degradation of lipid
droplets in mature adipocytes by activating the AMPKa signalling pathway. In addition,
FYGL increased the protein levels of ATGL (Figure 9E) and HSL (Figure 9F) by 2-fold
compared with that of FAS (Figure 9B) and by 1.5-fold compared with those in the
control group at concentrations higher than 200 pg/mL. Therefore, FYGL upregulated
lipolysis more significantly than fatty acid biosynthesis, consistent with the animal

experiment results. Taken together, the results of the study on the cellular level showed

that FYGL could inhibit lipid accumulation by both suppressing the differentiation of
preadipocytes and promoting the degradation of lipid droplets in mature adipocytes to
alleviate metabolically unhealthy obesity.

Conclusion

In conclusion, this study showed that FYGL could increase the number of beige
adipocytes and restore adipocyte morphology, thereby alleviating metabolic disorders
in db/db mice. The mechanism by which FYGL alleviates metabolic disorders involves

the balance between fatty acid biosynthesis and metabolism to effectively dissipate

energy in beige adipocytes. In addition, FYGL inhibited the differentiation of
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preadipocytes by increasing FABP-4 gene expression and decreasing PPARy and
C/EBPa gene levels. Moreover, FYGL promoted adipocyte browning by upregulating
Cd81 gene expression. Furthermore, F¥YGL increased the levels of the lipolysis-related
proteins ATGL, HSL and LPL by activating the AMPKa signalling pathway, therefore
accelerating lipid metabolism in mature adipocytes. Importantly, these findings proved
that FYGL, a proteoglycan, could improve metabolic disorders in vivo by targeting both
preadipocytes and mature adipocytes. The mechanistic profile of FYGL in the treatment

of diabetes-associated obesity is shown in Figure 10. FYGL could be used as a

promising agent to treat lipid metabolism disorders and obesity in the clinic.
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(A)

(B)
Figure 1 (A) The dominant polysaccharide sequence of FYGL characterized by
chemical analysis and NMR spectroscopy[34]. Rs represents the carbohydrate residues
of =24)-0-L-Rhap-(1=, =6-p-D-Galp-1—, Araf-(1= or = 3,6)-p-D-Galp-(1=.
Protein moieties are covalently bonded with carbohydrate moieties by Ser and Thr
residues in the -O- linkage. (B) The dominant sequence of the protein moieties of FYGL
characterized by mass spectrometry.
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(A)

(B)
Figure 2 Histopathological analysis of adipocytes in brown adipose tissues. (A)
Representative images of H& E-stained brown adipose tissues, magnification 100x. The
scale bar represents 250 um. (B) Semiquantitative analysis of the adipocyte number per
area in BAT by Image-Pro Plus 6.0 software. The mean + S.D. values are presented (n
=6; ""P<0.001 vs. normal; *P < 0.05, #P < 0.01, ¥ P < 0.001 vs. control).
663
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(A)

(B)
Figure 3 Transcriptome analysis of RNA sequencing of BAT in the normal, metformin,
and FYGL groups compared to the control group. (A) DEG counts. (B) Hierarchical
clustering heatmap of the expression profile of the DEGs.
665
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(A)
(B)

(©)
Figure 4 GO and KEGG functional enrichment analyses based on the DEGs. (A)
Bubble plot of biological processes in the GO enrichment analysis. (B) The directed
acyclic graph of biological process in the GO enrichment analysis. (C) Bubble plot of
pathways in the KEGG enrichment analysis.
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Figure 5 (A) Laser confocal scanning microscopy images of FYGL in 3T3-L1 cells at
200x magnification. 3T3-L1 cells were incubated with FITC-FYGL (200 pg/mL) for 4
h; blue (DAPI labelled), red (thodamine labelled) and green (FITC labelled) represent
the nucleus, cytoskeleton and FYGL, respectively. The scale bar represents 100 um. (B)
Flow cytometric analysis of fluorescence. (C) Geometric means calculated by FlowJo
software. The data are presented as the mean + S.D. values (n = 3). ""P < 0.001 vs.
control group. (D) Effect of F¥YGL on cell viability. 3T3-L1 cells were incubated with
various concentrations of #YGL (0, 50, 100, 200, 400 and 800 pg'mL-") for 24 h, and
cell viability was determined by a CCK-8 assay. The mean + S.D. values are presented
(n=10)




671

672

(A)
(B)

(©)

Figure 6 Effect of FYGL on the inhibition of lipid accumulation in mature adipocytes.
Differentiated 3T3-L1 cells were incubated with FYGL at concentrations ranging from
0400 pg/mL. (A) Intracellular TG in mature adipocytes. (B) Intracellular lipid droplets
stained by oil red O and visualized by polarized phase contrast microscopy (500x). (C)
Intracellular lipid accumulation was quantitatively measured using a microplate reader
at an absorbance of 490 nm. Mean + S.D. values are presented (n = 6). “*P < 0.001 vs.
blank control group, ""P < 0.01, "P <0.05 vs. model group.
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Figure 7 The relative mRNA expression levels of (A) C/EBPa, (B) FABP-4, (C) ATGL,
and (D) LPL in differentiated 3T3-L1 cells, with reference to the model group. Data are
presented as the mean = S.D. values (n = 6). P < 0.001, #P < 0.01, *P < 0.05 vs.
blank control group. “*P < 0.001, **P <0.01, P < 0.05 vs. model group
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Figure 8 Western blot analysis of proteins involved in cellular differentiation in mature
3T3-L1 cells. (A) Images of the PPARy, C/EBPu, and FABP-4 protein bands relative
to the p-actin protein band. (B), (C) and (D) Relative expression of PPARy, C/EBPa,
and FABP-4, respectively, with reference to ff-actin, and normalized to the model group.
Data are presented as the mean = S.D. values (n = 3). #P < 0.01, *P < 0.05 vs. blank
control group, ""P < 0.001, P < 0.01, "P < 0.05 vs. model group.
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Figure 9 Western blot analysis of proteins involved in lipolysis and the AMPKu
signalling pathway in mature 3T3-L1 cells. (A) Image of FAS protein bands, (B)
Quantification of FAS expression. (C) Images of ATGL, HSL, LPL, p-AMPKa, and
AMPKa protein bands. (D), (E), (F) and (G) Quantification of ATGL, HSL, LPL, and
p-AMPKo/AMPKa protein levels. The protein levels in the model group are
normalized to a value of 1.0. Data are presented as the mean = S.D. values (n = 3), P
<0.01, ¥ P < 0.001 vs. blank control group, “*P < 0.01, “P < 0.05 vs. model group.
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Figure 10 Profile of the mechanism of FYGL in ameliorating diabetes-associated
obesity
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