Environ Health Perspect

DOI: 10.1289/EHP12351

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Per- and Polyfluoroalkyl Substances (PFAS) and Lipid Trajectories in Women 45–56 Years of Age: The Study of Women's Health Across the Nation

Habyeong Kang, Ning Ding, Carrie A. Karvonen-Gutierrez, Bhramar Mukherjee, Antonia M. Calafat, and Sung Kyun Park

Table of Contents

Table S1. Detection frequencies and concentrations of serum PFAS in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S2. Timeline of measurements of variables used in this study.

Table S3. Constant values added to measured lipid concentrations (mg/dL) for those with the statin or non-statin medication depending on race/ethnicity (Wu et al. 2007).

Table S4. Criteria to select a best model for total cholesterol trajectories in the SWAN-MPS cohort (1999-2016, n = 1130, adding constant methods).

Table S5. Criteria to select a best model for LDL cholesterol trajectories in the SWAN-MPS cohort (1999-2016, n = 1130, adding constant methods).

Table S6. Criteria to select a best model for HDL cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130, adding constant methods).

Table S7. Criteria to select a best model for triglycerides trajectories in the SWAN-MPS cohort (1999–2016, n = 1130, adding constant methods).

Table S8. Classification of study participants in the SWAN-MPS cohort (1999–2016, n = 1130) by lipids trajectories from two different methods (Adding constant and covariate methods).

Table S9. Associations of serum concentrations of total PFOS, PFDA, PFUnDA, MeFOSAA, and EtFOSAA with trajectories of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S10. Associations of tertiles of serum PFAS concentrations with total cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S11. Associations of tertiles of serum PFAS concentrations with LDL cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S12. Associations of tertiles of serum PFAS concentrations with HDL cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S13. Associations of tertiles of serum PFAS concentrations with triglycerides trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S14. Associations of serum PFAS concentrations with trajectories of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides when the models were not adjusted for BMI in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S15. Cross-sectional association of serum PFAS concentrations (ng/mL) with blood lipid levels at baseline (mg/dL) in the SWAN-MPS cohort (1999–2016, n = 1130).

Table S16. Association of serum PFAS concentrations (ng/mL) with rate of change in blood lipid levels during follow-up (mg/dL/year) in the SWAN-MPS cohort (1999–2016, n = 1130).

Method for literature review of studies on the association of PFAS exposure with lipids

Table S17. Summary of results of selected epidemiological studies on associations between PFAS and lipids.

Figure S1. Spearman's correlations between serum PFAS concentrations in the SWAN-MPS cohort (1999–2016, n = 1130).

Figure S2. Trajectories of (A) total cholesterol, (B) LDL cholesterol, (C) HDL cholesterol, and (D) triglycerides identified by latent class growth model in the SWAN-MPS cohort (1999–2016, n = 1130). 'Covariate method' (described in the Methods of the main text) was applied to consider lipid-lowering medication effects.

Figure S3. Odds ratios (•) and their 95% confidence intervals (bar) for associations of tertiles of PFAS concentrations (versus tertile 1) or PFAS mixture (versus low concentration) with trajectories (high versus low trajectories) of (A) total cholesterol, (B) LDL cholesterol, (C) HDL cholesterol, and (D) triglycerides when the models were not adjusted for BMI in the SWAN-MPS cohort (1999–2016, n = 1130). The models were adjusted for site \times race/ethnicity, age, education, menopausal status, smoking status, alcohol consumption, physical activity, and total energy intake. The numbers at the right side of the bars represent odds ratios and their 95% confidence intervals. Results with continuous PFAS concentrations can be found in supplemental Table S14.

Figure S4. Means of the standardized log-transformed serum PFAS concentrations in each cluster identified by k-means clustering in the SWAN-MPS cohort (1999–2016, n = 1130). Cluster 1 (n=291): "low" overall PFAS concentration pattern; clusters 2 (n=569): "medium" overall PFAS concentration pattern; cluster 3 (n=270): "high" overall PFAS concentration pattern.

References

	Detected f	frequency		Concentra	ation (ng/m	L)	
	n	%	Geometric mean	1st quartile	Median	3rd quartile	Maximum
n- PFOA	1129	99.9	4.1	2.8	4.1	5.8	56.5
PFNA	1096	97.0	0.5	0.4	0.6	0.8	4.4
PFDA	456	40.4	-	< 0.1	< 0.1	0.2	2.6
PFUnDA	352	31.2	-	< 0.1	< 0.1	0.2	3.8
PFDoDA	39	3.5	-	< 0.1	< 0.1	< 0.1	2.6
n-PFOS	1129	99.9	17.7	12.5	17.4	24.4	250
Sm-PFOS	1128	99.8	7.2	4.7	7.3	11.0	126.0
PFHxS	1125	99.6	1.6	1.0	1.5	2.4	46.5
MeFOSAA	1127	99.7	1.5	0.9	1.5	2.3	11.5
EtFOSAA	1120	99.1	1.3	0.7	1.2	2.2	112.5

Table S1. Detection frequencies and concentrations of serum PFAS in the SWAN-MPS cohort (1999–2016, n = 1130).

	SWAN baseline	SWAN-MPS baseline (Visit 3)	Visit 4	Visit 5	Visit 6	Visit 7	Visit 9	Visit 12	Visit 13	Visit 15
	1996- 1997	1999- 2001	2000-2002	2001-2003	2002-2004	2003-2005	2005-2007	2009-2011	2011-2013	2015- 2016
Serum PFAS		0	2002	2005	2001	2000	2007	2011	2013	2010
Blood lipids		0	0	0	0	0	0	0	0	0
Lipid-lowering medication		0	0	0	0	0	0	0	0	0
Study site	0									
Race/ethnicity	0									
Education	0									
Age		0								
Menopausal status		0								
Smoking status		0								
Alcohol consumption		0								
Body mass index		0								
Physical activity		0								
Total energy intake	0									

 Table S2. Timeline of measurements of variables used in this study.

		Statin med	ication	١	Non-statin medication		
	White	Black	Chinese or Japanese	White	Black	Chinese or Japanese	
Total cholesterol	+50.7	+50.7	+50.7	+46.1	+20.1	+20.1	
LDL cholesterol	+48.1	+48.1	+48.1	+40.1	+11.4	+11.4	
HDL cholesterol	-2.3	-0.4	-2.0	-5.9	-3.1	-3.1	
Triglycerides	+19.7	+19.7	+19.7	+59.0	+59.0	+59.0	

 Table S3. Constant values added to measured lipid concentrations (mg/dL) for those with the statin or non-statin medication depending on

 race/ethnicity (Wu et al. 2007).

Table S4. Criteria to select a best model for total cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130, adding constantmethods).

	Numbe	r of Class	= 2	Number	r of Class	= 3	Number	r of Class	= 4
	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability
Polynomial									
Linear	39%	99460	0.971	19%	97728	0.946	8%	96868	0.475
+quadratic	39%	99379	0.971	19%	97625	0.946	8%	96762	0.291
+cubic	39%	99370	0.971	19%	97609	0.947	8%	96752	0.478
Natural cubic spline									
2 knots (tertile)	39%	99374	0.971	19%	97614	0.947	8%	96756	0.377
2 knots (equidistance)	39%	99363	0.971	19%	97602	0.947	8%	96744	0.452
3 knots (quartile)	39%	99377	0.971	19%	97621	0.947	8%	96769	0.452
3 knots (equidistance)	39%	99371	0.971	19%	97615	0.947	8%	96757	0.672
4 knots (quintile)	39%	99393	0.971	19%	97645	0.947	8%	96799	0.596
4 knots (equidistance)	39%	99388	0.971	19%	97640	0.947	8%	96789	0.597

Natural cubic spline model with 2 knots (equidistance) and three classes was selected.

Table S5. Criteria to select a best model for LDL cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130, adding constant	
methods).	

	Numbe	er of Class	=2	Numbe	r of Class	= 3	Numbe	r of Class	= 4
	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability
Polynomial									
Linear	36%	92729	0.970	20%	90698	0.955	7%	89882	0.328
+quadratic	36%	92643	0.971	20%	90587	0.956	7%	89759	0.651
+cubic	36%	90587	0.971	20%	90542	0.957	8%	89711	0.648
Natural cubic spline									
2 knots (tertile)	36%	92612	0.971	20%	90522	0.957	8%	89679	0.455
2 knots (equidistance)	36%	92631	0.971	20%	90560	0.957	7%	89732	0.646
3 knots (quartile)	36%	92630	0.971	20%	90551	0.957	7%	89707	0.329
3 knots (equidistance)	36%	92634	0.971	20%	90554	0.957	7%	89715	0.646
4 knots (quintile)	36%	92645	0.971	20%	90569	0.958	7%	89726	0.329
4 knots (equidistance)	36%	92621	0.971	20%	90540	0.957	8%	89697	0.649

Natural cubic spline model with 2 knots (tertile) and three classes was selected.

Table S6. Criteria to select a best model for HDL cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130, adding constantmethods).

	Numbe	er of Class	= 2	Numbe	r of Class	= 3	Numbe	r of Class	= 4
	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability
Polynomial									
Linear	41%	79595	0.976	20%	77128	0.962	13%	76120	0.588
+quadratic	41%	79613	0.976	20%	77151	0.963	13%	76153	0.587
+cubic	41%	79614	0.976	20%	77157	0.963	13%	76161	0.450
Natural cubic spline									
2 knots (tertile)	41%	79590	0.976	20%	77122	0.963	13%	76118	0.486
2 knots (equidistance)	41%	79626	0.976	20%	77172	0.963	13%	76181	0.450
3 knots (quartile)	41%	79595	0.976	20%	77128	0.963	13%	76132	0.376
3 knots (equidistance)	41%	79619	0.976	20%	77158	0.963	13%	76173	0.374
4 knots (quintile)	41%	79592	0.976	20%	77121	0.964	13%	76132	0.587
4 knots (equidistance)	41%	79544	0.976	20%	77063	0.963	13%	76050	0.488

Natural cubic spline model with 4 knots (equidistance) and three classes was selected.

	Numbe	r of Class	= 2	Number	r of Class	s = 3	Number	r of Class	= 4
	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability	Smallest membership %	BIC	Average posterior probability
Polynomial									
Linear	38%	8784	0.977	10%	6999	0.962	8%	6039	0.378
+quadratic	38%	8787	0.977	10%	7001	0.962	8%	6049	0.346
+cubic	38%	8790	0.977	10%	7012	0.962	8%	6064	0.347
Natural cubic spline									
2 knots (tertile)	38%	8792	0.977	10%	7013	0.962	8%	6065	0.613
2 knots (equidistance)	38%	8792	0.977	10%	7014	0.962	8%	6067	0.424
3 knots (quartile)	38%	8809	0.977	10%	7039	0.962	8%	6099	0.509
3 knots (equidistance)	38%	8809	0.977	10%	7040	0.962	8%	6101	0.425
4 knots (quintile)	38%	8827	0.977	10%	7066	0.962	8%	6135	0.426
4 knots (equidistance)	38%	8826	0.977	10%	7065	0.962	8%	6133	0.348

Table S7. Criteria to select a best model for triglycerides trajectories in the SWAN-MPS cohort (1999–2016, n = 1130, adding constant methods).

Linear model with two classes was selected.

Table S8. Classification of study participants in the SWAN-MPS cohort (1999–2016, n = 1130) by lipids trajectories from two different methods(Adding constant and covariate methods).

		Adding constant method										
		To	tal cholest	holesterol LDL cholesterol HDL cholesterol					Trigly	cerides		
		Low	Middle	High	Low	Middle	High	Low	Middle	High	Low	High
	Low	341	15	0	342	6	0	417	16	0	707	30
Covariate method	Middle	20	535	8	26	530	20	10	446	7	-	-
	0	7	204	0	10	196	0	6	228	9	384	
Misclassification				4.4%			5.5%			3.5%		3.5%

5540	Tota	al cholesterol		LDI	L cholesterol		HDI	L cholesterol	Triglycerides			
PFAS	Trajectory	OR (95% CI) ^a	p- value ^b	Trajectory	OR (95% CI)	p- value	Trajectory	OR (95% CI)	p- value	Trajectory	OR (95% CI)	p- value
	Low (n=361)	1.00		Low (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
(per doubling)	Middle (n=557)	1.09 (0.92, 1.28)	0.57	Middle (n=546)	1.16 (0.99, 1.36)	0.15	Middle (n=468)	1.02 (0.87, 1.20)	0.96	High (n=414)	0.88 (0.75, 1.02)	0.16
	High (n=212)	1.21 (0.99, 1.49)	0.11	High (n=216)	1.28 (1.04, 1.56)	0.04	High (n=235)	0.97 (0.79, 1.20)	0.95			
PFDA	Low (n=361)	1.00		Low (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
(deteted vs.	Middle (n=557)	1.37 (1.04, 1.8)	0.12	Middle (n=546)	1.24 (0.94, 1.63)	0.17	Middle (n=468)	1.14 (0.87, 1.51)	0.85	High (n=414)	0.70 (0.53, 0.92)	0.10
non-detected)	High (n=212)	1.56 (1.11, 2.19)	0.05	High (n=216)	1.53 (1.10, 2.14)	0.04	High (n=235)	1.39 (0.99, 1.96)	0.45			
PFUnDA	Low (n=361)	1.00		Low (n=368)	1.00		Low (n=427)	1.00		Low (n=717)	1.00	
(deteted vs.	Middle (n=557)	1.36 (1.02, 1.82)	0.12	Middle (n=546)	1.31 (0.98, 1.74)	0.15	Middle (n=468)	1.44 (1.07, 1.92)	0.15	High (n=415)	0.79 (0.58, 1.07)	0.18
non-detected)	High (n=212)	1.58 (1.13, 2.22)	0.05	High (n=216)	1.60 (1.15, 2.23)	0.04	High (n=235)	1.29 (0.92, 1.81)	0.45			
	Low (n=361)	1.00		Low (n=368)	1.00		Low (n=427)	1.00		Low (n=718)	1.00	
MeFOSAA (per doubling)	Middle (n=557)	1.04 (0.90, 1.19)	0.78	Middle (n=546)	1.16 (1.01, 1.34)	0.15	Middle (n=468)	1.00 (0.87, 1.16)	0.96	High (n=416)	0.98 (0.85, 1.12)	0.75
	High (n=212)	1.15 (0.96, 1.37)	0.15	High (n=216)	1.15 (0.96, 1.37)	0.17	High (n=235)	1.02 (0.86, 1.22)	0.95			
EtFOSAA	Low (n=361)	1.00		Low (n=368)	1.00		Low (n=427)	1.00		Low (n=719)	1.00	
(per doubling) N	Middle (n=557)	0.98 (0.88, 1.09)	0.78	Middle (n=546)	1.05 (0.94, 1.16)	0.43	Middle (n=468)	1.01 (0.89, 1.11)	0.96	High (n=417)	0.89 (0.80, 0.99)	0.12
	High (n=212)	0.93 (0.81, 1.06)	0.30	High (n=216)	1.00 (0.88, 1.14)	0.99	High (n=235)	0.94 (0.82, 1.08)	0.76	<u> </u>		

Table S9. Associations of serum concentrations of total PFOS, PFDA, PFUnDA, MeFOSAA, and EtFOSAA with trajectories of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides in the SWAN-MPS cohort (1999–2016, n = 1130).

^a Odds ratios (ORs) and their 95% confidence intervals (CIs) comparing detected vs. non-detected PFDA or PFUnDA, or per doubling of MeFOSAA or EtFOSAA concentration. ^b Adjusted p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age, education, menopausal status, smoking status, alcohol consumption, BMI, physical activity, and total energy intake.

PFAS	Trajectory	PFAS tertile 2	vs. 1	PFAS tertile 3	vs. 1
11745	class	OR (95% CI) ^a	p-value ^b	OR (95% CI)	p-value
n-PFOA	Low (n=361)	1.00		1.00	
	Middle (n=557)	0.90 (0.67, 1.17)	0.67	0.89 (0.68, 1.17)	0.53
	High (n=212)	0.73 (0.56, 0.95)	0.03	0.90 (0.70, 1.15)	0.40
PFNA	Low (n=361)	1.00		1.00	
	Middle (n=557)	1.22 (0.93, 1.60)	0.30	1.06 (0.81, 1.39)	0.77
	High (n=212)	2.21 (1.73, 2.83)	< 0.0001	1.18 (0.90, 1.55)	0.27
Total PFOS	Low (n=361)	1.00		1.00	
	Middle (n=557)	1.56 (1.19, 2.03)	0.009	1.25 (0.95, 1.64)	0.32
	High (n=212)	1.71 (1.35, 2.18)	< 0.0001	1.70 (1.33, 2.17)	0.0002
n-PFOS	Low (n=361)	1.00		1.00	
	Middle (n=557)	1.44 (1.10, 1.87)	0.13	1.22 (0.93, 1.60)	0.32
	High (n=212)	1.61 (1.27, 2.04)	0.0002	1.61 (1.27, 2.06)	< 0.0001
Sm-PFOS	Low (n=361)	1.00		1.00	
	Middle (n=557)	1.33 (1.02, 1.73)	0.11	1.25 (0.95, 1.65)	0.32
	High (n=212)	1.31 (1.02, 1.68)	0.04	1.65 (1.29, 2.11)	0.002
PFHxS	Low (n=361)	1.00		1.00	
	Middle (n=557)	0.96 (0.73, 1.26)	0.77	1.21 (0.92, 1.59)	0.32
	High (n=212)	1.66 (1.30, 2.12)	0.0001	1.63 (1.29, 2.05)	0.002
MeFOSAA	Low (n=361)	1.00		1.00	
	Middle (n=557)	0.93 (0.71, 1.21)	0.74	0.99 (0.76, 1.29)	0.96
	High (n=212)	1.34 (1.05, 1.72)	0.03	1.50 (1.18, 1.91)	0.001
EtFOSAA	Low (n=361)	1.00		1.00	
	Middle (n=557)	0.96 (0.74, 1.25)	0.77	0.89 (0.69, 1.16)	0.53
	High (n=212)	1.02 (0.80, 1.32)	0.86	0.76 (0.59, 0.97)	0.04
PFAS	Low (n=361)	1.00		1.00	
mixture	Middle (n=557)	1.24 (0.95, 1.62)	0.26	1.25 (0.93, 1.69)	0.32
	High (n=212)	1.38 (1.06, 1.80)	0.03	1.69 (1.36, 2.12)	0.0003

Table S10. Associations of tertiles of serum PFAS concentrations with total cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

High (n=212)1.38 (1.06, 1.80)0.031.69 (1.36, 2.12)0.0003^a Odds ratios (ORs) and their 95% confidence intervals (CIs) for association of tertiles of PFAS
concentrations (versus tertile 1) with total cholesterol trajectories (versus low trajectory). ^b Adjusted
p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age,
education, menopausal status, smoking status, alcohol consumption, BMI, physical activity, and total
energy intake. Cut off points for PFAS tertile groups: 3.4 and 5.3 ng/mL for total PFOA, 0.6 and 0.8
ng/mL for PFNA, 14.2 and 21.4 ng/mL for n-PFOS, 5.7 and 9.4 ng/mL for Sm-PFOS, and 1.2 and 2.0
ng/mL for PFHxS.

DEVC	Trajectory	PFAS tertile 2	vs. 1	PFAS tertile 3	vs. 1
11'AS	class	OR (95% CI) ^a	p-value ^b	OR (95% CI)	p-value
n-PFOA	Low (n=368)	1.00		1.00	
	Middle (n=546)	1.07 (0.82, 1.40)	0.69	1.20 (0.91, 1.57)	0.33
	High (n=216)	0.89 (0.68, 1.15)	0.37	1.05 (0.83, 1.35)	0.67
PFNA	Low (n=368)	1.00		1.00	
	Middle (n=546)	1.22 (0.93, 1.60)	0.33	1.14 (0.87, 1.49)	0.45
	High (n=216)	1.96 (1.53, 2.51)	< 0.0001	1.09 (0.84, 1.43)	0.58
Total PFOS	Low (n=368)	1.00		1.00	
	Middle (n=546)	1.42 (1.08, 1.86)	0.10	1.40 (1.06, 1.84)	0.12
	High (n=216)	1.97 (1.56, 2.49)	< 0.0001	1.94 (1.54, 2.45)	< 0.0001
n-PFOS	Low (n=368)	1.00		1.00	
	Middle (n=546)	1.25 (0.96, 1.64)	0.30	1.31 (1.00, 1.73)	0.08
	High (n=216)	1.85 (1.47, 2.34)	< 0.0001	1.89 (1.50, 2.38)	< 0.0001
Sm-PFOS	Low (n=368)	1.00		1.00	
	Middle (n=546)	1.16 (0.89, 1.53)	0.49	1.48 (1.12, 1.96)	0.05
	High (n=216)	1.56 (1.22, 2.00)	0.0007	1.92 (1.52, 2.42)	< 0.0001
PFHxS	Low (n=368)	1.00		1.00	
	Middle (n=546)	0.98 (0.74, 1.28)	0.85	1.19 (0.90, 1.56)	0.33
	High (n=216)	1.37 (1.07, 1.74)	0.02	1.41 (1.12, 1.78)	0.006
MeFOSAA	Low (n=368)	1.00		1.00	
	Middle (n=546)	1.12 (0.86, 1.46)	0.51	1.31 (1.01, 1.70)	0.12
	High (n=216)	1.39 (1.09, 1.79)	0.01	1.43 (1.13, 1.81)	0.006
EtFOSAA	Low (n=368)	1.00		1.00	
	Middle (n=546)	1.13 (0.87, 1.46)	0.51	0.98 (0.75, 1.28)	0.89
	High (n=216)	1.30 (1.02, 1.66)	0.04	0.91 (0.72, 1.16)	0.58
PFAS	Low (n=368)	1.00		1.00	
mixture	Middle (n=546)	1.40 (1.06, 1.83)	0.16	1.41 (1.04, 1.92)	0.52
	High (n=216)	1.57 (1.21, 2.03)	0.001	1.79 (1.44, 2.22)	< 0.0001

Table S11. Associations of tertiles of serum PFAS concentrations with LDL cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

High (n=216)1.57 (1.21, 2.03)0.0011.79 (1.44, 2.22)<0.0001a Odds ratios (ORs) and their 95% confidence intervals (CIs) for association of tertiles of PFASconcentrations (versus tertile 1) with total cholesterol trajectories (versus low trajectory). b Adjusted p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age, education,menopausal status, smoking status, alcohol consumption, BMI, physical activity, and total energyintake.Cut off points for PFAS tertile groups: 3.4 and 5.3 ng/mL for total PFOA, 0.6 and 0.8 ng/mL forPFNA, 14.2 and 21.4 ng/mL for n-PFOS, 5.7 and 9.4 ng/mL for Sm-PFOS, and 1.2 and 2.0 ng/mL forPFHxS.

DEVC	Trajectory	PFAS tertile 2	PFAS tertile 2 vs. 1		PFAS tertile 3 vs. 1		
TTAS	class	OR (95% CI) ^a	p-value ^b	OR (95% CI)	p-value		
n-PFOA	Low (n=427)	1.00		1.00			
	Middle (n=468)	0.95 (0.73, 1.24)	0.79	0.83 (0.63, 1.10)	0.72		
	High (n=235)	0.79 (0.61, 1.04)	0.17	0.77 (0.60, 1.01)	0.21		
PFNA	Low (n=427)	1.00		1.00			
	Middle (n=468)	0.91 (0.70, 1.19)	0.65	0.94 (0.72, 1.23)	0.97		
	High (n=235)	0.86 (0.66, 1.11)	0.36	0.95 (0.72, 1.25)	0.72		
Total PFOS	Low (n=427)	1.00		1.00			
	Middle (n=468)	1.16 (0.90, 1.50)	0.38	1.01 (0.77, 1.31)	0.97		
	High (n=235)	1.08 (0.84, 1.40)	0.54	0.81 (0.62, 1.05)	0.23		
n-PFOS	Low (n=427)	1.00		1.00			
	Middle (n=468)	1.23 (0.95, 1.59)	0.29	0.98 (0.75, 1.27)	0.97		
	High (n=235)	1.12 (0.87, 1.44)	0.51	0.83 (0.63, 1.07)	0.23		
Sm-PFOS	Low (n=427)	1.00		1.00			
	Middle (n=468)	0.82 (0.63, 1.06)	0.29	0.74 (0.57, 0.96)	0.21		
	High (n=235)	0.63 (0.48, 0.82)	0.003	0.57 (0.44, 0.75)	0.0005		
PFHxS	Low (n=427)	1.00		1.00			
	Middle (n=468)	1.27 (0.97, 1.65)	0.29	0.98 (0.75, 1.29)	0.97		
	High (n=235)	1.10 (0.84, 1.42)	0.54	1.22 (0.94, 1.58)	0.23		
MeFOSAA	Low (n=427)	1.00		1.00			
	Middle (n=468)	1.03 (0.79, 1.34)	0.85	0.85 (0.66, 1.11)	0.72		
	High (n=235)	1.39 (1.08, 1.80)	0.03	0.94 (0.72, 1.22)	0.71		
EtFOSAA	Low (n=427)	1.00		1.00			
	Middle (n=468)	0.85 (0.66, 1.10)	0.38	0.99 (0.77, 1.29)	0.96		
	High (n=235)	0.62 (0.48, 0.82)	0.003	0.79 (0.61, 1.02)	0.21		
PFAS	Low (n=427)	1.00		1.00			
mixture	Middle (n=468)	1.42 (1.09, 1.86)	0.006	0.87 (0.65, 1.17)	0.82		
	High (n=235)	1.26 (0.96, 1.65)	0.16	0.85 (0.66, 1.10)	0.29		

Table S12. Associations of tertiles of serum PFAS concentrations with HDL cholesterol trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

High (n=235)1.26 (0.96, 1.65)0.160.85 (0.66, 1.10)0.29a Odds ratios (ORs) and their 95% confidence intervals (CIs) for association of tertiles of PFASconcentrations (versus tertile 1) with total cholesterol trajectories (versus low trajectory). b Adjusted p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age, education,menopausal status, smoking status, alcohol consumption, BMI, physical activity, and total energyintake. Cut off points for PFAS tertile groups: 3.4 and 5.3 ng/mL for total PFOA, 0.6 and 0.8 ng/mLfor PFNA, 14.2 and 21.4 ng/mL for n-PFOS, 5.7 and 9.4 ng/mL for Sm-PFOS, and 1.2 and 2.0 ng/mLfor PFHxS.

DEAS	Trajectory	PFAS tertile 2	vs. 1	PFAS tertile 3 vs. 1		
ггаз	class	OR (95% CI) ^a	p-value ^b	OR (95% CI)	p-value	
n-PFOA	Low (n=716)	1.00		1.00		
	High (n=414)	0.93 (0.67, 1.29)	0.88	0.80 (0.56, 1.13)	0.36	
PFNA	Low (n=716)	1.00		1.00		
	High (n=414)	1.00 (0.73, 1.38)	0.98	0.78 (0.56, 1.08)	0.29	
Total PFOS	Low (n=716)	1.00		1.00		
	High (n=414)	0.87 (0.63, 1.19)	0.84	0.72 (0.52, 1.00)	0.22	
n-PFOS	Low (n=716)	1.00		1.00		
	High (n=414)	0.86 (0.63, 1.18)	0.84	0.71 (0.51, 0.99)	0.22	
Sm-PFOS	Low (n=716)	1.00		1.00		
	High (n=414)	1.07 (0.77, 1.48)	0.88	0.90 (0.64, 1.26)	0.56	
PFHxS	Low (n=716)	1.00		1.00		
	High (n=414)	1.13 (0.82, 1.55)	0.84	0.90 (0.65, 1.26)	0.56	
MeFOSAA	Low (n=716)	1.00		1.00		
	High (n=414)	1.03 (0.74, 1.41)	0.98	0.86 (0.62, 1.19)	0.54	
EtFOSAA	Low (n=716)	1.00		1.00		
	High (n=414)	1.19 (0.87, 1.63)	0.84	0.73 (0.52, 1.03)	0.22	
PFAS	Low (n=716)	1.00		1.00		
Mixture	High (n=414)	0.79 (0.58, 1.09)	0.84	0.86 (0.59, 1.26)	0.56	

Table S13. Associations of tertiles of serum PFAS concentrations with triglycerides trajectories in the SWAN-MPS cohort (1999–2016, n = 1130).

^a Odds ratios (ORs) and their 95% confidence intervals (CIs) for association of tertiles of PFAS concentrations (versus tertile 1) with total cholesterol trajectories (versus low trajectory). ^b Adjusted p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age, education, menopausal status, smoking status, alcohol consumption, BMI, physical activity, and total energy intake. Cut off points for PFAS tertile groups: 3.4 and 5.3 ng/mL for total PFOA, 0.6 and 0.8 ng/mL for PFNA, 14.2 and 21.4 ng/mL for n-PFOS, 5.7 and 9.4 ng/mL for Sm-PFOS, and 1.2 and 2.0 ng/mL for PFHxS.

	Total cholesterol			LDL cholesterol		HDL cholesterol		Triglycerides				
PFAS	Trajectory	OR (95% CI) ^a	p- value ^b	Trajectory	OR (95% CI)	p- value	Trajectory	OR (95% C	p- CI) value	Trajectory	OR (95% CI)	p- value
n-PFOA	Low (n=361)	1.00	Lo	w (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
	Middle (n=557)	0.99 (0.84, 1.17)	0.83 Mi	ddle (n=546)	0.99 (0.84, 1.17)	0.83	Middle (n=468)	0.94 (0.80, 1	.11) 0.34	4 High (n=414)	0.94 (0.80, 1.10)	0.71
	High (n=212)	0.95 (0.77, 1.16)	0.43 Hig	gh (n=216)	0.95 (0.77, 1.16)	0.98	High (n=235)	0.85 (0.69, 1	.04) 0.00	б -	-	
PFNA	Low (n=361)	1.00	Lo	w (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
	Middle (n=557)	1.07 (0.91, 1.25)	0.41 Mi	ddle (n=546)	1.10 (0.94, 1.29)	0.22	Middle (n=468)	1.13 (0.96, 1	.33) 0.13	3 High (n=414)	0.84 (0.73, 0.98)	0.03
	High (n=212)	1.21 (0.98, 1.49)	0.08 Hig	gh (n=216)	1.18 (0.96, 1.44)	0.11	High (n=235)	1.09 (0.89, 1	.34) 0.39) -	-	
Total PFOS	Low (n=361)	1.00	Lo	w (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
	Middle (n=557)	1.08 (0.93, 1.27)	0.31 Mi	ddle (n=546)	1.16 (0.99, 1.36)	0.06	Middle (n=468)	0.97 (0.83, 1	.14) 0.72	2 High (n=414)	0.95 (0.82, 1.10)	0.50
	High (n=212)	1.19 (0.98, 1.45)	0.08 Hig	gh (n=216)	1.28 (1.05, 1.55)	0.01	High (n=235)	0.83 (0.68, 1	.02) 0.07	7 -	-	
n-PFOS	Low (n=361)	1.00	Lo	w (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
	Middle (n=557)	1.08 (0.92, 1.27)	0.33 Mi	ddle (n=546)	1.14 (0.97, 1.34)	0.10	Middle (n=468)	1.00 (0.85, 1	.17) 0.99	9 High (n=414)	0.92 (0.80, 1.07)	0.29
	High (n=212)	1.20 (0.98, 1.46)	0.08 Hig	gh (n=216)	1.28 (1.05, 1.56)	0.01	High (n=235)	0.87 (0.71, 1	.07) 0.18	3 -	-	
Sm-PFOS	Low (n=361)	1.00	Lo	w (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
	Middle (n=557)	1.10 (0.96, 1.25)	0.18 Mi	ddle (n=546)	1.19 (1.04, 1.36)	0.01	Middle (n=468)	0.91 (0.79, 1	.04) 0.16	5 High (n=414)	1.05 (0.92, 1.19)	0.48
	High (n=212)	1.17 (0.99, 1.40)	0.07 Hig	gh (n=216)	1.25 (1.05, 1.49)	0.01	High (n=235)	0.81 (0.68, 0	.96) 0.02	- 2	-	
PFHxS	Low (n=361)	1.00	Lo	w (n=368)	1.00		Low (n=427)	1.00		Low (n=716)	1.00	
	Middle (n=557)	1.16 (1.03, 1.30)	0.02 Mi	ddle (n=546)	1.12 (0.99, 1.26)	0.06	Middle (n=468)	1.06 (0.94, 1	.20) 0.32	2 High (n=414)	0.98 (0.88, 1.10)	0.73
	High (n=212)	1.17 (1.00, 1.36)	0.05 His	gh (n=216)	1.11 (0.96, 1.29)	0.16	High (n=235)	1.12 (0.96, 1	.30) 0.15	5 -	-	

Table S14. Associations of serum PFAS concentrations with trajectories of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides when the models were not adjusted for BMI in the SWAN-MPS cohort (1999–2016, n = 1130).

^a Odds ratios (ORs) and their 95% confidence intervals (CIs) per doubling of each PFAS concentration. ^b Adjusted p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age, education, menopausal status, smoking status, alcohol consumption, physical activity, and total energy intake.

Table S15. Cross-sectional association of serum PFAS concentrations (ng/mL) with blood lipid levels at baseline (mg/dL) in the SWAN-MPS cohort (1999–2016, n = 1130).

	Total cholesterol		LDL cholesterol		HDL cholesterol		log(triglycerides)	
	Effect size (95% CI) ^a	p-value ^b	Effect size (95% CI)	p-value	Effect size (95% CI)	p-value	Effect size (95% CI)	p-value
n-PFOA	-1.48 (-4.16, 1.20)	0.38	-0.45 (-2.87, 1.96)	0.71	0.35 (-0.70, 1.40)	0.52	-0.04 (-0.08, -0.01)	0.03
PFNA	0.85 (-1.62, 3.31)	0.50	1.38 (-0.84, 3.60)	0.28	0.43 (-0.54, 1.39)	0.48	-0.04 (-0.07, -0.01)	0.04
n-PFOS	1.37 (-1.20, 3.94)	0.38	1.85 (-0.46, 4.17)	0.28	0.73 (-0.28, 1.74)	0.40	-0.04 (-0.08, -0.01)	0.03
Sm-PFOS	2.36 (0.20, 4.52)	0.16	2.47 (0.53, 4.42)	0.06	0.43 (-0.42, 1.28)	0.48	-0.02 (-0.04, 0.01)	0.21
PFHxS	0.98 (-0.90, 2.85)	0.38	1.11 (-0.58, 2.80)	0.28	0.53 (-0.21, 1.26)	0.40	-0.02 (-0.04, 0.01)	0.17

^a Increases in lipid levels and their 95% confidence intervals (CIs) per doubling of each PFAS concentration. ^b Adjusted p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age, education, menopausal status, smoking status, alcohol consumption, BMI, physical activity, and total energy intake.

Table S16. Association of serum PFAS concentrations (ng/mL) with rate of change in blood lipid levels during follow-up (mg/dL/year) in the SWAN-MPS cohort (1999–2016, n = 1130).

	Total cholesterol		LDL choleste	LDL cholesterol		rol	Triglycerides	
	Effect size (95% CI) ^a	p-value ^b	Effect size (95% CI)	p-value	Effect size (95% CI)	p-value	Effect size (95% CI)	p- value
Rate of lipid	change from baseline	e to Visit 6 (on ave	erage 3.01 years of fo	llow-up, n=1	.095)			
n-PFOA	0.43 (-0.26, 1.11)	0.55	0.28 (-0.33, 0.90)	0.76	-0.12 (-0.36, 0.12)	0.52	1.35 (0.14, 2.57)	0.15
PFNA	0.14 (-0.49, 0.77)	0.74	0.12 (-0.44, 0.69)	0.76	-0.01 (-0.23, 0.21)	0.92	0.19 (-0.93, 1.32)	0.74
n-PFOS	-0.31 (-0.96, 0.35)	0.60	-0.21 (-0.80, 0.38)	0.76	-0.31 (-0.54, -0.08)	0.04	1.08 (-0.09, 2.26)	0.18
Sm-PFOS	-0.38 (-0.93, 0.17)	0.55	-0.03 (-0.79, 0.19)	0.76	-0.15 (-0.34, 0.04)	0.33	0.34 (-0.64, 1.32)	0.62
PFHxS	0.08 (-0.40, 0.56)	0.74	0.07 (-0.36, 0.50)	0.76	-0.05 (-0.22, 0.12)	0.72	0.31 (-0.54, 1.17)	0.62
Rate of lipid	change from baseline	e to Visit 9 (on ave	erage 5.98 years of fo	llow-up, n=1	.026)			
n-PFOA	0.19 (-0.22, 0.59)	0.95	0.06 (-0.27, 0.38)	0.85	0.00 (-0.14, 0.15)	0.98	0.51 (-0.18, 1.20)	0.34
PFNA	-0.01 (-0.38, 0.35)	0.95	-0.10 (-0.39, 0.19)	0.85	0.03 (-0.10, 0.16)	0.98	0.18 (-0.45, 0.80)	0.72
n-PFOS	0.03 (-0.35, 0.40)	0.95	-0.07 (-0.38, 0.23)	0.85	-0.07 (-0.20, 0.07)	0.98	0.53 (-0.12, 1.17)	0.34
Sm-PFOS	0.04 (-0.28, 0.37)	0.95	-0.03 (-0.30, 0.23)	0.85	-0.05 (-0.17, 0.07)	0.98	0.36 (-0.20, 0.92)	0.34
PFHxS	0.01 (-0.26, 0.29)	0.95	-0.02 (-0.25, 0.20)	0.85	0.01 (-0.09, 0.11)	0.98	0.02 (-0.46, 0.50)	0.93
Rate of lipid	change from baseline	e to Visit 12 (on av	verage 10.69 years of	follow-up, n	=956)			
n-PFOA	-0.10 (-0.35, 0.14)	0.50	-0.11 (-0.31, 0.08)	0.53	-0.02 (-0.11, 0.07)	0.83	0.32 (-0.90, 0.73)	0.15
PFNA	0.10 (-0.12, 0.32)	0.50	0.00 (-0.17, 0.17)	0.93	0.02 (-0.06, 0.10)	0.83	0.41 (0.05, 0.78)	0.06
n-PFOS	-0.03 (-0.27, 0.20)	0.79	-0.09 (-0.28, 0.09)	0.53	-0.04 (-0.13, 0.05)	0.83	0.51 (0.13, 0.90)	0.05
Sm-PFOS	-0.10 (-0.29, 0.10)	0.50	-0.11 (-0.26, 0.05)	0.53	-0.04 (-0.12, 0.03)	0.83	0.26 (-0.06, 0.59)	0.15
PFHxS	0.09 (-0.08, 0.26)	0.50	0.03 (-0.11, 0.16)	0.83	0.01 (-0.06, 0.07)	0.83	0.21 (-0.08, 0.49)	0.15

^a Increases in rate of change in lipid levels and their 95% confidence intervals (CIs) per doubling of each PFAS concentration. ^b Adjusted p-value based on false discovery rate. The models were adjusted for site × race/ethnicity, age, education, menopausal status, smoking status, alcohol consumption, BMI, physical activity, and total energy intake.

Method for literature review of studies on the association of PFAS exposure with lipids

We conducted a search of research articles in PubMed database up until June 2022 using relevant keywords. We limited the studies that measured blood concentrations of total cholesterol, LDL cholesterol, and/or triglycerides as outcomes. Given a plenty of cross-sectional studies published on this topic, we only included those that involved a sample size greater than 500 or those that included a population with high exposure (e.g., occupational exposure). All available longitudinal studies were included regardless of their sample sizes.

Table S17 Summary of results of selected epidemiological studies^a on associations between PFAS and lipids.

Reference, study population, and note	Lipid	Result
Cross-sectional study, general popula	tion	
Château-Degat et al. 2010	Total cholesterol	PFOS: positive association
Canadian Inuit (n=723)	LDL cholesterol	PFOS: null association
	HDL cholesterol	PFOS: positive association
	Triglycerides	PFOS: null association
Eriksen et al. 2013	Total cholesterol	PFOA: positive association
Danish midlife adults (n=753)		PFOS: positive association
Fisher et al. 2013	Total cholesterol	PFOA: null association
Canadian adults (n=3496)		PFOS: null association
		PFHxS: positive association
	LDL cholesterol	PFOA: null association
		PFOS: null association
		PFHxS: positive association
	HDL cholesterol	PFOA: null association
		PFOS: null association
		PFHxS: null association
	Triglycerides	PFOA: null association
		PFOS: null association
		PFHxS: null association
Liu et al. 2018	Total cholesterol	PFOA: positive association
US adults (NHANES, n=1871)		PFOS: null association
	LDL cholesterol	PFOA: null association
		PFOS: null association
	HDL cholesterol	PFOA: positive association
		PFOS: positive association
	Triglycerides	PFOA: inverse association
		PFOS: inverse association
Cong et al. 2021	Total cholesterol	PFOA: positive association
Chinese older adults (n=1238)		PFOS: positive association
	LDL cholesterol	PFOA: positive association
		PFOS: positive association
	HDL cholesterol	PFOA: null association
		PFOS: null association
	Triglycerides	PFOA: null association
		PFOS: null association

Reference, study population, and note	Lipid	Result
Cross-sectional study, population with	high exposure	
Steenland et al. 2009	Total cholesterol	PFOA: positive association
US adults with high exposure to		PFOS: positive association
PFOA via contaminated drinking	LDL cholesterol	PFOA: positive association
water (n=46294)		PFOS: positive association
	HDL cholesterol	PFOA: null association
		PFOS: null association
	Triglycerides	PFOA: positive association
		PFOS: positive association
Wang et al. 2012	Total cholesterol	PFOA: null association
Chinese residents living near	LDL cholesterol	PFOA: null association
fluorochemical plants (n=132)	HDL cholesterol	PFOA: null association
	Triglycerides	PFOA: null association
Canova et al. 2020	Total cholesterol	PFOA: positive association
Italian young adults with high		PFOS: positive association
exposure to PFAS via contaminated		PFHxS: positive association
drinking water (n=15720)	LDL cholesterol	PFOA: positive association
		PFOS: positive association
		PFHxS: positive association
	HDL cholesterol	PFOA: positive association
		PFOS: positive association
		PFHxS: positive association
	Triglycerides	PFOA: positive association
		PFOS: null association
		PFHxS: positive association
Li et al. 2020	Total cholesterol	PFOA: positive association
Swedish adults with recent exposure		PFOS: positive association
to PFAS via contaminated drinking		PFHxS: positive association
water $(n=1160)$	LDL cholesterol	PFOA: positive association
		PFOS: positive association
		PFHxS: positive association
	HDL cholesterol	PFOA: positive association
		PFOS: positive association
		PFHxS: positive association
	Triglycerides	PFOA: null association
		PFOS: inverse association
		PFHxS: null association

Reference, study population, and note	Lipid	Result
Cross-sectional study, occupational	population	
Wang et al. 2012	Total cholesterol	PFOA: null association
Workers exposed to PFAS (n=55)	LDL cholesterol	PFOA: null association
	HDL cholesterol	PFOA: inverse association
	Triglycerides	PFOA: null association
Longitudinal study, general populat	ion	
Donat-Vargas et al. 2019	Total cholesterol	PFOA: null association
Swedish adults (n=187)		PFNA: null association
* PFAS and lipids were measured at		PFOS: null association
baseline and follow-up (10-year		PFHxS: null association
concentrations were associated with	Triglycerides	PFOA: null association
lipids at follow-up.		PFNA: inverse association
		PFOS: inverse association
		PFHxS: null association
Lin et al. 2019	Hypercholesterolemia	PFOA: null association
US adults with overweight or		PFNA: positive association only in
prediabetic symptoms (n=888)		placebo group
* A randomized controlled trial was		PFOS: null association
conducted with two groups (lifestyle intervention and placebo) and the		PFHxS: null association
participants were followed-up for	Hypertriglyceridemia	PFOA: positive association
~15 years.		PFNA: positive association
		PFOS: positive association only in
		placebo group
		PFHxS: positive association

Reference, study population, and note	Lipid	Result
Dunder et al. 2022	Total cholesterol	PFOA: positive association
Swedish older adults (n=864)		PFNA: positive association
* Changes in PFAS concentrations		PFOS: null association
over 10 years were associated with		PFHxS: positive association
changes in lipids over 10 years.	LDL cholesterol	PFOA: null association
		PFNA: null association
		PFOS: null association
		PFHxS: null association
	HDL cholesterol	PFOA: positive association
		PFNA: positive association
		PFOS: positive association
		PFHxS: positive association
	Triglycerides	PFOA: positive association
		PFNA: positive association
		PFOS: null association
		PFHxS: positive association
Longitudinal study, population with h	high exposure	
Fitz-Simon et al. 2013	Total cholesterol	PFOA: positive association
US adults with high exposure to		PFOS: positive association
PFOA via contaminated drinking	LDL cholesterol	PFOA: positive association
water (n=560)		PFOS: positive association
* Changes in PFAS concentrations	HDL cholesterol	PFOA: null association
changes in lipids levels.		PFOS: null association
	Triglycerides	PFOA: null association
		PFOS: null association
Winquist and Steenland 2015	Hypercholesterolemia	PFOA: positive association
US adults with high exposure to		
PFOA via contaminated drinking		
water (n=28541)		
Longitudinal study, occupational pop	pulation	
Olsen et al. 2003	Total cholesterol	PFOA: positive association
Workers exposed to PFAS (n=174)		PFOS: null association
* Mixed effect models with repeated	Triglycerides	PFOA: positive association
meusures were usea.		PFOS: null association

Reference, study population, and note	Lipid	Result			
Sakr et al. 2007	Total cholesterol	PFOA: positive association			
Workers exposed to PFOA (n=454)	LDL cholesterol	PFOA: null association			
* Mixed effect models with repeated	HDL cholesterol	PFOA: null association			
measures were used.	Triglycerides	PFOA: null association			
^a Comprehensive review on this issue can be found in previous literature (Andersen et al. 2021; ATSDR 2021; Fragki et al. 2021)					

Figure S1. Spearman's correlations between serum PFAS concentrations in the SWAN-MPS cohort (1999–2016, n = 1130).

Figure S2. Trajectories of (A) total cholesterol, (B) LDL cholesterol, (C) HDL cholesterol, and (D) triglycerides identified by latent class growth model in the SWAN-MPS cohort (1999–2016, n = 1130). 'Covariate method' (described in the Methods of the main text) was applied to consider lipid-lowering medication effects.

Figure S3. Odds ratios (•) and their 95% confidence intervals (bar) for associations of tertiles of PFAS concentrations (versus tertile 1) or PFAS mixture (versus low concentration) with trajectories (high versus low trajectories) of (A) total cholesterol, (B) LDL cholesterol, (C) HDL cholesterol, and (D) triglycerides when the models were not adjusted for BMI in the SWAN-MPS cohort (1999–2016, n = 1130). The models were adjusted for site \times race/ethnicity, age, education, menopausal status, smoking status, alcohol consumption, physical activity, and total energy intake. The numbers at the right side of the bars represent odds ratios and their 95% confidence intervals. Results with continuous PFAS concentrations can be found in supplemental Table S14.

Figure S4. Means of the standardized log-transformed serum PFAS concentrations in each cluster identified by k-means clustering in the SWAN-MPS cohort (1999–2016, n = 1130). Cluster 1 (n=291): "low" overall PFAS concentration pattern; clusters 2 (n=569): "medium" overall PFAS concentration pattern; cluster 3 (n=270): "high" overall PFAS concentration pattern.

References

- Andersen ME, Hagenbuch B, Apte U, Corton JC, Fletcher T, Lau C, et al. 2021. Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. Toxicology 459:152845; doi:10.1016/j.tox.2021.152845.
- ATSDR. 2021. Toxicological Profile for Perfluoroalkyls.
- Canova C, Barbieri G, Zare Jeddi M, Gion M, Fabricio A, Daprà F, et al. 2020. Associations between perfluoroalkyl substances and lipid profile in a highly exposed young adult population in the Veneto Region. Environment International 145:106117; doi:10.1016/J.ENVINT.2020.106117.
- Château-Degat ML, Pereg D, Dallaire R, Ayotte P, Dery S, Dewailly É. 2010. Effects of perfluorooctanesulfonate exposure on plasma lipid levels in the Inuit population of Nunavik (Northern Quebec). Environmental Research 110:710–717; doi:10.1016/j.envres.2010.07.003.
- Cong J, Chu C, Li QQ, Zhou Y, (Min) Qian Z, Dee Geiger S, et al. 2021. Associations of perfluorooctane sulfonate alternatives and serum lipids in Chinese adults. Environment International 155; doi:10.1016/j.envint.2021.106596.
- Donat-Vargas C, Bergdahl IA, Tornevi A, Wennberg M, Sommar J, Koponen J, et al. 2019. Associations between repeated measure of plasma perfluoroalkyl substances and cardiometabolic risk factors. Environment International 124:58–65; doi:10.1016/J.ENVINT.2019.01.007.
- Dunder L, Lind PM, Salihovic S, Stubleski J, Kärrman A, Lind L. 2022. Changes in plasma levels of perand polyfluoroalkyl substances (PFAS) are associated with changes in plasma lipids - A longitudinal study over 10 years. Environmental Research 211:112903; doi:10.1016/j.envres.2022.112903.
- Eriksen KT, Raaschou-Nielsen O, McLaughlin JK, Lipworth L, Tjønneland A, Overvad K, et al. 2013. Association between Plasma PFOA and PFOS Levels and Total Cholesterol in a Middle-Aged Danish Population. PLoS ONE 8:e56969; doi:10.1371/journal.pone.0056969.
- Fisher M, Arbuckle TE, Wade M, Haines DA. 2013. Do perfluoroalkyl substances affect metabolic function and plasma lipids?—Analysis of the 2007–2009, Canadian Health Measures Survey (CHMS) Cycle 1. Environmental Research 121:95–103; doi:10.1016/j.envres.2012.11.006.
- Fitz-Simon N, Fletcher T, Luster MI, Steenland K, Calafat AM, Kato K, et al. 2013. Reductions in serum lipids with a 4-year decline in serum perfluorooctanoic acid and perfluorooctanesulfonic acid. Epidemiology 24:569–576; doi:10.1097/EDE.0B013E31829443EE.
- Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, et al. 2021. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Critical Reviews in Toxicology 51:141–164; doi:10.1080/10408444.2021.1888073.
- Li Y, Barregard L, Xu Y, Scott K, Pineda D, Lindh CH, et al. 2020. Associations between perfluoroalkyl substances and serum lipids in a Swedish adult population with contaminated drinking water. Environmental Health: A Global Access Science Source 19; doi:10.1186/s12940-020-00588-9.

- Lin PID, Cardenas A, Hauser R, Gold DR, Kleinman KP, Hivert MF, et al. 2019. Per- and polyfluoroalkyl substances and blood lipid levels in pre-diabetic adults—longitudinal analysis of the diabetes prevention program outcomes study. Environment International 129:343–353; doi:10.1016/j.envint.2019.05.027.
- Liu HS, Wen LL, Chu PL, Lin CY. 2018. Association among total serum isomers of perfluorinated chemicals, glucose homeostasis, lipid profiles, serum protein and metabolic syndrome in adults: NHANES, 2013–2014. Environmental Pollution 232:73–79; doi:10.1016/J.ENVPOL.2017.09.019.
- Olsen GW, Burris JM, Burlew MM, Mandel JH. 2003. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med 45:260–270; doi:10.1097/01.JOM.0000052958.59271.10.
- Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR. 2007. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J Occup Environ Med 49:872–879; doi:10.1097/JOM.0B013E318124A93F.
- Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. 2009. Association of Perfluorooctanoic Acid and Perfluorooctane Sulfonate With Serum Lipids Among Adults Living Near a Chemical Plant. American Journal of Epidemiology 170:1268–1278; doi:10.1093/aje/kwp279.
- Wang J, Zhang Y, Zhang W, Jin Y, Dai J. 2012. Association of Perfluorooctanoic Acid with HDL Cholesterol and Circulating miR-26b and miR-199–3p in Workers of a Fluorochemical Plant and Nearby Residents. Environmental Science & Technology 46:9274–9281; doi:10.1021/es300906q.
- Winquist A, Steenland K. 2015. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environmental Health Perspectives 122:1299–1305; doi:10.1289/EHP.1307943.
- Wu J, Province MA, Coon H, Hunt SC, Eckfeldt JH, Arnett DK, et al. 2007. An investigation of the effects of lipid-lowering medications: genome-wide linkage analysis of lipids in the HyperGEN study. BMC Genetics 8:60; doi:10.1186/1471-2156-8-60.