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Supplemental Text - Statistical methods 
Here we provide further details to complement the outline of the statistical methods presented in the 
Methods section. The approach used consists of three steps: modelling the data to associate each 
gene with statistical parameters; construction of an outlier region in the space of these parameters; 
and performing hypothesis tests to determine whether these parameters fall within this region. The 
material here is similarly organised into three sections describing each of these steps. In much of 
what follows, we consider the experimental setting (i.e. fertility, wing size etc.) to be fixed and 
describe general procedures that we apply, with some modifications, to each of the settings. 

1 Modelling the data 

1.1 General procedure 

The data for each experiment takes the general form (𝑌!" , 𝑥!") ∈ ℝ# ×ℝ$, 𝑖 = 1,… , 𝑛", 𝑗 = 1,… , 𝐽, 
where 𝐽 was the total number of genes, and 𝑑 ∈ {1,2}. Here 𝑌!" corresponds to the 𝑖th measurement 
taken on the 𝑗th gene and the 𝑥!" are associated covariates that may indicate the batch in which the 
measurement was taken, for example. Our goal is to identify outlying genes, and for this purpose 
we first construct a parametric model for the data of the form 

𝑌 ∼ 𝐹(𝜃, 𝜂, 𝑋) 
where 𝑌 and 𝑋 collect together the response of covariates respectively,  𝜃 = (𝜃%, … , 𝜃&) ∈ ℝ#×& are 
the parameters associated the with genes and 𝜂 represents a collection of nuisance parameters 
(e.g. parameters associated with the different batches). The statistical problem at hand then is to 
identify outlying 𝜃". For this we need to introduce a notion of what it means to be an outlier, and then 
propose a methodology for testing for each 𝑗 whether 𝜃" is an outlier. These latter two tasks are 
described in Sections 2 and 3. To do these, we require estimates (𝜃9")"(%

&  of (𝜃")"(%
&  that are 

approximately unbiased and Gaussian with estimated variance Σ9 ∈ ℝ(#⋅&)×(#⋅&). Note that as we are 
only interested in differences between different 𝜃", we are for example free to introduce a sum-to-
zero constraint on these parameters to reduce the overall variance, and we do this throughout. 
Below we present the specific statistical models 𝐹 used for each of the different experimental 
datasets for which (versions of) maximum likelihood estimation then delivers these quantities. All 
computations were performed in R [1]. 

1.2 Fertility 
Let 𝑌!", ∈ ℤ be the 𝑖th brood size measurement corresponding to female flies with gene type 𝑗 in 
batch 𝑘 for 𝑖 = 1,… , 𝑛", (where 𝑛", may be 0 for some (𝑗, 𝑘)). We will first present our analysis of the 
data on females; analysis for the data on males proceeded similarly. 
To examine the mean–variance relationship (i.e. how 𝔼(𝑌!",) relates to Var(𝑌!",)), we first formed for 
all (𝑗, 𝑘) such that 𝑛", ≥ 2, 

𝑚", =
1
𝑛",

D𝑌!",

-

!(%

, 𝑠", =
1
𝑛",

D(
-

!(%

𝑌!", −𝑚",).. 

We then regressed 𝑚", on to 𝑠", via the following optimisation: 

𝛽I = arg	min
/∈ℝ!

D 𝑛",
(",):-"#3.

|𝑠", − 𝛽%𝑚", − 𝛽.𝑚",
. |. 

The lack of intercept in this regression encodes the restriction that when 𝔼(𝑌!",) = 0 we must have 
Var(𝑌!",) = 0; the use of the absolute value rather than the more usual squared error loss is to 
account for the exponential-type tails we may expect for the 𝑠",; and the weights 𝑛", reflect the 
variance of the 𝑠",. 

We thus obtained an estimated variance function 𝑉9(𝜇) = 𝛽I%𝜇 + 𝛽I.𝜇. such that  𝑉9(𝔼𝑌!",) ≈ Var(𝑌!",). 
We obtained coefficients 

𝛽I% = 8.229653								𝛽I. = −0.04984021, 
and as 𝛽I. was negative, we were able to express 	𝑉9  as a scaled version of a Bernoulli variance 
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function via 

𝑉9(𝜇) = 𝑉Z(𝜇[) =
𝛽I%.

|𝛽I.|
𝜇[(1 − 𝜇[) 

with 𝜇[ = |𝛽I.|𝜇/𝛽I%. To fit a regression model with this form of variance function, we used a quasi-
binomial regression after transforming the data 𝑌!", ↦ 𝑌Z!", = |𝛽I.|𝑌!",/𝛽I%. The transformed data took 
values in [0,1] so we used a logit link and modelled the mean 𝔼𝑌Z!", as 

loga
𝔼𝑌Z!",

1 − 𝔼𝑌Z!",
b = logit(𝔼𝑌Z!",) = 𝜃"% + 𝜂,%. 

To handle zero counts we used the bias correction of [2], as implemented in [3] , which always 
produces finite parameter estimates. The analysis of the male data was very similar, and in the end 
we obtained estimates (𝜃9")"(%

&  and block diagonal estimated variance matrix 𝛴9 (as the male and 
female data were independent). 

1.3 Wing size 

Let 𝑌!", ∈ ℝ. be the 𝑖th measurement on the 𝑗th gene in the 𝑘th batch, defined for 𝑖 = 1,… , 𝑛", 
(where 𝑛", may be 0 for some (𝑗, 𝑘)) with first and second components denoting measurements for 
anterior and posterior wing segments respectively. We used the model 

𝑌!", = 𝜃" + 𝜂, + 𝜀!", 

where 𝜀!", ∼!.!.#.𝒩(0, 𝛴") with Σ" ∈ ℝ.×.. Inspection of the data showed that the correlation matrices 
corresponding to the Σ" vary very little over 𝑗 and the difference is barely detectable by permutation 
tests. We therefore constrained Σ" in the following way: Σ" = 𝐷"%/.Σuniv𝐷"%/. where Σuniv ∈ ℝ.×. is a 
universal correlation matrix and the 𝐷" ∈ ℝ.×. are diagonal matrices with variances corresponding 
to each gene. 

1.4 PolyQ aggregates 
We first constructed from the available data two quantities from each replicate: the number of 
aggregates with area in pixels greater than 50, and the corresponding number with area less than 
or equal to 50. They form the components of 𝑌!", ∈ ℤ., for which we use quasi-Poisson models with 
log | links as follows. 

a
log(𝔼𝑌!",%)
log(𝔼𝑌!",.)

b = 𝜃" + 𝜂, . 

We performed two separate Poisson regressions for each component of the response. In order to 
avoid issues where parameter estimates from standard maximum likelihood estimation were too 
large, we employed the bias correction of [2], as implemented in [3]. To estimate the covariance 
matrix of the parameters, we noted that the working residuals from the regressions displayed a 
covariance that was constant across fitted values from each of the regressions. Using this 
estimated covariance and estimated dispersion parameters we formed a full covariance matrix Σ9 ∈
ℝ(.⋅&)×(.⋅&) for all (𝜃9")"(%

& . 

1.5 Survival under stress 

Let 𝑌!",5 and 𝑇!",56  denote the censored survival and censoring times under oxidative stress for the 
𝑖th replicate of gene 𝑗 in batch 𝑘 and wheel 𝑙. We fitted a Cox proportional hazards model of the 
form 

ℎ!",5(𝑦) = exp(𝜃" + 𝜂5)ℎ,(𝑦), 

where ℎ!",5 is the hazard function of the unobserved uncensored version 𝑌!",5∗  of 𝑌!",5, and ℎ, is an 
unspecified baseline hazard function for batch 𝑘. 
We used an analogous model for the data concerning survival times under starvation. 

1.6 Climbing speed 

Let 𝑌!",5 and 𝑍!",5 denote the 𝑖th speed measurement corresponding to gene 𝑗, batch 𝑘 and repeat 𝑙 
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for days 8 and 22 respectively. We used the following random effects models: 
𝑌!",5 = 𝜃"% + 𝜂,% + 𝜁",5% + 𝜀!",5% 

𝑍!",5 = 𝜃". + 𝜂,. + 𝜁",5. + 𝜀!",5. 

where 𝜁",58 ∼ 𝒩(0, 𝜎,8. ) and 𝜀!",58 ∼ 𝒩(0, 𝜎8. ), all independently. 

2 Outlier region construction 

From the initial regression, we obtained estimates (𝜃9")"(%
&  for the parameters (𝜃")"(%

&  corresponding 
to each gene, and their associated estimated variance matrix Σ9 ∈ ℝ(#⋅&)×(#⋅&). In order that an 
elliptical outlier region was appropriate, we transformed the estimates depending on their 
distribution to give 𝜇̂" = 𝑓(𝜃9") where the transform function 𝑓:ℝ# → ℝ# chosen is given in Table 1. 
 

Dataset Transform function 𝒇 
Fertility logistic 

Wing size identity 
PolyQ aggregates exponential 

Survival under Stress identity 
Climbing speed identity 

Table 1; Transform functions used for different datasets. 

Let us write 𝜇" = 𝑓(𝜃") for each 𝑗 = 1,… , 𝐽. We considered 𝑓 as fixed, and as is common in the 
analysis of outliers, considered a model for the 𝜇" as samples from a mixture of a normal 
distribution and an outlier distribution 𝐹out [4]: 

𝜇" ∼ 𝛾𝒩(𝜇, Σ9) + (1 − 𝛾)𝐹out. 
We assumed the mixture proportion 𝛾 to be greater than 0.5 and that the support of 𝐹out was 
sufficiently far from 𝜇. We used the minimum covariance determinant estimator [5], as implemented 
in [6], to give a robust estimate 𝜇̂ of 𝜇 and an initial estimate Σ99 of Σ9. Whilst we can expect that 𝜇̂ is 
a reasonable estimate of 𝜇, Σw9 will be substantially inflated by the sampling variability of the (𝜇̂")"(%

& . 
To correct for this, we employed the following bootstrap strategy. 

1. Produce bootstrap samples (𝜃9"
(:))"(%

& ∼ 𝒩((𝜃9")"(%
& , Σ9) for 𝑏 = 1,… , 𝐵. 

2. Form 𝜇̂"
(:) = 𝑓(𝜃9"

(:)) for 𝑗 = 1,… , 𝐽 and 𝑏 = 1,… , 𝐵. 

3. Compute robust covariance estimates Σw9
(%), … , Σw9

(;) based on each of the bootstrap samples 
(𝜇̂"

(%))"(%
& , … , (𝜇̂"

(;))"(%
&  using the minimum covariance determinant estimator. 

4. Set 

Σz9 =
1
𝐵DΣw9

(:)
;

:(%

 

and finally define our final estimate Σ99 of Σ9 by 

Σ99 = Σw9%/.Σz9<%/.Σw9Σz9<%/.Σw9%/.. 
The rationale for this approach is that 

𝐻:ℝ#×# → ℝ#×#																										
													Ω ↦ Σw9%/.Σz9<%/.ΩΣz9<%/.Σw9%/.

 

is a mapping that satisfies Σ99 = 𝐻(Σw9) and 

1
𝐵D𝐻

;

:(%

(Σw (:)) = Σw9 . 

Thus, we can think of 𝐻 as a corrective transformation that were (𝜇̂")"(%
&  to be a sample from the 

ground truth, gives an approximately unbiased estimate of its (robust) covariance. Applying 𝐻 to Σw9 
should similarly correct it to give a better estimate of Σ9. The reason for generating the bootstrap 
samples at the level of the untransformed parameters is that the Gaussian approximation in step 1 



	 42 

of the procedure above, which mimics the sampling distribution of the (𝜃9")"(%
& , would typically be 

more reliable than the analogous approximation for the (𝜇̂")"(%
& . 

Given our final estimates 𝜇̂ and Σ99, we set the outlier region to be the complement of the elliptical 
contour of a 𝒩#(𝜇̂, Σ99) density such that the probability of 𝜁 ∼ 𝒩#(𝜇̂, Σ99) falling within the region is 
given by 0.05 or 0.1, depending on the dataset. This outlier region can be mapped to the 𝜃-space 
using the inverse of 𝑓; in the sequel we will refer to this region as 𝑅. 

3 Testing for outliers 
Given outlier region 𝑅 such that all 𝑗 for which 𝜃" ∈ 𝑅 are deemed outliers, we constructed for each 𝑗 
an (approximate) 𝑝-value 𝑝" for the null hypothesis 𝜃" ∉ 𝑅. In the cases where the region was an 
interval, this was straightforward. In the cases where the region was two-dimensional, this was done 
using a bootstrap scheme, the main steps of which were as follows. Denote by 𝐴 the complement of 
𝑅, and also let 𝐴9 be the (elliptical) region 𝑓(𝐴). 

1. Compute via the delta method an estimate Ω�" of the variance of 𝜇̂". 

2. Compute the projection 𝜇[" of 𝜇̂" on to the elliptical region 𝐴9 using the Mahanolobis 
distance with covariance Ω�": 

𝜇[" = argmin
8∈=$

(𝜇̂" −𝑚)>Ω�"<%(𝜇̂" −𝑚). 

(Details for how this is performed are given in Section 4.) 
3. Set 

𝑇" = (𝜇̂" − 𝜇[")>Ω�"<%(𝜇̂" − 𝜇["). 

Also define 𝜃Z" = 𝑓<%(𝜇["). 

4. Let ΣZ" be an estimate of the maximum likelihood estimate of 𝜃" under the null that 𝜃" ∈ 𝐴. 
Generate 𝐵 = 100000 bootstrap samples 𝜃Z"

(%), … , 𝜃Z"
(;) ∼!.!.#.𝒩#(𝜃Z" , ΣZ"). Let 𝜇["

(:) = 𝑓(𝜃Z"
(:)). 

5. Compute bootstrap versions of the test statistic 𝑇": 

𝑇"
(:) = min

8∈=$
(𝜇["

(:) −𝑚)>Ω�"<%(𝜇["
(:) −𝑚). 

6. Then 

𝑝" =
∑ 𝟙{>"(&)3>"}
;
:(%

𝐵  

in a Monte Carlo estimate of the 𝑝-value. To improve the quality of this estimate, we in fact 
used an importance sampling scheme where initially the 𝜃9"

(:) were generated from a 
mixture of the Gaussian distribution above, and 𝒩#(𝜃9" , ΣZ") (with mixture proportions 0.5); the 
𝟙{>"(&)3>"}

 terms were then weighted according to the importance sampling weights.. 

The rationale for this is as follows. The test statistic 𝑇" encapsulates how far 𝜇̂" is from the region 𝐴9 
taking into account the variance of the 𝜇̂" (directions in which 𝜇̂" is highly variable are effectively 
down-weighted). Under the null hypothesis that 𝜃" ∈ 𝐴, we should have 𝜇[" ≈ 𝜇": 𝑓(𝜃") and so the 
bootstrap distribution should approximate the null distribution and thus provide effective calibration 
for 𝑇". 
We finally apply false discovery rate (FDR) correction to the 𝑝-values using the Benjamini–
Hochberg procedure [7]. Although controlling for batches and the fact that the outlier region is 
determined using the data would make the 𝑝-values dependent, the dependence should be weak 
and thus the Benjamini–Hochberg procedure should at least approximately control the FDR. 

4 Ellipse projection 
Here we describe an efficient approach to computing 

𝑥∗ = arg	min	
A∈=

(𝑥 − 𝑧)>𝑀(𝑥 − 𝑧) 
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where 𝑀 ∈ ℝ#×# is a symmetric positive definite matrix and ellipsoid 𝐴 = {𝑥: 𝑥>Ω𝑥 ≤ 𝑐} for 
symmetric positive definite Ω ∈ ℝ#×#, 𝑐 > 0 and 𝑧 ∉ 𝐴. Equivalently, the problem is to find the 
minimum 𝑐∗ > 0 such that there exists 𝑥∗ with 

(𝑥∗ − 𝑧)>𝑀(𝑥∗ − 𝑧) ≤ 𝑐∗	and	(𝑥∗)>Ω𝑥∗ ≤ 𝑐. 
By Lagrangian duality, we know there exists 𝜆 that 

𝑥∗ = arg	min	
A∈ℝ(

{(𝑥 − 𝑧)>𝑀(𝑥 − 𝑧) + 𝜆𝑥>Ω𝑥}. 

Consider the eigendecomposition 𝑀 = 𝑃𝐷.𝑃>. Writing 𝑦∗ = 𝐷𝑃>𝑥∗ we have 
𝑦∗ = arg	min	

B∈ℝ(
{∥ 𝑦 − 𝐷𝑃>𝑧 ∥..+ 𝜆𝑦>𝐷<%𝑃>Ω𝑃𝐷<%𝑦}. 

Let the eigendecomposition of 𝐷<%𝑃>Ω𝑃𝐷<% be 𝑈Λ𝑈>. We see that then 
𝑧∗ = (𝐼 + 𝜆Λ)<%𝑈>𝐷𝑃>𝑧 

where 𝑧∗ = 𝑈>𝑦∗ so 𝑥∗ = 𝑃𝐷<%𝑈𝑧∗ and 𝜆 is such that (𝑧∗)>Λ𝑧∗ = 𝑐. 
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