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Supplementary Text 

 

Variable selection and merging 

To generate a consistent and large database, with a maximal number of common biological variables for subjects, we 

performed a manual data cleaning to eliminate redundant outcomes, both within the same year and in different years. 

This step requires human intervention. For instance, some variables hold different labels and/or codes across years 

(e.g., LBDHDLSI, “HDL-cholesterol (mmol/L)” from 1999 to 2002 and LBDHDDSI, “Direct HDL-Cholesterol 

(mmol/L)” from 2003 to 2018), or have different units (e.g., serum glucose in mmol/L LBDSGLSI and in mg/dL 

LBXSGL). To optimize cleaning by investigators (IA, LC, LP, PK and PM) and ensure reproducibility, a web 

interface was developed (Fig. S1).  

For each laboratory variable available, investigators were independently asked to select the variables based on the 

inclusion criteria described above. A similarity algorithm (using cosine similarity and Levenshtein distance) based 

on the “SAS” and “text” labels, proposed a list of potentially synonymous terms to investigators. A manual search 

tool with autocompletion was also available.  

When identical variables were measured several times, the mean value was considered (for example: both variables 

LB2NEPCT and LBXNEPCT corresponded to the same biological variable, i.e. segmented neutrophils percent). 

Biological variables expressed in international units (SI) were privileged over their non-SI counterparts. In case of 

disagreement by an investigator, a collegial decision was made at the consensus phase. After this step, and 

considering the distribution of the number of available variables for a given number of subjects, the largest dataset 

with the minimum amount of missing data was defined. The cut-off for this distribution selected variables with at 

least 50,000 individuals. Individuals with more than 10% missing values were also dropped from database. After 

processing, the selected dataset contained 60,322 individuals with 48 laboratory variables (Table S1) and limited 

missing data (0.6% of data, Fig. S2).  
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Fig. S1 : Screenshots of the dedicated interface that has been used to annotate the database.  

Each user had his own account and the laboratory variables (A) were selected, grouped and/or annotated (B). 
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Fig. S2: Distribution of data within the final dataset.  

(A) Distribution of the number of individuals by chronological age and gender. The amount of data from 12 to 20 years was 

twice those of other age and a 25% decrease of available subject number from 70 to 79 years old. No major gender imbalance 

was pointed out across age groups. (B) Uniform distribution of missing data among chronological age and gender. (C) Proportion 

of missing data by variable. The amount of missing data was low (25% of individuals with one missing value representing 0.6% 

of the total values). They were mainly related to the lack of C-reactive protein, folate, albumin, and creatinine data. 
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Fig. S3: Interpretation of partial dependance plot (A) and heatmap of contextualized SHAP values (B).  

(A) Each dot represents an individual. The color indicates the corresponding chronological age. X-axis corresponds to the real 

value of the variable, while the y-axis corresponds to the SHAP value given to this individual for this variable. While the 

contextualized SHAP values are negative in low values of glycohemoglobin, a sharp increase occurs between 5.3 and 6%. This 

transition zone, characterized by the passage from zero, is different according to age and clearly visualized in (B) as a dark zone 

in the heatmap. (B) Heatmap of contextualized SHAP values as a function of chronological age. The color of each pixel indicates 

the average SHAP value of a variable (x-axis) as a function of chronological age (y-axis). For an individual of 30 y.o., the normal 

range is about 5.5 – 5.8%. 

A B 

Fig. S4: Gender and chronological age distribution of individuals 

UMAP 2-dimensional projection of the 48 variables of the dataset, colored by chronological age (A) and gender (B). UMAP 

revealed some clustering across the second dimension by gender with mostly males in the upper part of the UMAP and females 

in the lower part. In addition, the first dimension mainly contains chronological age information, with a gradient from youngest 

to oldest from right to left.  
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Fig. S5: No gender and age group imbalance between train and test datasets 

Random Forest 

 

Decision Tree 

 

Elastic Net 

 

Fig. S6 : Distribution of residuals for the prediction of chronological age by Random Forest, Decision Tree and Elastic 

Net. 

Left scatter plot illustrates the distribution of residuals on the train dataset and right scatter plot on the test dataset. The 

performances are largely inferior to those obtained with XGBoost or MultiLayer Perceptron with a strong performance 

discrepancy across the age group (younger people are predicted to be older and conversely). 
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Fig. S7: Relative importance of the most 

important variables in physiological age 

prediction. 

The mean absolute value of shap values for the 

20 most important variables are shown for the 

whole population (gray), female (green) and 

male (purple) populations. A similar 

importance can been shown according gender. 

  

 

Fig. S8: Global explainability of 

the PPA model in importance 

order of mean of absolute SHAP 

values. 

Each point color encodes the SHAP 

value of each variable for each 

individual, red and blue colors for 

high and low values of the variable 

respectively. On the x-axis, a 

positive or negative SHAP value 

means that the variable, for one 

individual contributes to the 

estimation of physiological age 

positively or negatively 

respectively. 
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Fig. S9: Global explainability of the PPA model in importance order of mean of absolute SHAP values for male (A) and female individuals (B).  

Each point color encodes the SHAP value of each variable for each individual, red and blue colors for high and low values of the variable respectively. On the x-axis, a positive or negative 

SHAP value means that the variable, for one individual contributes to the estimation of physiological age positively or negatively respectively. Similar explainability profile can be found 

between male and female.
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Fig. S10: Partial Dependence 

Plots of contextualized SHAP 

values. 

(A) Contextualized SHAP values 

as a function of variable values. 

Each dot represents an 

individual. The color indicates 

the corresponding chronological 

age (scale on the right). X-axis 

corresponds to the real value of 

the variable, while the y-axis 

corresponds to the SHAP value 

given to this individual for this 

variable. The dotted line 

corresponds to the SHAP value 

of 0, which means that when the 

individual displays a variable 

value for which the SHAP value 

is 0, the variable has no impact 

on the physiological age. 
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(B) Heatmap of contextualized 

SHAP values as a function of 

chronological age. The color of 

each pixel indicates the average 

SHAP value of a variable (x-

axis) as a function of 

chronological age (y-axis). 
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Table S1: List of the 48 biological variables, by alphabetical order 

SAS label Excluded during feature selection 

Albumin (g/L)  

Albumin, urine (ug/mL)  

Alkaline phosphotase (U/L)  

ALT (U/L)  

AST (U/L)  

Basophils number (1000 cells/uL)  

Basophils percent (%)  

Bicarbonate (mmol/L)  

Bilirubin, total (umol/L)  

Blood urea nitrogen (mmol/L)  

Cholesterol (mmol/L)  

C-reactive protein(mg/dL)  

Creatinine (umol/L)  

Creatinine, urine (umol/L)  

Direct HDL-Cholesterol (mmol/L)  

Eosinophils percent (%) Yes 

Folate, RBC (nmol/L RBC)  

Folate, serum (nmol/L)  

GGT (U/L)  

Globulin (g/L)  

Glucose, serum (mmol/L)  

Glycohemoglobin (%)  

Hematocrit (%)  

Hemoglobin (g/dL)  

Iron (umol/L) Yes 

LDH (U/L) Yes 

Lymphocyte number (1000 cells/uL)  

Lymphocyte percent (%)  

MCHC (g/dL)  

Mean cell hemoglobin (pg)  

Mean cell volume (fL)  

Mean platelet volume (fL) Yes 

Monocyte number (1000 cells/uL)  

Monocyte percent (%)  

Osmolality (mmol/Kg)  

Phosphorus (mmol/L)  

Platelet count (1000 cells/uL)  

Potassium (mmol/L)  

Red blood cell count (million cells/uL)  

Red cell distribution width (%)  

Segmented neutrophils num (1000 cell/uL)  

Segmented neutrophils percent (%)  

Sodium (mmol/L)  

Total calcium (mmol/L)  

Total protein (g/L)  

Triglycerides (mmol/L)  

Uric acid (umol/L)  

White blood cell count (1000 cells/uL)  
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Table S2: List of hyperparameters used during model tuning.  

The grid search is presented for each model together with the best hyperparameters found for each model. 

Model Grid search parameters Best hyperparameters found 

Elastic Net 

l1_ratio: [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 0.95, 0.99] 

alpha: uniform (-4, -2, 0.5) 

l1_ratio: 0.99 

alpha: 0.0001 

Random Forest 

n_estimators: loguniform (100, 1000) 

max_features: [auto, sqrt] 

max_depth: randint (3,12) 

min_samples_split: [2,5,10] 

min_samples_leaf: [1,2,4] 

bootstrap: [True, False] 

n_estimators: 598 

max_features: auto 

max_depth: 11 

min_samples_split: 5 

min_samples_leaf: 2 

bootstrap: True 

Decision Tree 

max_depth: int(2, 50) 

min_samples_split: int(2, 12) 

min_samples_leaf: int(2, 50) 

max_depth: 28 

min_samples_split: 6 

min_samples_leaf: 24 

Multilayer Perceptron 

n_layers: [2,3,4] with hidden_layer_sizes 

[16,32,64,128,256] 

activation: [relu, identity] 

beta_1: [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 0.95, 0.99] 

beta_2: [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 0.95, 0.99] 

alpha: uniform (-4, -1, 0.5) 

n_layers: 2 with hidden_layer_sizes 

(16,64,32,64) 

activation: relu 

beta_1: 0.1 

beta_2: 0.4 

alpha: 0.003 

XGBoost Model 

max_depth: [3,4] 

subsample: uniform(0.2, 0.8, 0.05) 

colsample_bytree: uniform(0.2, 1.0, 0.05) 

colsample_bylevel: uniform(0.2, 1.0, 0.05) 

learning_rate: 10^(uniform(-4.0, -1.0, 0.5)) 

max_depth: 3 

subsample: 0.7 

colsample_bytree: 0.85 

colsample_bylevel: 0.9 

learning_rate: 0.1 

XGBoost Model with 

custom loss 

max_depth: 3 

subsample: 0.8 

colsample_bytree: 1.0 

colsample_bylevel: 0.5 

learning_rate: 0.01 
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Table S3: Details of the validation variables 

Socio-demographic variables 

Gender (RIAGNDR, Male - Female) 

Ethnicity (RIDRETH1, Non-Hispanic white - Mexican American - Non-Hispanic black 

- Other) 

Family income : Annual Family Income (INDFMINC and INDFMIN2) divided into 

quartile 

Poverty Index Ratio (INDFMPIR) divided into Poverty (<1) and No poverty (≥1) 

Medical variables 

Body Mass Index : BMXMI divided into Obesity (≥ 30), Overweight (≥25 and <30), 

Normal weight: (≥18.5 and <25) and Underweight (<18.5) 

Tobacco exposure : LBXCOT (Cotinine) divided into No exposure (≤13) and Exposure 

(>13) 

Sedentarity: combination of PAD020, PAQ635 (Walked or bicycled over past 30 days, 

Yes/No), PAQ180 (Avg level of physical activity each day, from no activity to high 

activity) and PAD320, PAQ620 (Moderate activity over past 30 days, Yes/No). Active 

defined as at least one activity among the previous ones 

AAC24 score: DXXAAC24 (AAC Total 24 Score) recoded into Low score (0-1), Med 

score (2-5), and High score (6+) 

 

Pathologies 

Liver diseases: MCQ160L, MCQ500 (Ever told you had any liver condition) 

Coronary Heart Diseases: presence of a condition among MCQ160C (Ever told you had 

coronary heart disease), MCQ160F (Ever told you had a stroke), MCQ160B (Ever told 

had congestive heart failure), MCQ160D (Ever told you had angina/angina pectoris) and 

MCQ160E (Ever told you had heart attack) 

Diabetes: presence of a condition among DIQ010 (Doctor told you have diabetes) and 

DIQ160 (Ever told you have prediabetes) 

Thyroid diseases: presence of a condition among MCQ160H (Ever told you had a 

goiter), MCQ160M (Ever told you had a thyroid problem) and MCQ160I (Ever told you 

had thyroid disease) 

Arthritis: presence of a condition among MCQ160N (Doctor ever told you that you had 

gout?), MCQ160A (Doctor ever said you had arthritis) and ARQ125E (Ever told had 

Ankylosing Spondylitis) 

Cancer: MCQ220 (Ever told you had cancer or malignancy) 

Kidney diseases: presence of a condition among KIQ020, KIQ022 (Ever told you had 

weak/failing kidneys) and OHQ144 (Have kidney disease w/ renal dialysis?) 

Bronchitis: presence of a condition among MCQ160K (Ever told you had chronic 

bronchitis), MCQ160o (Ever told you had COPD?) and MCQ010 (Ever been told you 

have asthma) 

Auto-immune digestive disease: presence of a condition among ARQ125C (Ever told 

you had Ulcerative Colitis) and ARQ125D (Ever told you had Crohns Disease) 

Digestive ulcer: MCQ200 (Ever told had stomach/duod/peptic ulcer) 

Eye disease: presence of a condition among VIQ090 (Ever told had glaucoma) and 

VIQ310 (Told had macular degeneration) 

Dermatologic disease: presence of a condition among DEQ053, MCQ070 (Ever told had 

Psoriasis?) and AGQ180 (Doctor told have eczema) 

 

 


