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Supplementary Note 1: Layer-wise analysis of face recognition performance, other-race and 
face inversion effect in VGG16 
 
Methods. To compare the face recognition performance between humans and CNNs for each 
layer, we extracted activation from each layer of three VGG16 networks (Face-ID CNN; Obj-Cat 
CNN and Untrained CNN) and performed the same analysis. Specifically, we extracted the 
activation from each convolutional and fully-connected layer after the relu operation. When the 
layer was followed by a pooling layer, we extracted the activation from the pooling layer. For each 
model and layer, we computed the correlation distance between the activation patterns of each pair 
of images (Fig. 1B, right panel). The network’s choice was determined by which of the two matching 
images had an activation pattern that was closest to the target image. We performed this analysis 
for the white female datasets upright and inverted, and for the unfamiliar white and Asian female 
datasets. 
 
Face recognition performance on upright faces (Experiment 1). For the white female dataset, 
we found that the face-trained CNN began to outperform the object-trained CNN from the last 
convolutional layer onwards (Fig. S1; p=0, bootstrap test). The performance of the untrained and 
the object-trained CNNs did not vary much across layers. These results show that the late stages 
of the face-trained network outperform the object-trained network and approach human-level face 
recognition performance. 
 

 
Fig. S1. Late layers of face-trained CNNs outperform object-trained and untrained CNNs and 
achieve humanlike performance. (a) Human performance (n=1,532) was 87.53% (gray horizontal 
line; chancel level was 50%). The face-trained CNN (red) outperformed the object-trained CNN 
(yellow) from the last convolutional layer (conv13) onwards (p=0, bootstrap test). The face-trained 
CNN further reached human performance in the penultimate fully-connected layer (fc7; p>0.4, 
bootstrap test). Networks trained on object categorization (yellow) performed better than untrained 
CNNs (gray) across all layers, but did not reach human-level recognition performance. Error bars 
denote bootstrapped 95% CI.  
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Other-race effect (Experiment 4). To measure the other-race effect in each layer, we compared 
the layer-wise accuracy on the target-matching task on the non-famous white female dataset to the 
accuracy on the Asian female dataset (Fig. S2). The performance of the white face-trained network 
on the white female dataset was significantly higher than for the Asian female dataset from the last 
convolutional layer onwards (all p=0, bootstrap test) and vice versa for the Asian face-trained CNN 
(all p<0.01, bootstrap test). Neither the object-trained nor the untrained CNN showed a significant 
difference between the two datasets (all p>0.2, bootstrap test). 
 

 
Fig. S2. Late layers of the face-trained CNNs show an other-race effect. For the face-trained 
CNN (Face-ID-white CNN in red; all Asian faces were removed from the training), the performance 
on the white female dataset was significantly higher than on the Asian female dataset from the last 
convolutional layer onwards. The opposite was true for the CNN trained on Asian identities (Face-
ID-Asian CNN in purple). Neither the object-trained (Obj-Face-Cat CNN in yellow) nor the untrained 
(Untrained CNN in gray) CNN showed a significant difference between both datasets at any layer. 
Shaded areas denote bootstrapped 95% CI. Asterisks indicate significant differences (p<0.01, 
bootstrap test). 
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Face inversion effect (Experiment 5). We found similar results when comparing the performance 
on the upright and inverted white female dataset (Fig. S3). Only the face-trained, but not the object-
trained or untrained, CNN showed a significant face inversion effect, i.e., improved performance 
for upright compared to inverted images, from the last convolutional layer onwards (all p<0.01, 
bootstrap test). 
 

 
Fig. S3. Late layers of the face-trained CNN show a face inversion effect. The pattern of 
differences was very similar to the other-race effect. Only the face-trained CNN (Face-ID CNN in 
red) showed a significant difference in performance between upright and inverted face stimuli 
starting at the last convolutional layer. Shaded areas denote bootstrapped 95% CI. Asterisks 
indicate significant differences (bootstrap test, p<0.01). 
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Supplementary Note 2: Replication of results for face recognition performance, other-race 
and face inversion effect in Alexnet and ResNet 
 
Methods. To test whether the main results in the paper generalize to other architectures, we 
compared face recognition performance of humans to Alexnet and ResNet-50. For each of these 
architectures, we trained three different networks: i) one trained on face discrimination, ii) one 
trained on object categorization, and iii) one untrained. Note that for computational efficiency, we 
restricted this analysis to the face-trained, object-trained and untrained CNNs (referred to as Face-
ID CNN, Obj-Cat CNN, Untrained CNN, respectively). We used the same training stimuli, 
parameters and procedure to train the CNNs on face or object categorization. For both 
architectures, we extracted the activation from the last relu (Alexnet) or the last pooling (ResNet) 
layer preceding the classification layer. We performed this analysis for the white female identities 
upright and inverted, and for the non-famous white and Asian female identities, respectively. 
 
Face recognition performance on upright faces (Experiment 1). The pattern of results on the 
white female dataset obtained for VGG16 were generally replicated with Alexnet and ResNet (Fig. 
S4). We found that the face-trained CNN (red) outperformed the object-trained CNN for both 
architectures (p=0, bootstrap test), while the object-trained CNN outperformed the untrained CNN 
(p=0, bootstrap test). However, neither  Alexnet nor ResNet reached human performance (p=0, 
bootstrap test).  
 

 
Fig. S4. Pattern of face recognition results replicated in Alexnet (A) and ResNet (B). Error 
bars denote bootstrapped 95% CI. 
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Face inversion effect (Experiment 5). To investigate the face inversion effect in Alexnet and 
ResNet, we ran the same analysis on the inverted face dataset (Fig. S5). As we found for VGG16, 
the performance of the face-trained Alexnet and ResNet on upright stimuli was significantly higher 
than for inverted stimuli (p=0, bootstrap test). In both architectures, neither the object-trained nor 
the untrained CNN showed a significant difference between the two datasets (all p>0.2, bootstrap 
test). These results show that both architectures, if trained on (upright) faces, also show a face 
inversion effect. 
 

 
Fig. S5 | Face inversion effect in Alexnet and ResNet (Experiment 5). (A) For Alexnet trained 
on (upright) faces (red), the performance on the upright female dataset was significantly higher 
than on the inverted female dataset in the penultimate fully-connected layer. Neither the object-
trained (yellow) nor the untrained (gray) Alexnet showed a significant difference between the two 
datasets. (B) The pattern of differences was very similar for ResNet and replicated the results for 
Alexnet and VGG16: Only the face-trained CNN showed a significant difference in performance 
between upright and inverted face stimuli in the penultimate fully-connected layer. Error bars 
denote bootstrapped 95% CI. Asterisks indicate significant differences (bootstrap test, p=0). 
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Other-race effect (Experiment 4). We found very similar results when comparing the performance 
on the non-famous white female and Asian female dataset (Fig. S6). Only the face-trained, but not 
the object-trained or untrained CNNs showed a significant other-race effect, that is improved 
performance for white compared to Asian face images in the penultimate fully-connected layer 
(p=0, bootstrap test). 
 

 
Fig. S6. Other-race effect in Alexnet and ResNet (Experiment 4). (A) For Alexnet trained on 
(predominantly white) faces (red), the performance on the white female dataset was significantly 
higher than on the Asian female dataset in the penultimate fully-connected layer. Neither the object-
trained (yellow) nor the untrained (gray) Alexnet showed a significant difference between the two 
datasets. (B) The pattern of differences for the ResNet architecture was very similar to Alexnet and 
replicated the results for VGG16: Only the face-trained CNN showed a significant difference in 
performance between white and Asian face stimuli in the penultimate fully-connected layer. Error 
bars denote bootstrapped 95% CI. Asterisks indicate significant differences (bootstrap test, p=0). 
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Supplementary Note 3: Analysis of errors and trial-by-trial predictivity between humans and 
CNNs (Experiment 1) 
 
Methods. The analyses so far show that CNNs trained on face recognition achieve accuracy levels 
similar to humans when tested on the same task. But do they achieve this in the same way? To 
address this question, we first asked whether humans and CNNs find the same triplets (i.e., the 
same specific combination of target and two matching images) difficult. To test whether triplets that 
the CNNs did not perform correctly were also harder for human participants, we separately 
analyzed the triplets for which the CNNs were correct versus incorrect. 
 Next, we asked how well each CNN predicts the behavioral choices on a trial-by-trial level 
(independent of the accuracy of those choices). To compare trial-wise performance between CNNs 
and human behavior, we first analyzed the behavioral choices. For each triplet, we computed the 
proportion of trials on which people chose match A (irrespective of whether match A was correct or 
incorrect). To get an estimate of the noise ceiling, we used split-half reliability, as follows. We 
divided the participants into 50 random splits, computed the triplet-wise choice proportion for each 
half, and correlated the two halves. The mean of these split-half correlations (across the 50 splits) 
plus or minus twice the standard deviation of the distribution served as upper or lower behavioral 
noise ceilings, respectively. For the CNNs, we transformed the representational distances between 
the target T and match A and the target T and match B obtained for each triplet into choice 
probabilities. For each triplet, we used Luce’s choice axiom to calculate the probability of choosing 
match A over match B given target T. According to this axiom, the probability of choosing match A 
can be expressed as the conditional probability of selecting A given the target T: 
 

𝑃(𝐴|𝑇) = 1 −	
𝑑(𝐴, 𝑇)

𝑑(𝐴, 𝑇) + 𝑑(𝐵, 𝑇) 

  
where d(A,T) is the representational distance between the match A and the target image T, and 
d(B,T) is the corresponding representational distance between match B and target T. If the two 
matches in a triplet are equally similar to the target T (i.e., d(A,T) = d(B, T)), the probability of 
choosing A is 0.5. If the match A is very similar to the target T (e.g., the distance d(A,T) = 0.1) and 
the match B is very dissimilar (e.g., the distance d(B,T) = 0.9), the probability of choosing A is very 
high. To test how well the CNN’s choice probabilities predict the behavioral proportional choices, 
we correlated the behavioral proportional choices of match A with the CNN’s probabilities of 
choosing match A for all triplets. We further computed bootstrapped 95% CIs by bootstrapping the 
triplets and computing the correlations 10,000 times. We used bootstrap tests to compare the 
predictivity between CNNs. 
 
Results. For the face-identity trained CNN, we indeed found that human performance was 
significantly better on triplets in which the CNN was correct (human performance 88.2%; 1355 
triplets) than on triplets for which it was incorrect (human performance: 83.3%; 205 triplets; p=0, 
bootstrap test). Moreover, this difference in performance (4.9%) was significantly smaller for the 
CNN trained on object categorization (difference: 1.5%; p=0.02, bootstrap test) and the untrained 
CNN (difference: 1.6%; p=0.02, bootstrap test). Here, humans performed significantly but only 
slightly worse on triplets the CNNs performed incorrectly (human performance: 86.6% for both Obj-
Cat and untrained CNN) than on triplets the CNNs performed correctly (human performance: 88.1% 
for Obj-Cat CNN; p=0.03, bootstrap test; 88.2% for Untrained CNN; p=0.02, bootstrap test). This 
finding suggests that the face-identity trained CNN not only achieves a similar recognition accuracy 
to humans, but also shows similar errors to humans. 
 Would a network trained on face detection better match human face behavior? We indeed 
found a significant difference of 3.2% in human performance on triplets in which the CNN trained 
on object and face categorization (Obj-Face-Cat CNN) was correct vs. incorrect (human 
performance: 88.6% (1047 triplets) vs. 85.4% (513 triplets); p=0, bootstrap test). The size of this 
difference was not significantly different from those found for any of the other CNNs (Face-ID CNN: 
p=0.2; Obj-Cat and Untrained CNN: p=0.1; bootstrap tests). 
 How well would each network predict human behavior on a trial-by-trial level independent of 
overall accuracy (Fig. S7)? Prior to correlating the CNN’s choice probabilities with human choice 
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proportions, we measured how reliable human choices were using split-half reliability. Human 
choices across triplets were highly reliable (mean split-half correlation across 50 random splits: 
r=0.94). We next asked how well each of the CNNs would correlate with the behavioral choice 
proportions. We found that the face-identity trained CNN (Face-ID CNN: r=0.74) explained around 
62% of the explainable variance (normalized by the split-half reliability) in the human behavioral 
choices, thereby outperforming the CNN trained on object and face categorization (Obj-Face-Cat 
CNN: r=0.37; p=0, bootstrap test), the CNN trained on object categorization (Obj-Cat CNN: r=0.29; 
p=0, bootstrap test) and an untrained CNN (Untrained CNN: r =0.18; p=0, bootstrap test). These 
results suggest that the face-identity trained CNN not only achieves human-level accuracy in face 
recognition, but also predicts human behavioral choices on a trial-by-trial level well. 
 
 
 

 
 

Fig. S7. Behavioral trial-by-trial predictivity by CNNs (Experiment 1). The face-trained CNN 
(red) best predicted human behavioral choices on a trial-by-trial level. Networks trained on object 
categorization and face detection (orange), or object categorization only (yellow) performed better 
than the untrained CNN (gray), but were not highly predictive of human behavioral choices. Error 
bars denote bootstrapped 95% CIs. The gray line represents the split-half reliability of the human 
behavioral choices (mean ±2*SD across 50 random splits). 
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Supplementary Note 4: Comparing human perceptual similarity in a similarity matching task 
to task-optimized CNNs (Experiment 3). 
 
Participants. A set of 697 individual workers participated in the similarity-matching task (Fig. 2C) 
on Amazon Mechanical Turk. A total of 29 workers were excluded from the analysis due to overly 
fast responses (response time in more than five trials < 500ms or more than 10 trials < 800 ms). 
All workers were located in the United States. The average workers’ age was between 25 and 34 
years, 56% of workers were female, 42% were male and 2% reported ‘other’ or did not report their 
sex. The majority of the workers were white (71%), 19% were Black, 8% were Asian and 2% 
reported ‘other’ or did not report their race. For this task, workers were not restricted in the number 
of trials they could perform. All workers provided informed consent and were compensated 
financially for their time. The experimental protocol was approved by the Massachusetts Institute 
of Technology (MIT) Committee on the Use of Humans as Experimental Subjects (COUHES No 
1806424985) and conducted following all ethical regulations for conducting behavioral 
experiments.  
 
Stimuli and behavioral representational dissimilarities. To test whether the results from the 
multi-arrangement task from Experiment 2 would generalize to a different dataset and task, we 
conducted a similarity-matching task on Amazon Mechanical Turk. To construct this task, we chose 
one image of each of 60 unfamiliar male identities from the Flickr-Faces-HQ database (1). The 
stimuli included 60 young male identities of similar age (approximately between 20 and 30 years 
old) with a neutral facial expression. Participants were asked to choose which of two images was 
more similar to a third target image (i.e., triplet). Each of the possible triplets (60x59x58/2 for a total 
of 102,660 triplets) was sampled once (although some triplets were excluded, see Participants). 
The choice for a specific triplet provided two pairwise similarities: between the target and each of 
the matching images (e.g., when the choice for the triplet with target A and matches B and C was 
C, this would result in “1” for the pair A-C, and “0” for the pair A-B). Thus, the perceived similarity 
of each pair of face images was on average sampled ~100 times (i.e., each of the 102,660 triplets 
produced two of the 1,770 (60x59/2) pairwise similarities resulting in 116 (102,660/1,770) samples 
without exclusions). The proportional number of times that each target-match pair was chosen as 
the more similar pair was used as the similarity value for the pair and converted into a dissimilarity 
value by subtracting it from 1. We extracted the lower triangle excluding the diagonal from the 
resulting dissimilarity matrix (see Supplementary Note 5 for visualization of the behavioral RDM) to 
obtain a vector of pairwise dissimilarities. We then used the vector of dissimilarity values to compute 
the similarity with the CNNs. 

To compute the noise ceiling in this task, we used split-half correlation. Since participants 
were not limited in the number of trials they could perform, participants contributed with varying 
degrees to the final dissimilarity matrix. To not bias the split-half correlation by participants who 
contributed more trials, we only used the first set of trials collected by each individual participant in 
the noise-ceiling calculation. We randomly split the participants into two halves 50 times and 
computed the correlation between the dissimilarity vectors based on the two halves for each split. 
We then used the mean correlation added and subtracted by twice the standard deviation of this 
set of correlations as noise ceiling. 
 
Representational similarity analysis between humans and CNNs. As in Experiment 2, we 
obtained representational dissimilarities in CNNs, by presenting the same stimuli used for the 
human participants to the four CNNs. For each CNN, we extracted the activation patterns to each 
image separately from the penultimate layer (see Supplementary Note 7 for other layers) and 
computed the correlation distance (1 – Pearson’s r) between each pair of activation patterns. This 
resulted in one RDM for each of the four CNNs (see Supplementary Note 6 for visualization of the 
RDMs). 

To compute the similarity between the human RDMs and the RDMs obtained for the CNNs, 
we rank-correlated the human behavioral dissimilarity vector obtained from the pairwise 
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proportional choices across all triplets with the corresponding CNN dissimilarity vector constructed 
from the same stimuli.  
 
Statistical inference. To measure statistical significance, we used the same bootstrap tests as in 
Experiment 2, but bootstrapped the dissimilarity vectors instead of participants. Specifically, we 
bootstrapped the dissimilarity values of the behavioral and CNN dissimilarity vectors 10,000 times 
and computed the rank correlation to obtain 95% CIs, and to compute a distribution of correlation 
differences. 
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Supplementary Note 5: RDMs of representational similarity analyses in VGG16 
 
Methods. We used representational similarity analysis to compare the behavioral representational 
dissimilarity matrices (RDMs) obtained from the multi-arrangement task (Experiment 2; Fig. 2B) 
and the similarity-matching task (Experiment 3) to the RDMs of all four VGG16 models. Here, we 
plot the behavioral RDMs along with the RDMs obtained from the four VGG16 models for visual 
comparison. 
 
Multi-arrangement task (Experiment 2). For the multi-arrangement task (Experiment 2; Fig. S8), 
the face-trained CNN (Face-ID CNN) best mirrors the structure of the behavioral RDMs. This 
similarity goes beyond the coarse distinctions between male and female and old and young faces. 
For example, within the old female faces, the Face-ID CNN also shows a high similarity between 
the third and the fourth identity. Note that while the object-trained and object-and-face-
categorization trained CNNs also show some of the coarse categories (e.g., older male faces in 
the bottom right are highly similar to each other but distinct from young female faces), they do not 
capture all aspects of the fine-grained structure. For example, older female faces are more similar 
to young male faces (blue colors in the bottom left quadrant) in these CNNs than in human behavior 
and the Face-ID CNN (yellow colors in the bottom left quadrant). Interestingly, even the untrained 
CNN shows a trend for some of the aspects in the behavioral RDM, such as a high similarity 
between older female identities. 
 

 
Fig. S8. Face-trained CNN best matches human perceptual similarity in a multi-arrangement 
task (Experiment 2). The stimuli used in the multi-arrangement task consisted of 5 stimuli for each 
of 16 identities for which half of them were old versus young and female versus male, respectively. 
In the RDM, the stimuli are arranged by identity (5 images per identity), age (young versus old) and 
gender (female versus male). The Face-ID CNN best matches the behavioral RDM. The Obj-Face-
Cat and Obj-Cat CNN show some coarse aspects but do not match the fine-grained details of the 
behavioral RDM. 
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Similarity-matching task (Experiment 3). For the similarity-matching task (Experiment 3; Fig. 
S9), all 60 identities were young and male and we used one image per identity. As can be seen 
from the behavioral RDM, there is no clear structure in the RDM. As for the multi-arrangement ask, 
the RDM of the face-trained CNN appears most similar to the behavioral RDM. In particular, the 
other three CNNs show strong similarities for certain images with all other images (as can evident 
by blue lines in the matrices), which are not visible in the behavioral or the RDM of the Face-ID 
CNN. 
 

 
Fig. S9. Face-trained CNN best matches human perceptual similarity in a similarity-matching 
task (Experiment 3). The stimuli in the similarity-matching task consisted of 60 young, male 
identities (one image per identity). The Face-ID CNN best matches the behavioral RDM. The Obj-
Face-Cat and Obj-Cat CNN show specific structures (e.g., strong similarity of a specific image with 
all other images) that are neither visible in the behavioral RDM nor the face-trained CNN. 
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Supplementary Note 6: Layer-wise representational similarity analysis in VGG16 
 
Methods. We used representational similarity analysis to compare the behavioral representational 
dissimilarity matrices (RDMs) obtained from the multi-arrangement task (Experiment 2; Fig. 2B) 
and the similarity-matching task (Experiment 3; Fig. 2C) to the layer-wise RDMs of the VGG16 
models trained on face identification and object categorization and the untrained VGG16 model. 
Specifically, to obtain layer-wise RDMs for each model, we computed the distance (i.e., 1 – 
Pearson’s r) between the activation patterns extracted from each layer for the same stimuli. 
 
Results. In the multi-arrangement task (Experiment 2; Fig. S10A), we find that correlations 
between the face-trained CNN (red) and human behavior increased with progressive layers in the 
network from the first convolutional layer (Spearman’s r: 0.05), to mid-level convolutional layers 
(e.g., Conv8: Spearman’s r: 0.16) to the last convolutional layer (Spearman’s r: 0.34), the latter 
even reaching noise ceiling (i.e., the maximum correlation possible given the consistency across 
subjects; light-gray vertical bar). In contrast, the object-trained CNN (yellow) represented faces less 
similarly to humans (max. Spearman’s r: 0.19), with correlations increasing slightly after the first 4-
5 layers, reaching its maximum in the penultimate fully-connected layer. The representational 
dissimilarities of the untrained CNN (dark gray) showed a low correlation with human behavior 
across all layers (max. Spearman’s r: 0.04). Thus, the later stages of processing in face-trained, 
but not object-trained or untrained, CNNs match human behavior well, suggesting that faces are 
similarly represented in human behavior and late stages of face-trained CNNs.  
 We find a very similar pattern for the similarity-matching task (Experiment 3; Fig. S10B). 
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Fig. S10. Late layers of face-trained but not object-trained or untrained CNNs match human 
face behavior. (A) We performed RSA on all layers of the three VGG16 models and human 
behavioral similarities from the multi-arrangement task (Experiment 2). Late layers of the Face-ID 
CNN (red) matched human behavioral representational similarity best and reached the noise ceiling 
(light gray bar). Neither the untrained CNN (Untrained CNN, dark gray) nor the object-trained CNN 
(Obj-Cat CNN, yellow) matched human representational similarities. Shaded areas represent 
bootstrapped SEMs across subjects. Gray vertical bar represents noise ceiling. (B) The results in 
(A) were replicated on the similarity-matching task (Experiment 3) using on a distinct dataset of 60 
unfamiliar male identities (one image each). Late layers of the Face-ID CNN (red) matched human 
behavioral representational similarity best, far outperforming the untrained CNN (gray) and the 
object-trained CNN (yellow). Shaded areas represent bootstrapped 95% CIs across dissimilarity 
values. Gray vertical bar represents noise ceiling. 
  

A B
Exp. 2: Multi-arrangement task Exp. 3: Similarity-matching task
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Supplementary Note 7: Representational similarity analysis in Alexnet and ResNet 
 
Methods. To test whether these results would generalize to other architectures, we compared the 
behavioral RDMs obtained from the multi-arrangement task (Experiment 2; Fig. 2A) and the 
similarity-matching task (Experiment 3; Fig. 2B) to the CNN RDMs of all three Alexnet and ResNet-
50 models. Specifically, to obtain RDMs for each model, we computed the distance (i.e., 1 – 
Pearson’s r) between the activation patterns extracted from the penultimate layer for the same 
stimuli. 
 
Results. For the multi-arrangement task (Exp. 2; Fig. S11A), the correlations between the face-
trained Alexnet (red) and human behavior were close to the noise ceiling (Spearman’s r: 0.32, close 
to noise ceiling). In contrast, the object-trained CNN (yellow) represented faces less similarly to 
humans (Spearman’s r: 0.18). The representational dissimilarities of the untrained CNN (dark gray) 
showed a low correlation with human behavior (Spearman’s r: 0.04). We replicated this pattern of 
results for Alexnet in the similarity-matching task (Exp. 3; Fig. S11B ). Thus, processing in face-
trained, but not object-trained or untrained, Alexnet models match human behavior well. 
 ResNet trained on faces, objects and untrained showed a very similar pattern. In the multi-
arrangement task (Exp. 2; Fig. S11A) the face-trained CNN (red) even reached the noise ceiling 
(Spearman’s r: .36), while the object-trained (Spearman’s r: .19) and the untrained (Spearman’s r: 
.03) CNN achieved much lower correlations with human similarity representations. We again 
replicated this pattern of results for ResNet in the similarity-matching task (Exp. 3; Fig S11B). 
 Taken together, these findings suggest that faces are similarly represented in human 
behavior and face-trained feed-forward CNNs, irrespective of architecture.  
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Fig. S11. Face-trained but not object-trained or untrained Alexnet and ResNet-50 architectures 
approach human face behavior. (A) We performed RSA by measuring the similarity between 
human behavioral similarities from a multi-arrangement task (Experiment 2) and layer-wise RDMs 
obtained from the three Alexnet and three ResNet-50 models. For both architectures, the face-
trained models (red) matched human behavioral representational similarity best and approached 
noise ceiling (light gray bar). Neither the untrained CNN (dark gray) nor the object-trained CNN 
(yellow) matched human representational similarities. Error bars represent bootstrapped SEMs 
across subjects. (B) The results of in (A) were replicated in a similarity-matching task on Amazon 
Mechanical Turk (Experiment 3) based on a distinct dataset of 60 unfamiliar male identities (one 
image each). For both architectures, the Face-ID CNN (red) matched human behavioral 
representational similarity best, far outperforming the untrained CNN (gray) and the object-trained 
CNN (yellow). Error bars represent bootstrapped 95% CIs across dissimilarity values. 
  

Exp. 2: Multi-arrangement task Exp. 3: Similarity-matching task
A B

0

0.1

0.2

0.3

0.4

0.5

Hu
m

an
 - 

CN
N 

co
rre

lat
ion

0

0.1

0.2

0.3

0.4

0.5
Hu

m
an

 - 
CN

N 
co

rre
lat

ion

0

0.1

0.2

0.3

0.4

0.5

0.6

Hu
m

an
 - 

CN
N 

co
rre

lat
ion

0

0.1

0.2

0.3

0.4

0.5

0.6

Hu
m

an
 - 

CN
N 

co
rre

lat
ion

0

0.1

0.2

0.3

0.4

0.5

0.6

Hu
m

an
 - 

CN
N 

co
rre

lat
ion Face-ID CNN

Obj-Cat CNN
Untrained CNN

0

0.1

0.2

0.3

0.4

0.5

0.6

Hu
m

an
 - 

CN
N 

co
rre

lat
ion Face-ID CNN

Obj-Cat CNN
Untrained CNN

Resnet50

Alexnet

Resnet50

Alexnet



 
 

18 
 

Table S1. Overview of experiments, participants and datasets 

Human 
Experiment 

Human 
participants (n) 

Testing 
platform Task Stimuli Figure 

Exp. 1: Face 
recognition - upright 1,532 

Amazon 
Mechanical 
Turk 

Target-
matching task Set A Fig. 1C 

Exp. 2: Perceptual 
similarity 14 Meadows 

Multi-
arrangement 
task 

Set B Fig. 2B 

Exp. 3: Perceptual 
similarity 668 

Amazon 
Mechanical 
Turk 

Similarity-
matching task Set C Fig. 2C 

Exp. 4A: Other-race 
effect  
- white participants 

269 
Amazon 
Mechanical 
Turk 

Target-
matching task Set D Fig. 3A 

Exp. 4B: Other-race 
effect 
- Asian participants 

102 Clickworker + 
Meadows 

Target-
matching task Set D Fig. 3A 

Exp. 5: Face 
recognition - 
inverted 

1,219 
Amazon 
Mechanical 
Turk 

Target-
matching task 

Set A 
inverted Fig. 3B 
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Table S2. Overview of experimental datasets 

Test Stimulus Set Name Description Link 

Set A 200 face images (5 images of each 
of 40 celebrities) https://osf.io/dbks3/ 

Set B 80 face images (5 images of each of 
16 identities) https://osf.io/gk6f5/ 

Set C 60 face images (1 image of each of 
60 identities) https://osf.io/dbks3/ 

Set D 400 face images (5 images of each 
of 40 white and 40 Asian identities) https://osf.io/dbks3/ 

Set E 1000 face images (10 images of 
each 100 identities) https://osf.io/dbks3/ 

Set F 1000 car images (10 images of each 
100 car model/makes) https://osf.io/dbks3/ 
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Table S3. Overview of CNN experiments 

CNN Experiment CNNs Analysis Method Stimuli Figure 
Face recognition – 
upright (Exp. 1) CNN 1-4 Target-matching task Set A Fig. 1C 

Perceptual similarity 
(Exp. 2) CNN 1-4 RSA Set B Fig. 2B 

Perceptual similarity 
(Exp. 3) CNN 1-4 RSA Set C Fig. 2C 

Other-race effect 
(Exp. 4) CNN 3-8 Target-matching task Set D Fig. 3A 

Face recognition – 
inverted (Exp. 5) CNN 1-4 Target-matching task Set A inverted Fig. 3B 

Inverted face 
inversion effect CNN 1, 9 SVM decoding Set E Fig. 4A 

Car inversion effect CNN 1, 3, 4, 10 SVM decoding Set F Fig. 4B 
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Table S4. Overview of trained and untrained CNNs 

CNN # CNN Name Training Set Link 

CNN 1 Face-ID CNN 1,714 VGGFace2 classes https://github.com/ox-
vgg/vgg_face2 

CNN 2 Obj-Face-Cat CNN 
423 ImageNet classes + 1,714 
VGGFace2 classes (assigned 
to one output class) 

 

CNN 3 Obj-Cat CNN 423 ImageNet classes 
https://www.image-
net.org/challenges/LSVRC/2012 
/index.php 

CNN 4 Untrained CNN None  

CNN 5 Face-ID-white CNN 1,654 VGGFace2 classes 
(white only) 

 

CNN 6 Face-ID-Asian 
CNN 

1,654 Asian Face Dataset 
classes 

https://github.com/X-
zhangyang/ 
Asian-Face-Image-Dataset-
AFD-dataset 

CNN 7 Obj-Face-Cat-white 
CNN 

423 ImageNet classes + 1,654 
VGGFace2 classes (white 
only; assigned to one output 
class) 

 

CNN 8 Obj-Face-Cat-
Asian CNN 

423 ImageNet classes + 1,654 
Asian Face Dataset classes 
(assigned to one output class) 

 

CNN 9 Face-ID-inv CNN 1,714 VGGFace2 classes 
(inverted) 

 

CNN 
10 Car CNN 1,109 combined CompCars 

dataset classes 
http://mmlab.ie.cuhk.edu.hk/ 
datasets/comp_cars/ 
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