Supporting Information for

- ² Adaptive metrics for an evolving pandemic
- A dynamic approach to area-level COVID-19 risk designations
- 4 Alyssa Bilinski, Joshua A. Salomon, and Laura Hatfield
- 5 Corresponding Author: Alyssa Bilinski.
- 6 E-mail: alyssa_bilinski@brown.edu

7 This PDF file includes:

- 8 Supporting text
- 9 Figs. S1 to S15
- ¹⁰ Tables S1 to S2
- 11 SI References

12 Supporting Information Text

A. Population-Weighted Performance. Let S_i be the population of location *i*. The weight for location *i* is $\omega_i = \frac{S_i}{\sum_{i=1}^N S_i}$. To population-weight our accuracy measure, we estimate:

$$\delta_{wt} = 1 - \sum_{i} \omega_i \left(p_{FP} w_P + p_{FN} w_N \right)$$

B. Optimal Threshold Selection. We first specify a weight wt such that we consider false positives to be a factor of wt as costly as false negatives. For example, if wt = 3, we consider 3 false positives as costly as 1 false negative; 2 false positives would be less costly than 1 false negative. Denote the probability that an outcome of interest occurs given observed indicators for an observation, $q_{i,w+3} = Pr(Y_{i,w+3} = 1|X_i)$. We want to predict that the outcome will occur if, in expectation, triggering a response will decrease net costs. If an observation with probability $q_{i,w+3}$ is classified with a prediction of 0, this has probability $q_{i,w+3}$ of being a false negative. If it is classified with a prediction of 1, there is a probability $1 - q_{i,w+3}$ of a false positive. We therefore should classify with a prediction of 1 if:

Expected cost of $FP \leq Expected \text{ cost of } FN$

$$(1 - q_{i,t+3}) \le q_{i,t+3}wt$$

 $q_{i,t+3} \ge \frac{1}{1 + wt}$

C. Simulations. To conduct simulations, we generate data that assumes a the following relationship between the probability of a high outcome, $Pr(Y_{i,w+3})$, and a synthetic hospitalization indicator, $X_{H,i,w}$:

$$logit(Pr(Y_{i,w+3} = 1)) = \beta_0 + \beta_1 X_{H,i,w},$$
[1]

We then draw $Y_{i,w+3}$ from a binomial distribution with the corresponding probability. We vary simulations across 2 dimensions:

1. Relationship between inputs and outputs: The optimal cutoff for a metric with neutral weighting is $\frac{logit(0.5)-\beta_0}{\beta_1} = \frac{-\beta_0}{\beta_1}$. We vary this over time as displayed in Figure S13:

- 24 (a) Constant: 10 hospitalizations per 100,000 population
- (b) Linear increase: linearly increasing from 5 to 15 hospitalizations per 100,000 over the study period
- (c) Logistic increase: increasing from 5 to 15 hospitalizations per 100,000 over the study period per a logistic model
 with a sharp increase at week 25
- 28 (d) Non-monotonic: optimal cutoff increases to 15 and then decreases
- Prevalence of "high" outcomes: We first use empirical hospitalization data for simulations, drawing synthetic outcomes according to 1. To build intuition, we then use two stylized scenarios, one in which prevalence is constant over quarters and one in which waves are even more pronounced.
- (a) Empirical: We use true state-level hospitalization data from Q3 2021 through Q3 2022.
 - (b) Constant: We draw $X_{H,i,w}$ from a Unif(2,20) distribution for state-times from Q3 2021 through Q3 2022.
- (c) Sharp waves: We alternate each quarter between drawing hospitalizations from a N(5,1) distribution and a N(15,1)distribution for each state-time from Q3 2021 through Q3 2022.

For illustration, we set $\beta_0 = -3c$ and $\beta_1 = 3$ and use the first quarter (synthetic Q3 2021) as training data. For each scenario, we simulate 50 draws. As in the main text, we select the best-performing static metric during training data and compare performance in terms of predictive accuracy to adaptive metrics, averaging over draws. Results are displayed in Figure S14.

D. Comparison to CDC Community Levels Performance. In the published evaluation of the performance of CDC's Community Levels, the risk designation is considered a true positive if, for two counties with different Community Levels, the county with the higher level had the more severe outcome 3 weeks later (1). This values the ordering of two areas' outcomes as equally important everywhere, whereas our methods prioritize correctly classifying areas on either side of the a priori-specified threshold (e.g., 1 death/100k/week).

Although these are not directly comparable to our measures, we compared our results to the CDC's own published evaluation of the performance of Community Levels (1). These analyses use data from 3/1/2021 to 1/24/2022 to compute the area under the receiver operator curve (AUROC) for Community Levels (comparing High versus Medium/Low) for mortality at 0.71. During approximately the same period (Q2-Q4 2021, which is our training period), we found that Community Levels

 $_{48}$ had unweighted accuracy of 0.67 for predicting >1 death/100k/week and 0.80 for >2 death/100k/week at the county level,

33

- 49 falling on either side of the AUROC value. We obtained similar estimates for accuracy compared to AUROC estimates of bed
- $_{50}$ occupancy (0.86 CDC AUROC vs. 0.84 accuracy for predicting >10%), but lower estimates for ICU admissions (0.82 CDC
- ⁵² most policy-relevant, but with stronger Community Levels performance at higher cutoff values.

Table S1. Optimal cutoffs for static metrics. Static metrics designated an area as high-risk if all included indicators exceeded their respective optimal thresholds from the training period (4/1/2021-12/31/2021). This table lists optimal cutoffs for each level of geography, risk preference, outcome, and indicator combination. Cutoffs are listed in the order CHO, i.e. 0 5 0 means a cutoff of greater than or equal to 0 per 100K for cases, 5 per 100K for hospitalizations, and 0% inpatient bed occupancy. When an indicator is excluded from a particular functional form, it takes the cutoff 0 by default.

Geography	Bisk preference	Outcome	Indicators	Optimal training cutoff
States	Neutral	>1 death/100K/wk	H	
States	Neutral	>1 death/100K/wk	НО	055
States	Neutral	>1 death/100K/wk	C	50.0.0
States	Neutral	>1 death/100K/wk	CH	50.5.0
States	Neutral	>1 death/100K/wk	CHO	50 5 5
States	Neutral	> doaths /100K/wk	н	0 15 0
States	Neutral	> 2 deaths/100K/wK		0 15 5
States	Neutral	>2 deaths/100K/wk	no C	200.0.0
States	Neutral	> 2 deaths/100K/wk	CH	200 5 0
States	Neutral	>2 deaths/100K/wk	CHO	200 5 0
States	Don't on wolf (0.5% EN)	> 2 deaths/100K/wk		200 5 5
States	Don't cry wolf $(0.5x \text{ FN})$	>1 death/100K/wk >1 death/100K/wk		0 5 5
States	Don't cry wolf $(0.5x \text{ FN})$	>1 death/100K/wk >1 death/100K/wk	no C	
States	Don't cry wolf $(0.5x \text{ FN})$	>1 death/100K/WK >1 death/100K/wk	CII	100 0 0
States	Don't cry wolf $(0.5x FN)$	>1 death/100K/WK	CH	
States	Don't cry wolf $(0.5 \times FN)$	>1 death/100K/WK	UHO	50 5 5 0 15 0
States	Don't cry wolf $(0.5 \times FN)$	>2 deaths/100K/wk	П	0 15 0
States	Don't cry wolf $(0.5 \times FN)$	>2 deaths/100K/wk	HU	0 15 5
States	Don't cry wolf $(0.5 \times FN)$	>2 deaths/100K/wk	Сн	
States	Don't cry wolf $(0.5 \times FN)$	>2 deaths/100K/wk	C	200 0 0
States	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	СНО	200 10 5
States	Better safe than sorry $(0.5x FP)$	>1 death/100K/wk	H	050
States	Better safe than sorry $(0.5x FP)$	>1 death/100K/wk	HO	055
States	Better safe than sorry $(0.5x \text{ FP})$	>1 death/100 K/wk	C	50 0 0
States	Better safe than sorry $(0.5x \text{ FP})$	>1 death/100 K/wk	CH	50 5 0
States	Better safe than sorry $(0.5x \text{ FP})$	>1 death/100 K/wk	СНО	50 5 5
States	Better safe than sorry $(0.5x \text{ FP})$	>2 deaths/100K/wk	H	$0 \ 10 \ 0$
States	Better safe than sorry $(0.5x \text{ FP})$	>2 deaths/100K/wk	НО	$0 \ 10 \ 5$
States	Better safe than sorry $(0.5x \text{ FP})$	>2 deaths/100K/wk	С	$150 \ 0 \ 0$
States	Better safe than sorry $(0.5x \text{ FP})$	>2 deaths/100 K/wk	CH	$150 \ 10 \ 0$
States	Better safe than sorry $(0.5x \text{ FP})$	>2 deaths/100 K/wk	CHO	150 5 5
HSAs	Neutral	>1 death/100 K/wk	Η	$0\ 5\ 0$
HSAs	Neutral	>1 death/100 K/wk	HO	$0\ 5\ 5$
HSAs	Neutral	>1 death/100 K/wk	\mathbf{C}	$50 \ 0 \ 0$
HSAs	Neutral	>1 death/100 K/wk	CH	50 5 0
HSAs	Neutral	>1 death/100 K/wk	CHO	50 5 5
HSAs	Neutral	>2 deaths/100K/wk	Η	$0\ 15\ 0$
HSAs	Neutral	>2 deaths/100K/wk	HO	$0\ 15\ 5$
HSAs	Neutral	>2 deaths/100K/wk	CH	$150 \ 10 \ 0$
HSAs	Neutral	>2 deaths/100K/wk	CHO	$150 \ 10 \ 5$
HSAs	Neutral	>2 deaths/100K/wk	\mathbf{C}	200 0 0
HSAs	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	Η	$0 \ 10 \ 0$
HSAs	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	HO	$0\ 5\ 5$
HSAs	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	\mathbf{C}	$100 \ 0 \ 0$
HSAs	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	CH	100 5 0
HSAs	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	CHO	50 5 5
HSAs	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	Η	$0\ 15\ 0$
HSAs	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	HO	$0\ 15\ 5$
HSAs	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	CHO	$150 \ 15 \ 5$
HSAs	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	CH	$200 \ 15 \ 0$
HSAs	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	С	250 0 0
HSAs	Better safe than sorry (0.5x FP)	>1 death/100K/wk	Η	0 5 0
HSAs	Better safe than sorry (0.5x FP)	>1 death/100K/wk	HO	$0\ 5\ 5$
HSAs	Better safe than sorry (0.5x FP)	>1 death/100K/wk	С	50 0 0
HSAs	Better safe than sorry (0.5x FP)	>1 death/100K/wk	CH	50 5 0
HSAs	Better safe than sorry (0.5x FP)	>1 death/100 K/wk	CHO	50 5 5

HSAs	Better safe than sorry $(0.5 \times \text{FP})$	>2 deaths/100K/wk	Н	$0 \ 10 \ 0$
HSAs	Better safe than sorry (0.5x FP)	>2 deaths/100K/wk	HO	$0 \ 10 \ 5$
HSAs	Better safe than sorry (0.5x FP)	>2 deaths/100K/wk	CH	$100 \ 10 \ 0$
HSAs	Better safe than sorry $(0.5 \times FP)$	>2 deaths/100 K/wk	CHO	100 5 5
HSAs	Better safe than sorry (0.5x FP)	>2 deaths/100K/wk	С	$150 \ 0 \ 0$
Counties	Neutral	>1 death/100 K/wk	Н	0 5 0
Counties	Neutral	>1 death/100 K/wk	HO	$0\ 5\ 5$
Counties	Neutral	>1 death/100 K/wk	С	$100 \ 0 \ 0$
Counties	Neutral	>1 death/100 K/wk	CH	50 5 0
Counties	Neutral	>1 death/100 K/wk	CHO	50 5 5
Counties	Neutral	>2 deaths/100K/wk	Н	$0 \ 15 \ 0$
Counties	Neutral	>2 deaths/100K/wk	HO	$0\ 15\ 5$
Counties	Neutral	>2 deaths/100K/wk	CH	$150 \ 15 \ 0$
Counties	Neutral	>2 deaths/100K/wk	CHO	$150 \ 15 \ 5$
Counties	Neutral	>2 deaths/100K/wk	С	$200 \ 0 \ 0$
Counties	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	Н	$0 \ 10 \ 0$
Counties	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	HO	$0\ 5\ 5$
Counties	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	CH	$100 \ 10 \ 0$
Counties	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	CHO	100 5 5
Counties	Don't cry wolf (0.5x FN)	>1 death/100 K/wk	С	$150 \ 0 \ 0$
Counties	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	HO	$0\ 15\ 10$
Counties	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	Н	$0\ 20\ 0$
Counties	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	CH	$200 \ 15 \ 0$
Counties	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	CHO	$200 \ 15 \ 5$
Counties	Don't cry wolf (0.5x FN)	>2 deaths/100K/wk	С	$250 \ 0 \ 0$
Counties	Better safe than sorry (0.5x FP)	>1 death/100 K/wk	Н	0 5 0
Counties	Better safe than sorry (0.5x FP)	>1 death/100K/wk	HO	$0\ 5\ 5$
Counties	Better safe than sorry (0.5x FP)	>1 death/100 K/wk	С	$50 \ 0 \ 0$
Counties	Better safe than sorry (0.5x FP)	>1 death/100 K/wk	CH	50 5 0
Counties	Better safe than sorry $(0.5x \text{ FP})$	>1 death/100K/wk	CHO	50 5 5
Counties	Better safe than sorry (0.5x FP)	>2 deaths/100K/wk	Н	$0 \ 10 \ 0$
Counties	Better safe than sorry (0.5x FP)	>2 deaths/100K/wk	HO	$0 \ 10 \ 5$
Counties	Better safe than sorry (0.5x FP)	>2 deaths/100K/wk	CH	$100 \ 10 \ 0$
Counties	Better safe than sorry $(0.5x \text{ FP})$	>2 deaths/100K/wk	CHO	$100 \ 10 \ 5$
Counties	Better safe than sorry $(0.5x \text{ FP})$	>2 deaths/100K/wk	С	$150 \ 0 \ 0$

Table S2. Switches between high-risk and non-high risk episodes. We estimated the number of switches between predicted high-risk and non-high risk designations using two definitions: 1) any change from the prior week and 2) a change that lasted at least two weeks (following a previous episode at least two weeks in duration). Across states and counties, we find that best-performing adaptive metrics of those in Figure S4 generally predicted fewer unique episodes than CDC Community Levels, and both often predict fewer episodes were observed, with one exception being the outcome >1 death/100K/week. In this case, adaptive metrics had more episodes, but these were substantially closer than static metrics to the values.

Geography	Outcome	Episode	True episodes	Adaptive episodes	Community
		definition			Level episodes
State	>1 death/100 K/wk	1	707	450	370
State	>1 death/100 K/wk	2	428	309	327
State	>2 deaths/100 K/wk	1	447	226	370
State	>2 deaths/100 K/wk	2	304	188	327
State	>2 ICU patients/100K/wk	1	280	319	370
State	>2 ICU patients/100K/wk	2	236	254	327
State	>10% inpatient bed occupancy	1	205	320	370
State	>10% inpatient bed occupancy	2	203	240	327
County	>1 death/100 K/wk	1	47,978	30,373	$29,\!451$
County	>1 death/100 K/wk	2	38,299	22,095	20,811
County	>2 deaths/100 K/wk	1	46,346	21,410	$29,\!451$
County	>2 deaths/100 K/wk	2	36,905	16,016	20,811
County	>2 ICU patients/100K/wk	1	23,124	19,065	29,451
County	>2 ICU patients/100K/wk	2	16,762	14,858	20,811
County	>10% inpatient bed occupancy	1	14,058	$23,\!451$	29,451
County	${>}10\%$ inpatient bed occupancy	2	12,103	16,004	20,811

Alyssa Bilinski, Joshua A. Salomon, and Laura Hatfield

53 References

- 54 1. CDC, Science Brief: Indicators for Monitoring COVID-19 Community Levels and Making Public Health Recommendations
- (https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/indicators-monitoring-community-levels.html) (2022).

Fig. S1. County-level lagged mortality vs. indicator levels by quarter. Columns indicate different indicators (weekly cases per 100,000 population, new hospital admissions per 100,000 population, and percentage of inpatient beds occupied by COVID-19 patients), and rows indicate quarters. The x-axis displays indicator values on a log scale and y-axis displays 3-week ahead mortality per 100,000 population on a log scale. Each point on the scatterplot is a county-week, and counties with greater than 500,000 population are displayed. Colors show mortality outcome level. The vertical gray dotted lines indicate thresholds from CDC Community Levels for each indicator (\geq 200 cases/100K/week and \geq 10 new admissions/100K/week or \geq 10% COVID-19 bed occupancy.)

Fig. S2. Indicators by lagged mortality (state). Indicators vary across rows. The x-axis displays time and the y-axis displays the median (point) and interquartile range (bars) of each indicator by future mortality status.

Percentage of units

- 20
- 40
- 60

3-week lagged mortality

- --- <1 death/100K/week
- 1-2 deaths/100K/week
- >2 deaths/100K/week

Fig. S3. Indicators by future mortality (county). Indicators vary across rows. The x-axis displays time and the y-axis displays the median (point) and interquartile range (bars) of each indicator by future mortality status.

Fig. S4. Head-to-head comparison results, including HSA-level results. The top plots display results from state-level analyses, middle from HSA-level analyses, and bottom from county-level analyses, all weighted for population. Metrics are displayed on the left, with training data from Q2-Q4 2021 and test data from Q1-Q3 2022. Cells report weighted accuracy and maximum regret (MR) over training and test periods. Rows vary outcomes, and columns vary preferences for false positives versus false negatives, with "neutral" corresponding to unweighted accuracy. Prevalence indicates the population-weighted proportion of high location-weeks in a given time period. Secondary outcomes are presented in Figure S5, and weighted accuracy by quarter is presented in Figures S6-S8. For adaptive metrics, models vary functional form to include: 1) CHO (cases, hospitalizations, inpatient bed occupancy); 2) CHOZ (cases, hospitalizations, inpatient bed occupancy, weekly changes in each indicator); 4) HZ (hospitalizations, current risk designation); 5) Simplified HZ (hospitalizations, current risk designation – updated quarterly). (For additional adaptive functional forms, see Figure S9.)

Fig. S5. Head-to-head comparison results for secondary outcomes. The top plots display results from state-level analyses, middle from HSA-level analyses, and bottom from county-level analyses, all weighted for population. Metrics are displayed on the left, with training data from Q2-Q4 2021 and test data from Q1-Q3 2022. Cells report weighted accuracy and maximum regret (MR) over training and test periods. Rows vary outcomes, and columns vary preferences for false positives versus false negatives, with "neutral" corresponding to unweighted accuracy. Prevalence indicates the population-weighted proportion of high location-weeks in a given time period. Weighted accuracy by quarter is presented in Figures S6-S8. For adaptive metrics, models vary functional form to include: 1) CHO (cases, hospitalizations, inpatient bed occupancy); 2) CHOZ (cases, hospitalizations, inpatient bed occupancy, current risk designation); 3) CHOD (cases, hospitalizations, inpatient bed occupancy, weekly changes in each indicator); 4) HZ (hospitalizations, current risk designation); 5) Simplified HZ (hospitalizations, current risk designation – updated quarterly)

					Neutral					Don't cry wolf (0.5x FN)								Better safe than sorry (0.5x FP)										
	21.2	21.2	21.4	00.1	00.0	00.0	Teet	Training	Quarall	21.2	21.2	21.4	22.1	00.0		Teat	Training	Overall	01.0	21.2	21.4	22.1	20.0	00.0	Toot	Training	Overall	
	21-2	21-3	21-4	22-1	22-2	22-3	rest	maining	Overall	21-2	21-3	21-4	22-1	22-2	22-3	Test	maining	Overall	21-2	21-3	21-4	22-1	22-2	22-3	Test	maining	Overall	-
Adaptive: CHO	80	90	93	85	83	73	80	88	84	81	88	92	87	89	83	86	87	87	81	93	96	81	78	66	75	90	82	
Adaptive: CHOZ	81	90	92	85	84	80	83	88	85	83	88	91		89	84		88	87	83	93	94	80	82	76	80	90	85	
Adaptive: CHOD	80	87	90	83	82	66	77	86	81	81	84	90	85		80	84	85	84	80	90	91	80	78	64	74	87	80	
Adaptive: HZ	80	92	94	85	84	81	83	89	86	82	93	92	88	90	84	87	89	88	84	92	96	82	82	80	81	91	86	
Simplified adaptive: HZ	75	89	94	82	81	83	82	86	84	73	89	93	84	85	84	84	85	85	79	91	96	86	79	80	82	89	85	17
Community Levels	71	72	50	75	70	59	71	64	68	81	81	66	83	80	55	72	76	74	62	62	34	66	79	64	70	53	61	dea
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70	70	01	00	01	00	01	04	00	66	05	01	77	00	00	70	01	20	70	70	01	00	01	04	00	00	01	ath
2	70	00	07	02	75	40	60	00	77	00	00	00	00	75	00	60	07	75	70	00	05	07	76	50	70	00	70	10
CHO	79	90	87	87	75	42	68	86	11	80	92	90	89	75	26	63	87	75	79	88	85	85	76	58	73	84	78	18
HO	79	90	87	87		42	68	85	//	79	92	90	89		26	63	87	75	79	88	85	85	76	58		84	78	Ě
CH	76	93	93	88	48	31	56	87	72	81	92	85	86	36	17	47	86	66	81	95	94	88	63	54	68	90	79	
н	66	91	94	90	49	31	56	83	70	85	93	75	87	79	39	68	84	76	76	94	96	90	63	54	69	88	79	
C	76	89	93	80	24	29		86	65	81	92	85	84	23	17		86	64	82	93	94	84	49	53	62	90	76	
Prevalence	35	75	94	78	17	29	41	68	55	35	75	94	78	17	29	41	68	55	35	75	94	78	17	29	41	68	55	
Adaptive: CHO	95	84	81	87	96	96	93	87	90	95	84	83	88	97	98	94	87	91	95	86	81	87	95	95	93	87	90	
Adaptive: CHOZ	96	86	82	87	96	93	92	88	90	96	86	83	88	97	95	93	88	91	95	88	81	87	95	92	92	88	90	
Adaptive: CHOD	96	79	80	87	94	92	91	85	88	97	78	83	89	96	93	92	86	89	96	81	79	87	93	91	90	85	88	
Adaptive: HZ	95	87	88	87	97	95	93	90	91	96	89	88	86	97	95	93	91	92	95	87	87	88	95	94	92	90	91	1
Simplified adaptive: HZ	93	83	86	90	97	96	94	87	91	94	87	87	89	98	96	94	89	92	94	81	88	89	95	96	93	88	91	Ň
Community Levels	96	88	81	87	85	60	77	88	83	96	89	84	89	80	47	72	90	81	97	88	77	84	89	73	82	87	85	dea
7	02	81	77	71	95	96	87	83	85	01	86	78	88	95	96	86	85	85	0/	75	77	75	95	07	80	82	86	Ins
2	92	01		66	90	50	70	00	00	00	00	10	00	95	40	20	00	00	04	7.5	00	15	95	50	77	02	00	13
CHU	90	89	81	80	84	59	76	89	83	96	90	84	89	87	49	/5	90	83	94	88	83	80	87	59	11	88	83	19
HO	95	88	82	88	96	91	91	88	90	94	89	87	90	95	88	91	90	91	89	87	89	90	92	62	81	88	85	1 AK
CH	96	89	80	86	66	57	70	88	79	95	89	86	90	95	88	91	90	90	94	87	82	86	88	62	79	88	83	1
Н	94	88	82	88	95	90	91	88	90	92	89	87	90	95	88	91	89	90	88	86	88	90	88	59	79	87	83	
C	96	89	80	86	66	57	70	88	79	96	89	84	88		43	62	90	76	94	88	82	86	64		68	88	78	
Prevalence	5	47	56	61	3	5	23	36	29	5	47	56	61	3	5	23	36	29	5	47	56	61	3	5	23	36	29	
																												<u> </u>
Adaptive: CHO	78	92	90	90	94	94	93	87	90	81	92	91	87	94	96	92	88	90	79	92	89	93	95	94	94	86	90	
Adaptive: CHOZ	75	92	90	86	92	94	91	86	88	77	92	92	82	91	95	89	87	88	78	92	89	90	94	94	93	86	90	
Adaptive: CHOD	84	95	91	89	96	95	93	90	92	86	95	93	86	95	96	93	91	92	83	95	91	91	96	95	94	90	92	1
Adaptive: HZ	76	88	95	86	98	94	93	86	89	77	90	92	82	98	95	92	87	89	79	88	96	90	97	94	94	87	91	Ň
Simplified adaptive: HZ	80	81	92	74	99	94	89	85	87	84	84	90	68	99	95	87	86	87	80	80	95	80	98	94	91	85	88	12
Community Levels	68	58	53	91	86	61	79	60	70	79	72	69	88	81	48	73	73	73	58	44	38	94	90	74	86	47	66	pa
, Z	76	83	93	77	99	94	90	84	87	73	88	93	69	99	93	87	85	86	80	77	93	85	98	94	92	83	88	tier
СНО	81	70	91	73	82	27	61	84	72	82	86	03	64	76	2	18	87	67	79	72	80	82	88		74	80	77	/SIL
HO	80	70	01	73	82	27	61	83	72	81	86	03	64	76	à	18	87	67	70	72	80	82	88	51	74	80	77	lg
HU	77	02	05	67	41	7 -	20	00	62	02	00	00	70	- 22 -	0	27	07	57	01	00	06	70_	60	20	50-	00	74	
CH		92	95	07	41		07	00	03	00	09	00	12	20	10	21	0/	57	70	09	90	/0	00	30	59	09	74	×
н	67	93	93	65	40	6	-37	84	61	83	85	76	11	80	19	-59	81	70	76	91	95	11	60	38	58	88	73	
С	75	93	94	55	11	5	24	87	56	83	89	88	68	10	0	-22	87	54	80	92	96	/0	41	37	49	89	69	
Prevalence	37	89	92	45	1	5	17	73	45	37	89	92	45	1	5	17	73	45	37	89	92	45	1	5	17	73	45	
Adaptive: CHO	90	77	83	81.	08	100	03	85	80	95	74	86	80	08	100	03	85	80	05	81	83	86	08	100	95	87	01	
Adaptive: CHO	90	76	00	77_	00	100	01	05	09	95	74	00	70	07-	100		05	03	95	01	00	00	00	100	04	07	00	
Adaptive: CHOZ	95	70	83	- 11	98	100	-91	85	88	95	74	80	73	97	100	-90	85	87	95	81	83	83	98	100	94	80	90	l v
Adaptive: CHOD	95	81	88	90	100	100	-97	88	92	94	80	91	89	100	100	96	88	92	96	84	88	93	100	100	-97	89	93	1 d
Adaptive: HZ	96	76	78	75	99	100	91	83	87	97	75	81	67	100	100	89	84	87	96	77	80	83	99	100	94	84	89	10
Simplified adaptive: HZ	99	66	81	79	100	100	93	82	87	99	76	82	76	100	100	92	86	89	98	59	82	82	100	100	94	80	87	pa
Community Levels	95	82	86	80	85	57	74	88	81	93	85	87	73	80	42	65	89	77	96	79	85	86	90	71	82	87	85	tier
Z	98	43	51	67	100	100	89	64	77	99	62	68	78	100	100	93	76	84	97	25	35	56	100	100	85	52	69	
CHO	95	81	86	80	84	56	73_	87	80	98	83	87	78_	88	69	78	89	84	94	80	85	83	88	57	76	87	81	ed
HO	93	81	80	79_	96	88	88	85	86	98	79	81	81_	99	94	91_	86	89	88	81	82	81_	93	60	78_	84	81	8
сн	95	81	87	80_	85	57 -	74	88	81	98	83	87	77_	85	68	77_	89	83	94	80	86	84_	89	60 -	78	87	82	duc
U1	02	01	80	70	06	00	00	94	96	00	70	01	91_	00	04	01_	96	80	96	00	82	91_	90	56	75	07	70	and
	92	01	00	- /9	90	-00 E4	- 00	04	77	90	19	07	77_	70-	60	- 91	00	09	00	77	02	06	77	- 50	70	00	19	13
с.	95	81	80	80	00	54	00	87	//	98	83	87	- //	73	-68	72	89	81	90		85	80		-69	78	80	82	
Prevalence		57	- 44	1414				- sn	23		57	214	1414			- 11	30	23	1 2	57	214					-sn	23	2 M 1

Fig. S6. State-level results by quarter. Metrics are displayed on the left, with training data from Q2-Q4 2021 and test data from Q1-Q3 2022. Cells report weighted accuracy. Preferences for false positives versus false negatives vary across columns (with "neutral" corresponding to unweighted accuracy) and outcomes across rows. Prevalence indicates the population-weighted proportion of high location-weeks in a given quarter.

HSAs

	Neutral									Don't cry wolf (0.5x FN)									Better safe than sorry (0.5x FP)					P)				
	21-2	21-3	21-4	22-1	22-2	22-3	Test	Training	Overall	21-2	21-3	21-4	22-1	22-2	22-3	Test	Training	Overall	21-2	21-3	21-4	22-1	22-2	22-3	Test	Training	Overall	
Adaptive: CHO Adaptive: CHOZ Adaptive: CHOD Adaptive: HZ Simplified adaptive: HZ Community Levels Z CHO HO CH HO CH CH CH CH CH CH CH	72 76 72 76 73 63 72 70 70 70 73 70 72 44	86 87 85 84 82 78 82 82 85 84 82 70	84 86 83 87 86 56 83 72 72 83 84 84 84	82 84 84 84 82 78 78 82 84 82 84 78 79	73 74 74 73 71 72 72 72 72 49 49 32 27	66 71 65 72 72 62 72 59 59 59 41 41 39 39	73 77 74 77 68 75 70 70 58 58 58 50 48	80 83 80 82 81 64 78 75 75 81 80 79 66	77 80 77 80 78 66 77 72 72 69 69 69 64 57	76 79 76 79 72 75 68 78 78 78 77 79 76 44	84 87 84 86 85 81 84 85 85 85 85 85 85 85 87 0	83 83 84 84 83 70 83 80 80 80 81 78 81 84	84 83 85 83 84 80 79 83 83 83 83 83 82 82 79	82 82 83 80 75 71 78 78 43 72 29 27	75 77 75 77 64 72 59 59 59 30 51 28 39	80 81 81 80 73 74 73 73 52 68 46 46 48	81 83 81 83 80 75 78 81 81 81 81 81 80 66	81 82 81 82 80 74 76 77 77 66 74 63 57	74 79 74 78 78 51 76 62 62 62 73 74 74 44	87 89 88 87 86 64 73 78 78 88 88 88 88 87 70	89 90 89 91 90 42 83 65 65 83 85 88 88 84	86 89 86 89 88 62 86 73 73 81 83 81 83 81	63 74 67 74 67 73 67 67 59 59 59 51 27	62 72 61 72 61 71 60 60 59 59 59 59 39	70 78 71 78 63 77 66 66 66 66 66 64 48	84 86 84 85 52 77 68 68 68 81 82 83 66	77 82 77 82 81 58 77 67 67 67 67 74 74 73 57	>1 death/100K/wk
Adaptive: CHO Adaptive: CHOZ Adaptive: HOZ Simplified adaptive: HZ Community Levels Z CHO HO HO CH H C Prevalence	88 89 88 89 83 87 89 87 89 87 89 88 13	82 84 79 81 80 85 80 83 83 83 83 83 83 83 84 42	76 79 76 80 77 75 76 76 73 73 73 56	82 82 81 80 81 71 80 78 81 78 81 78 80 62	93 93 93 92 80 88 89 91 78 90 62 7	90 90 90 90 66 88 71 85 56 81 57 10	88 89 88 87 76 82 80 85 72 83 66 26	82 84 81 83 82 83 80 82 82 82 82 82 82 82 82 82 37	85 86 85 86 85 79 81 81 83 77 82 74 32	92 92 92 92 92 92 90 81 91 91 92 90 92 13	81 84 79 83 81 84 85 85 84 85 84 85 84 86 42	79 82 79 81 77 80 77 79 80 78 80 77 56	83 82 80 83 84 67 83 83 83 83 83 83 82 62	95 95 95 77 88 93 93 93 92 91 69 7	93 94 93 94 93 57 88 84 84 84 82 79 67 10	91 90 90 91 73 81 86 86 85 84 73 26	84 86 83 85 83 85 81 85 85 85 85 84 85 37	87 88 87 88 87 79 81 86 86 85 84 79 32	84 87 85 87 86 87 85 85 85 85 85 83 85 13	85 83 81 81 85 76 83 84 84 83 84 42	78 82 78 83 79 70 76 78 76 78 78 75 56	82 84 83 83 83 78 75 81 80 80 80 80 80 80	91 91 91 89 83 89 87 88 87 88 81 81 62 7	88 88 88 88 74 88 71 76 65 64 57 10	87 88 87 86 78 84 80 81 75 75 66 26	83 85 82 84 82 81 79 82 82 82 82 82 82 82 82 37	85 86 85 84 79 82 81 81 81 79 78 74 32	>2 deaths/100K/wk
Adaptive: CHO Adaptive: CHOD Adaptive: CHOD Adaptive: HZ Simplified adaptive: HZ Community Levels Z CHO HO HO CH H C Prevalence	79 78 80 78 79 74 79 77 77 74 69 77 31	83 84 85 80 79 61 80 72 72 84 86 79 81	81 84 82 83 61 82 77 77 85 85 83 76	84 83 82 74 85 76 76 76 67 64 71 40	96 96 97 97 85 97 89 89 47 46 37 3	92 93 92 93 92 68 92 61 61 15 15 15 19 8	91 90 91 88 80 89 75 75 43 42 42 42 17	81 82 80 80 66 80 75 75 81 80 80 63	86 87 86 85 84 73 84 75 75 62 61 61 40	83 81 83 80 82 76 82 81 81 81 82 80 31	83 84 82 75 73 84 79 79 82 80 82 81	81 84 81 83 83 82 82 85 79 84 76	80 81 84 80 68 82 69 72 68 66 75 62 40	97 97 98 98 81 97 87 87 87 35 76 16 3	95 94 95 94 93 59 92 52 50 0 36 0 36 0 8	90 91 92 90 86 74 86 70 68 33 62 23 17	82 83 82 80 76 81 81 81 83 80 82 63	86 87 86 83 75 84 76 75 58 71 52 40	78 80 78 80 81 67 81 73 73 79 77 76 31	85 85 88 81 75 64 64 83 85 86 81	87 85 87 84 84 50 81 72 72 88 88 88 86 76	88 88 87 86 75 89 84 84 83 77 76 68 40	95 96 95 96 96 91 91 65 64 46 3	90 92 90 92 92 92 77 93 71 71 43 43 40 8	91 92 91 88 85 91 82 82 62 61 51 77	83 83 84 82 80 55 79 70 70 70 83 83 83 83 63	87 88 88 87 84 70 85 76 76 72 72 67 40	>2 ICU patients/100K/wk
Adaptive: CHO Adaptive: CHOZ Adaptive: CHOZ Adaptive: IC Simplified adaptive: IHZ Community Levels Z Z C HO CH H C C H C CH H C C H C C H C C H C C H C C C H C C C H C C C C H C	97 97 97 97 97 97 92 98 96 96 96 95 96 2	75 75 85 76 67 77 59 77 77 77 77 77 41	80 80 84 75 75 81 58 81 76 81 74 81 42	72 72 87 75 74 76 76 76 81 75 26	99 99 99 99 85 99 94 99 94 99 80 98 79	99 99 99 99 66 99 83 99 83 99 74 94 73 1	90 90 95 91 75 91 84 91 77 91 76 9	84 84 89 83 79 83 72 85 83 85 82 85 82 85 28	87 87 92 86 85 79 81 84 87 81 87 80 19	98 98 98 98 98 98 90 99 99 98 97 98 97 97 2	75 75 85 78 75 76 73 81 82 80 81 80 81	85 84 87 81 79 81 72 84 81 84 79 84 42	72 71 87 63 72 65 83 72 78 73 81 71 26	99 99 99 100 80 100 95 99 92 99 92 99 84	99 99 99 99 54 99 87 99 84 97 81 1	90 95 87 90 67 94 85 92 83 92 83 92 79 9	86 86 90 86 84 82 81 87 87 87 87 87 86 87 28	88 88 93 86 87 74 88 86 89 85 89 83 19	97 96 97 97 97 94 97 95 90 95 93 95 2	78 77 84 76 63 79 45 76 79 76 78 76 41	79 79 83 77 76 81 45 80 78 82 75 82 42	81 81 80 82 65 82 79 82 83 81 26	99 99 99 99 90 99 95 95 95 78 97 77	99 99 99 99 77 99 82 80 70 89 69 1	93 95 93 83 88 86 85 77 90 76 9	84 88 83 79 85 63 84 82 84 82 84 82 84 28	89 89 92 88 86 84 75 85 84 81 86 80 19	>10% inpatient bed occupancy

Fig. S7. HSA-level results by quarter. Metrics are displayed on the left, with training data from Q2-Q4 2021 and test data from Q1-Q3 2022. Cells report weighted accuracy. Preferences for false positives versus false negatives vary across columns (with "neutral" corresponding to unweighted accuracy) and outcomes across rows. Prevalence indicates the population-weighted proportion of high location-weeks in a given quarter.

Counties

					Neutral				Don't cry wolf (0.5x FN)							Better safe than sorry (0.5x FP)							1					
	21.2	21.3	21.4	22.1	22.2	22.3	Test	Training	Overall	21.2	21.3	21.4	22.1	22.2	22.2	Tect	Training	Overall	21.2	21.2	21.4	22.1	22.2	22.2	Tect	Training	Overall	
	21-2	21-0	21-4	22-1	22-2	22-5	Teat	manning	Overan	21-2	21-5	21-4	22-1	22.2	22-0	1031	manning	Overall	21-2	21-5	21-4	22-1	LL-L	22-0	1031	Training .	overall	-
Adaptive: CHO	70	79	11	76	/5	67	73	75	/4	78	78	11	//	83	78	79	78	78	/1	83	83	82	65	62	70	79	74	
Adaptive: CHOZ	74	80	78	80	76	70		77	76	79	81	77	79	83	78	80	79	80	75	83	83	85	73	67		80	78	
Adaptive: CHOD	71	79	76	80		68	74	75	75	78	78	76	81	83	78	81	77	79	72	82	83	82	68	62	71	79	75	
Adaptive: HZ	73	76	77	79	76	70	75	75	75	78	79	76	78	84	78	80	78	79	74	78	83	85	74	67	75	78	77	
Simplified adaptive: HZ	69	77	76	80	72	69	74	74	74	75	76	75	76	80	79	78	76	77	73	79	83	84	73	68	75	79	77	i à
Community Levels	69	72	60			63	69	67	68	78	78	71		76	64		75	74	59	66	48	65	69	63	65	58	62	leat
Z	69	74	76	76		68		73	73	66	79	76			68	71	74	72	73	69	76	80		68		73	73	E
CHO	72	77	72	77	74	61	70	74	72	79	79	76	80	79	60	73	78	75	67	75	67	73	69		68	70	69	Ş
HO	72	76	71	77	74	60	70	73	72	77	77	75	80	79	58	73	77	75	66	75	67	74	69	62	68	70	69	18
CH	70	78	78	80	52	39	57	75	66	79	79	76	80	73	51	68	78	73	72	82	80	79	61	58	66	78	72	1
н	64	76	77	80	50	37	56	73	64	76	77	75	80	72	48	67	76	71	71	82	81	81	61	57	66	78	72	
С	71	79	75	76	44	43	54	75	65	78	80	75	79		40		77	66	72	81	82	78	53	57	63	78	71	
Prevalence	37	62	74	73	25	34	44	58	51	37	62	74	73	25	34	44	58	51	37	62	74	73	25	34	44	58	51	
		01			20						01			20				0.		02			20					_
Adaptive: CHO	85	79	72	77	91	88	86	79	82	90	79	76	79	94	92	88	82	85	82	83	75	78	88	85	84	80	82	
Adaptive: CHOZ	86	81	76	78		89	86	81	84	91	83	78		94	92	88	84	86	84	83	79	81	89	86	85	82	84	
Adaptive: CHOD	86	77	72	78	91	88	86	78	82	90	78	77	79	94	92	89	81	85	82	81	75	80	89	85	85	79	82	
Adaptive: HZ	86	78	74	76	91	89	85	80	82	91	82	78	76	94			83	85	84	79	78	79	89	86	84	80	82	
Simplified adaptive: HZ	86	79	73	76	91	89	85	79	82	91	80	78	79	94	92	89	83	86	84	79	75	80		86	84	79	82	Ň
Community Levels	86	81	73	78	80	66	75	80	77	88	79	76	79	78	59	72	81	77	84	83	70	77	82	73	77	79	78	leal
Z	81	79	73	68	87	85	80	78	79	79	82	73	64	86	85	79	78	78	83	75	73	71	87	85	81	77	79	ths/
СНО	87	82	72	76	90	84	83	80	82	90	83	78	79	92	85	85	84	84	83	81	74	77	87	75	80	80	80	1 d
но	86	80	72	76	<u>00</u>	83	83	79	81	90	82	76	79	94	92	88	83	85	82	80	74	78	87	74	80	79	79	ĬŽ
CH	87	82	72	76	80	81	82	80	81	90	83	77	70	01	82	84	83	84	82	81	76	78	80	65	74	80	77	×
U	00	02	70	76	00	00	02	70	00	00	00	75	70	02	00	07	00	04	01	00	75	70	00	60	74	70	76	
П	00	00	70	70	60	50	65	00	70	90	00	75	79	80	50	71	02	77	01	01	75	73	60	- 03 - E 0	66	75	70	
Drevelance	10	01	12	56	02	10	05	00	10	90	00	10	70	09	10	05	00	20	102	01	14	56	03	10	00	79	13	
Prevalence	15	39	49	50	9	12	25	30	30	15	39	49	50	9	12	25	35	30	15	39	49	50	9	12	25	35	30	
Adaptive: CHO	80	82	81	84	96	92	91	81	86	83	83	81	80	97	95	91	82	86	78	84	87	88	95	90	91	83	87	Г
Adaptive: CHOZ	78	83	84	84	97	93	91	82	87	81	84	84	81	98	94	91	83	87	80	84	85	88	96	92	92	83	88	
Adaptive: CHOD	80	84	82	84	96	92	91	82	86	84	84	82	84	97		92	83	88	78	87	87	88		90	91	84	87	
Adaptive: HZ	79	80	83	83	97	93	91	81	86	81	82	85	80	98	94	91	82	87	80	81	84	86	96	92	91	82	87	K
Simplified adaptive: HZ	79	79	83	74	97	92	88	80	84	83	76	83	69	98	93	87	80	83	81	76	84	76	96	92	88	80	84	Ī
Community Levels	75	61	62	86	85	70	80	66	73	83	73	73	82	82	61	75	76	76	68	10	50	90	80	78	86	55	70	b
7	70	00	02	77	07	00	00	00	05	76	04	00	70	07	02	06	01	04	00	75	01	04	00	02	01	00	00	atie
CHO	70	70	77	77	00	61	76	76	76	00	04	00	60	07	52	60	01	75	74	64	70	04	01	70	00	70	76	nts
0110	70	70	70	76	0.9	61	70	76	76	02	00	02	60	07	51	60	01	75	74	65	70	04	01	70	02	70	76	10
HU	70	12	/0	70	69	47	/0	70	70	01	00	02	09	07	51	09	01	75	74	05	/3	04	91	12	02	70	70	1×
CH	75	84	85	68	49	1/	45	81	63	81	82	84	08	37	07	35	83	59	78	83	87	78	00	45	63	83	73	×
н	69	86	85	65	47	16	43	80	61	83	80	79	/5	76	37	63	81	72	11	86	88	76	65	44	62	83	73	
C	11	78	82	/1	39	22	44	79	61	80	82	83	62	18	0	25	81	53	/5	86	85	70	48	41	53	82	67	
Prevalence	32	82	76	41	5	10	19	63	41	32	82	76	41	5	10	19	63	41	32	82	76	41	5	10	19	63	41	
Adaptive: CHO	97	75	80	73-	99	99	90	84	87	98	76	84	71	99.	99	90 -	86	88	97	77	78	82_	99	99	93	84	89	
Adaptive: CHOZ	97	75	80	73	90	90	90	84	87	98	76	84	70	aa	aa	80	86	88	96	77	79	82	00	90	93	84	89	
Adaptive: CHOD	07	83	83	86	00	00	95	88	01	08	84	86	86	00	00	05	80	02	07	83	82	88	00	00	95	87	01	L Y
Adaptive: CHOD	07	76	76	70	00	00	90	00	07	30	70	01	64	00	00	95	09	92	07	76	77	00	00	00	90	07	00	100
Rimplified adaptive: HZ	97	66	70	75	99	- 99	- 90	70	07	90	79	70	72	100	- 99	00	00	07	97	60	77	01	- 99	-99-	93	70	00	15
Simplified adaptive: HZ	97	50	/5	75	99	-99	91	79	85	98	75	79	72	100	- 99	-90-	84	8/	97	03	//	81	- 99	- 99	93	79	86	pat
Community Levels	92	78	81	74	86	-68	76	84	80	90	77	81	66	81	57	68	83	/5	94	79	80	83	90	-78	84	85	84	ent
Z	98	59	59	73	99	-99	91	72	81	99	72	72	82	100	- 99	94	81	87	97	45	45	64	- 99	-99	87	62	75	be
СНО	96	76	79	76	94	83	84	84	84	97	79	83	73	95	88	86	87	86	95	75	78	82	95	83	86	83	85	de
HO	96	78	76	77	99	99	91	83	87	97	82	81	79	99	99	92	87	90	94	78	75	84	98	91	91	82	87	00
CH	96	76	79		80	74	77	84	80	97	79	83		91	84	83	87	85	95	75	79	81			77	83	80	Ipa
н	95	78	74	82	98	94		82	87	98	81	79		99		92	86	89	93	78	75	84		88	90	82	86	Nov
С	96	76	79					84	80	97	79	83	71	83			86	82	95	75	80	81	77	71	76	83	80	E
Prevalence	2	41	41	27	1	1	9	28	19	2	41	41	27	1	1	9	28	19	2	41	41	27	1	1	9	28	19	

Fig. S8. County-level results by quarter. Metrics are displayed on the left, with training data from Q2-Q4 2021 and test data from Q1-Q3 2022. Cells report weighted accuracy. Preferences for false positives versus false negatives vary across columns (with "neutral" corresponding to unweighted accuracy) and outcomes across rows. Prevalence indicates the population-weighted proportion of high location-weeks in a given quarter.

Fig. S9. Head-to-head comparison results with additional adaptive functional forms. The top plots display results from state-level analyses and middle from HSA-level analyses. Metrics are displayed on the left, with training data from Q2-Q4 2021 and test data from Q1-Q3 2022. Cells report weighted accuracy and maximum regret (MR) over training and test periods. Rows vary outcomes, and columns vary preferences for false positives versus false negatives, with "neutral" corresponding to unweighted accuracy. Prevalence indicates the population-weighted proportion of high location-weeks in a given time period. Performance is similar across adaptive specifications, but unusually low-performing specifications (e.g., C and CHOD for >1 death/100K/week) generally had low performance in both training and test periods.

Fig. S10. Weighted accuracy by metric, including HSA-level results. Columns indicate different outcomes. The x-axis indicates quarter, and the y-axis predictive accuracy. Grey lines depict metrics based on new hospital admissions exceeding the labeled threshold. The red line indicates CDC Community Levels and the blue line the best-performing adaptive metric in the pre-intervention period of those listed in Figure S4.

Fig. S11. Receiver operating characteristic (ROC) curves for the test period from January 1, 2022 to September 30, 2022. The black line indicates performance of the adaptive metric (HZ) across different values of wt, indicating the relative preference for false negatives over false positives. The top plot indicates state results and the bottom plot county results.

Fig. S12. Head-to-head comparison results (omicron training set). The top plots display results from state-level analyses, middle from HSA-level analyses, and bottom from county-level analyses, all weighted for population. Metrics are displayed on the left, with training data from December 15, 2021-February 15, 2022 and test data from February 16-September 30, 2022. Cells report weighted accuracy and maximum regret (MR) over training and test periods. Rows vary outcomes, and columns vary preferences for false positives versus false negatives, with "neutral" corresponding to unweighted accuracy. Prevalence indicates the population-weighted proportion of high location-weeks in a given time period.

Fig. S13. Simulation scenarios. We vary the optimal cutoff for hospitalization to classify a location-week as "high" over time in different scenarios. The constant scenario assumes a static relationship between indicators and outcomes, while other scenarios assume a changing relationship.

				Con	stant				Linear									Logistic							Non-monotonic								
	21-3	21-4	22-1	22-2	22-3	Overall	Training	g Test	21-3	21-4	22-1	22-2	22-3	Overal	Training	Test	21-3	21-4	22-1	22-2	22-3	Overall	Training	g Test	21-3	21-4	22-1	22-2	22-3	Overall	Fraining	Test	-
Adaptive: HZ	98	97	92	94	94	95	98	94	97	96	90	97	95	95	97	95	98	94	91	98	97	96	98	95	95	93	89	94	94	93	95	92	
Simplified adaptive: HZ	98	98	99	93	94	96	98	96	95	92	95			93	95	92	98	93	80		96	91	98	89	94	68		89	94	88	94		
Н	98	98	99		94	97	98	97	92	77				63	92	56	99	93				65	99	57	93				64	70	93		Empirica
Z	79	81		85		78	79	77	80	82		93	83	82	80	83	83	92		97		86	83	87	80	80		85		77	80	76	
Prevalence	63	70	62	17	60	54	63	52	73	74	60	7	19	47	73	40	81	90	55	3	14	49	81	41	75	57	58	17	60	54	75	48	
																															-		
Adaptive: HZ	97					97	97	97	96	96	96	96	96	96	96	96	97	93	88			94	97	94	92	90				94	92	94	
Simplified adaptive: HZ	97					97	97	97	92	90	90			91	92	90	97	91	64			88	97	86	87		90	89		86	87	85	
Н	97					97	97	97	86					67	86	63	97	90				67	97	59	87					69	87	64	Constant
Z	50	51			51	50	50	50	59	53	50	51	56	54	59	52	72	65	53			62	72	59	62	54	52	50	51	54	62	52	
Prevalence	56	55	56	55	56	56	56	56	70	60	51	42	32	51	70	46	83	74	38	28	28	50	83	42	71	35	44	55	56	52	71	47	
																																	i i i
Adaptive: HZ	77	77	77			77	77	77	100	77				80	100	75	100	73	84	100		87	100	83	100	77	77			82	100		
Simplified adaptive: HZ	0					1	0	1	100					36	100	20	100	19		100		71	100	63	100			100		42	100		sh
Н	100	100	100	100	100	100	100	100	100	100	100	100		95	100	93	100	81		100		83	100	79	100	100	94	100	100	99	100	98	arp wav
Z	77		77	77	77	77	77	77	79	77	77			72	79	70	88	65				70	88	65	87			77	77	79	87		es.
Prevalence	100	0	100	0	100	60	100	50	100	0	100	0	73	55	100	43	100	19	85	0	50	51	100	38	100	0	94	0	100	59	100	48	

Fig. S14. Simulation results. Columns vary the relationship between the input indicator and outcome over time (Figure S13) and rows vary prevalence of hospitalizations and corresponding high outcomes. Metrics are varied in the y-axis, and 3-week-ahead predictive accuracy is displayed in cells.

Fig. S15. Predicted and actual values of primary and secondary outcomes at the state level over time. Colors indicate predicted values, while asterisks indicate true values. Predictions are taken from the best-performing adaptive model in the training period, corresponding to those presented in Figure 4.