

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of periodontal disease with COPD risk and clinical events: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067432
Article Type:	Original research
Date Submitted by the Author:	15-Aug-2022
Complete List of Authors:	Yang, Mei; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine Peng, Ran; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine; 363 Hospital, Department of Respiratory and Critical Care Medicine Li, Xiaoou; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine Peng, Junjie; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine Liu, Lin; 363 Hospital, Department of Respiratory and Critical Care Medicine Liu, Lin; 363 Hospital, Department of Respiratory and Critical Care Medicine Chen, Lei; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine
Keywords:	Chronic airways disease < THORACIC MEDICINE, RESPIRATORY MEDICINE (see Thoracic Medicine), ORAL MEDICINE, Emphysema < THORACIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3		
4 5 6	1	Title Page
7 8	2	Title: Association of periodontal disease with COPD risk and clinical events: a
9 10 11	3	systematic review and meta-analysis
12 13 14	4	
15 16 17	5	Authors' full names: Mei Yang ^{1*} , Ran Peng ^{1,2*} , Xiaoou Li ^{1*} , Junjie Peng ¹ , Lin Liu ^{2#} ,
17 18 19	6	Lei Chen ^{1#}
20 21 22	7	Authors' affiliations: ¹ Department of Respiratory and Critical Care Medicine, West
23 24	8	China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan
25 26 27	9	610041, China.
28 29 30	10	² Department of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan
31 32	11	610041, China
33 34 35	12	
36 37	13	* Contributed equally.
38 39 40	14	
41 42 43	15	#Correspondence to: Lei Chen (lchens@126.com), Department of Respiratory and
44 45	16	Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan
46 47 48	17	University, Chengdu, Sichuan 610041, China; Lin Liu (lliniu@126.com), Department
49 50	18	of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan 610041,
52 53	19	China
54 55 56	20	
57 58 59 60	21	Word count of the abstract: 223

itle Page

1

ord count of the abstract: 223

23

24

25

26

1

BMJ Open

2
3
4
4 7
5
6
7
8
9
10
10
11
12
13
14
15
16
10
17
18
19
20
21
22
22
23
24
25
26
27
20
28
29
30
31
32
22
27
34
35
36
37
38
20
10
40
41
42
43
44
45
-TJ 46
46
47
48
49
50
51
51
52
53
54
55
56
57
57
20
59

60

Association of periodontal disease with COPD risk and clinical events: a systematic review and meta-analysis

27 ABSTRACT

Word count of the main text: 3310

Objectives Studies have suggested contradictory results of the relationship between chronic obstructive pulmonary disease (COPD) and periodontal disease (PD). The aim of this study was to determine the association of PD with COPD risk and its clinical events.

Methods We systematically searched PubMed, EMBASE and CENTRAL from inception to 10 August 2022, to identify relevant articles. Odds ratio (OR) with 95% confident interval (CI) was pooled in a random-effect model with inverse variance method. We also performed stratified and subgroup analyses.

Results In total, 22 observational studies with 51704 participants were included in the
meta-analysis. Pooled analysis of 18 studies suggested that PD was weakly associated
with risk of COPD (OR 1.20; 95% CI 1.09 to 1.32; I²=79%) after adjusting for smoking
status. In stratified and subgroup analyses, with more strict adjustment for smoking, PD
no longer related to COPD risk, when adjusting for smoking intensity (OR 1.14; 95% CI
0.86 to 1.51), smokers only (OR 1.46; 95% CI 0.92 to 2.31) and for never smokers (OR
0.93; 95% CI 0.72 to 1.21). Pooled analysis of 4 studies indicated that PD did not

2	
3	
Δ	
5	
S	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
54	
55	
55	
50	
57	
58	
59	

43 increase risk of COPD-related exacerbation or mortality (OR 1.18; 95% CI 0.71 to 1.97;
44 I²=36%).

45 Conclusions PD confers no risk for COPD and COPD-related events, with adjustment
46 for confounding by smoking. Further investigations focusing on never smokers are
47 warranted.

48

49 STRENGTHS AND LIMITATIONS OF THIS STUDY

- This is the largest systematic review and meta-analysis on association between
 chronic obstructive pulmonary disease (COPD) and periodontal disease (PD)
 collecting data over 20 years.
- 53 2. This study firstly synthesized research evidence regarding correlation of PD with
- 54 COPD-related exacerbation or mortality.
- 3. Compared with previous reports, the present study was conducted with more strict
 adjustment for confounding by smoking, which was the most important confounder
 in the COPD-PD relationship.
- 58 4. Our study provided limited evidence on the outcome of COPD-related events59 because of limited data.
- 60 5. Clinical heterogeneity and publication bias compromised the evidence strength of
- 61 the study, although subgroup and stratified analyses were performed.

62

60

63 INTRODUCTION

BMJ Open

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death, resulting in enormous economic burden.¹ Commonly, COPD coexists with other disorders, also called comorbidities, which play key roles in COPD progression and prognosis.^{2 3} Understanding COPD-comorbidities relationship has been a momentous prerequisite for optimizing disease prevention and management strategies.²³ Given ageing and widespread use of inhaled corticosteroids in COPD, periodontal disease (PD) has been a common comorbidity of COPD.⁴ It is a chronic inflammatory condition of tissues surrounding and supporting the teeth, including gingiva, bone and ligament,⁵ with the prevalence estimates over 10% around the world and especially prevalent in elderly individuals.⁶ To date, diagnosis and assessment of PD are mostly

based on periodontal measurements including clinical attachment level (CAL), probing
pocket depth (PPD) and alveolar bone loss (ABL).⁵ They are primary clinical
manifestations of PD, reflecting the extent of periodontal tissue destruction.⁵

Based on the nature of inflammation,^{5 7} mounting evidence has shed light on the association between PD and development of COPD.⁸ ⁹ Currently three points are proposed. First, they share the same risk factors, such as age, gender, smoking and socioeconomic status.² ¹⁰ Second, they have similar pathogenetic mechanisms. Both diseases are characterized by host susceptibility to environmental factors, immune overreaction, oxidative stress and production of pro-inflammatory cytokines.^{7 8} Most importantly, neutrophilic inflammation plays a key role in both diseases.⁸¹¹ Third, oral bacteria released from the dental plaque in PD could trigger progression and acute

2
3
4
5
6
7
, 0
ð
9
10
11
12
13
11
14
15
16
17
18
19
20
21
ר <u>י</u> רר
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
26
30
37
38
39
40
41
10
-T-2 1-2
43
44
45
46
47
48
<u>4</u> 0
50
50
51
52
53
54
55
56
57
57
58
59

85	exacerbation	(AE) of COPD. ¹²¹	3
----	--------------	------------------------------	---

Meanwhile, epidemiological evidence has indicated that PD increased risk of COPD¹¹ 86 ^{14 15} and COPD-related events.^{13 16} Scannapieco *et al* revealed a 4.5-fold increased risk 87 of developing COPD in patients with PD, compared to those without.¹⁴ A dose-response 88 89 relationship was further implied between PD severity and lung function.¹⁵ Among patients with both diseases, COPD-related AE and mortality also significantly linked 90 with periodontal status.¹³ ¹⁶ Periodontal therapy, such as scaling and root planing 91 92 treatment, could ameliorate lung function and decrease frequency of AE in COPD with chronic periodontitis.^{17 18} However, there were some other studies revealing opposite 93 results, resulting in a long-standing controversy.¹⁹⁻²¹ It is worth noting that, parameters 94 95 used to determine PD were apparently variable across studies, which also failed to adequately control confounders, especially smoking, the most important confounder in 96 97 the COPD-PD relationship. Therefore, to provide the latest and most convincing evidence, we systematically reviewed current available literature to investigate 98 association of PD with risk of COPD and COPD-related events. Subgroup and stratified 99 analyses were also conducted to further decrease confounding effect of smoking. 100

101

60

102 Methods

This systematic review and meta-analysis was conducted and reported in accordance to
 the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
 guideline.²²

BMJ Open

107	Search strategy and selection criteria
108	We searched PubMed, EMBASE and CENTRAL for records evaluating association
109	between COPD and PD, from inception to 10 August 2022. The search strategy was
110	described in online supplemental table S1. The language was restricted to English, for
111	the purpose of rapid review. ²³ Studies meeting the following criteria were included: (1)
112	adult participants; (2) original studies with randomized controlled trial (RCT), cohort,
113	case-control or cross-sectional study designs; (3) presenting clear diagnostic or
114	assessment criteria for COPD and PD; (4) evaluating association between PD and risk
115	of COPD, or risk of COPD-related AE and mortality, with statistical adjustment for
116	smoking.
117	According to the inclusion criteria, two independent investigators (MY and XL)
118	performed systematical search, screened titles and abstracts of all retrieved studies to
119	exclude duplicate or irrelevant records. For articles requiring further assessment, full-

125 Data extraction and quality assessment

investigator (RP).

126 Two investigators (MY and RP) independently extracted data from selected studies

text reviews were carried out and references of retrieved articles and relevant reviews

were also manually checked to identify additional eligible studies. Disagreements were

resolved by discussion between the two reviewers or with the help of the third

using a standardized Excel (Microsoft Corporation) file. The following information was extracted: author, year of publication, country, study design, number of subjects (COPD and non-COPD), demographic characteristics of participants, periodontal variables applied to assess PD, diagnostic criteria for COPD, definition of COPD-related AE and mortality, adjusted odds ratio (OR), relative risk (RR) or hazard ratio (HR) for risk of COPD, AE and mortality in relation to PD, as well as adjustment for confounders. The primary outcome was risk of COPD. Secondary outcome was risk of COPD-related adverse events, including AE and mortality. Quality of studies was independently evaluated using the Newcastle-Ottawa Scale²⁴ by two investigators (MY and XL). A score of ≥ 6 was considered a low risk while < 6 a high risk of bias. Both case-control and cohort studies had a maximum score of 9. Cross-sectional study was regarded as case-control study when performing quality assessment. Discrepancies regarding data extraction and quality assessment were resolved through discussion and consensus.

141 Data analysis

The final pooled estimate was expressed as OR with 95% confident interval (CI). Considering CAL, ABL and PPD have been regarded as the primary variables for assessing PD,^{25 26} where more than one adjusted estimate was shown in the paper, we preferentially used the estimate regarding CAL, ABL or PPD, or the estimate being better adjusted for tobacco smoking (never smokers > adjusting for smoking intensity (duration and dose) > adjusting for smoking status), where available. For case-control

BMJ Open

and cross-sectional studies, we estimated the OR whereas for cohort studies we estimated the RR or HR. The random-effect model with inverse variance method were applied due to potential heterogeneity resulting from methodological differences. Heterogeneity across studies was identified with the I² statistic. I² statistic > 50%indicated significant heterogeneity.

To explore heterogeneity, subgroup analyses were conducted based on study design (case-control, cross-sectional and cohort studies), geographical location (Asia, North America, Europe), assessment of PD (CAL, ABL and PPD), definition of COPD (Global Initiative for Chronic Obstructive Lung Diseases, GOLD and non-GOLD criteria) and adjustment for smoking intensity, defined as dose and duration of smoking. To better control the confounding effect of smoking, stratified analyses were also performed in smokers and never smokers respectively.

To test the robustness of study findings, we performed sensitivity analysis on studies with relatively large sample size (\geq 500 participants), which tended to be more representative of the general population and with smaller bias in the overall estimates in meta-analyses.²⁷ Additionally, influence of a single study on the overall pooled estimate was tested by omitting one study in each turn. Publication bias was visually assessed using a funnel plot and quantitatively evaluated by the Egger's tests. p < 0.05 was considered statistically significant. Evaluation of publication bias, subgroup and stratified analyses were performed only for the risk of COPD due to small number of studies for the other outcome. All statistical analyses were performed using Stata version

2	
3	
Δ	
5	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
11	
- 4 -	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

169 16 (StataCorp) and Review manager version 5.4 (Cochrane Collaboration).

170

1

171 Patient and public involvement

172 No patient involved.

173

174 **RESULTS**

175 Study selection and characteristics

A total of 30165 records were identified from the initial database search. 13662 records were removed for duplicates, and 16227 records were excluded after titles and abstracts screening because of irrelevant content and animal studies. The remaining 276 full-text articles were identified for eligibility, of which 252 were excluded for reasons including duplicates (6 studies), reviews (183 studies), insufficient information (9 studies) and ineligible designs and outcomes (54 studies). Finally, 24 studies^{14-16 19-21 28-45} were included in the review. The selection process is shown in **figure 1**.

The characteristics of included 24 studies were shown in online supplemental table S2. The number of participants was 53049 and COPD was more than 21.7%. The mean age of patients with COPD was between 41.4 and 83.1 years while the control subjects was between 42.2 and 80.3 years. These studies were published between 1998 and 2021. The sample size ranged from 117 to 13792. Among included studies, 11 were casecontrol studies^{15 19 28 29 32-34 37 39 42 44} and 10 were cross-sectional studies,^{14 20 30 31 35 36 40 41} 43 45 only 3 with a cohort study design.^{16 21 38} Additionally, 13 studies were conducted in

BMJ Open

2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
20
29
40
41
42
43
44
45
46
47
48
49
50
50
ן כ ר כ
52 52
53
54
55
56
57
58
50

Asia,^{15 16 19 28 33 35 36 38-40 42-44} while 6 in the North America,^{14 20 21 28-30} 4 in Europe^{31 34 37}
⁴¹ and one in Africa.⁴⁵

All included articles performed multivariable analyses, in which risk of COPD, or risk of COPD-related events (AE or mortality), was identified as the dependent variable and PD as the independent variable. Control for smoking included stratification (smokers and never smokers) or covariance adjustment in multivariable models (the degree of control: never smokers > adjusting for smoking intensity (duration and dose) > adjusting for smoking status).

The adjustment for confounders of included studies was detailedly presented in online 198 supplemental table S3. 16 articles reported the adjusted ORs and 4 reported adjusted RRs, 199 200 2 reporting HRs. One study provided the F value of the one-way analysis of variance for regression analysis³² while the other one only provided relevant exponential of 201 coefficient for constant, called as Exp (B).³⁹ Definition of COPD comprised the GOLD 202 203 criteria, FEV1 <65% of predicted volume, having a history of chronic bronchitis and / 204 or emphysema, self-reported and others. Periodontal parameters used for PD assessment were CAL, ABL, PPD, gingival bleeding (GB), bleeding index (BI), plaque index (PLI) 205 206 and oral health index (OHI).

207

60

208 Assessment of bias

Based on the Newcastle-Ottawa Scale, quality assessment for the 24 studies is shown in
online supplemental table S4. Among them, 20 studies^{15 19-21 28-30 32-44} were rated as high

211 quality with a total score of ≥ 6 whereas 4 studies^{14 16 31 45} as a score of <6, indicating 212 a high risk of bias. The main reasons for lower scores were selection bias 213 (representativeness of sample population), especially for control groups and 214 comparability of cases and control subjects.

Primary outcome

In 20 studies investigating correlation between PD and risk of COPD, only 6¹⁵ ¹⁹ ²⁰ ²⁹ ³³ ³⁶ conducted stratified analyses regarding smoking status, which unanimously suggested PD was not associated with risk of COPD in never smokers. In the remaining 14 studies with relatively inadequate adjustment for smoking, 13 studies¹⁴ ²⁸ ³⁰⁻³² ³⁴ ³⁵ ³⁷ ³⁸ ⁴⁰⁻⁴³ revealed PD was significantly correlated with COPD risk in smokers and never smokers combined, the OR value ranging from 1.02 to 10.00. Furthermore, 18 studies^{14 15 19 20 28-} ³¹ ³³⁻³⁸ ⁴⁰⁻⁴³ providing adjusted OR or RR were included in the quantitative analysis, which demonstrated that after adjusting for smoking status, PD increased risk of COPD, but only by a ratio of 1.20 (95% CI 1.09 to 1.32; p=0.0002; $I^2=79\%$) (figure 2). Further exclusion of any single study did not materially alter the overall pooled OR, with a range from 1.17 (95% CI 1.06-1.28) to 1.28 (95% CI 1.12-1.46). Sensitivity analysis limited to studies with larger sample size $(\geq 500)^{15}$ ¹⁹ ²⁰ ²⁸⁻³⁰ ³⁵⁻³⁸ ⁴⁰ ⁴¹ ⁴³ revealed similar results (OR 1.24; 95% CI 1.08 to 1.43; p=0.003; I²=82%) (online supplemental figure S1). However, significant publication bias was noted by visual inspections of the funnel plot (online supplemental figure S2) and the Egger's test for small study effects (bias

BMJ Open

2	
3	
4	
5	
2	
6	
7	
8	
Q O	
9	
10	
11	
12	
13	
1.7	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
 วว	
20	
24	
25	
26	
27	
20	
28	
29	
30	
31	
27	
52	
33	
34	
35	
36	
27	
37	
38	
39	
40	
10	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
)) [/	
56	
57	
58	
59	
59	
60	

232	coefficient 1.49; 95% CI 0.44 to 2.55; p=0.00	8).
-----	---	-----

233	Subgroup analyses indicated that assessment of PD (p=0.02), study design (p=0.05)
234	and diagnosis of COPD (p=0.05) were the potential main causes of heterogeneity (table
235	1). Moreover, there were several findings in subgroup analyses. First, comparing to
236	studies adjusting for smoking status, pooled analyses on those controlling for smoking
237	intensity did not show apparent correlation on PD and COPD risk (OR 1.14; 95% CI
238	0.86 to 1.51; p=0.38; 10 studies ^{15 19 20 29-31 33 34 36 38}), similar to those applying a GOLD
239	criterion (OR 1.10; 95% CI 1.00 to 1.22; p=0.06; 12 studies ^{15 19 20 31 33-36 38 41-43}). Second,
240	with regard to assessment of PD (CAL, ABL and PPD), only those using the parameter
241	of ABL presented results with statistical significance (OR 1.98; 95% CI 1.32 to 2.97;
242	p=0.001; 6 studies ^{15 28 29 31 33 41}). Third, in the three locations (Asia, North America and
243	Europe), obvious impact of PD on COPD risk was only found in studies of Europe (OR
244	2.05; 95% CI 1.07 to 3.95; p=0.03; 4 studies ^{31 34 37 41}).
245	

- 245
- 246

 Table 1 Subgroup analyses regarding risk of COPD

Subgroups	No.	No. Participants	OR value	Р	I ² , %
	Articles	/Cases	(95% CI)	value	
Adjusted for smoking intensity ^a					
Yes	10	27,246 / 3,556	1.14 (0.86-1.51)	0.38	67
No	8	22,158 / 5,478	1.29 (1.13-1.48)	0.0002	75
Assessment of PD					

CAL		8	24,600 / 3,058	1.04 (0.96-1.14)	0.33	75	
ABL		6	4,629 / 1,530	1.98 (1.32-2.97)	0.001	56	
PPD		8	19,189 / 3,519	1.16 (0.89-1.51)	0.27	63	
Geographical location							
Asia		9	18,831 / 3,606	1.07 (0.99-1.17)	0.08	65	
North America		5	24,033 / 2,420	1.37 (0.93-2.01)	0.11	63	
Europe		4	6,540 / 3,008	2.05 (1.07-3.95)	0.03	71	
Assessment of CC	OPD						
GOLD		12	19,879 / 3,774	1.10 (1.00-1.22)	0.06	71	
Non-GOLD	6	29,525 / 5,260	1.35 (1.14-1.61)	0.0007	46		
Study design							
Case-control		8	9,911 / 4,472	1.12 (1.01-1.24)	0.03	86	
Cross-sectional		9	38,593 / 4,540	1.34 (1.08-1.66)	0.007	45	
Cohort		1	878 / 22	3.51 (1.15-10.74)	0.03	-	
 a Duration and ABL, alveolar ABL, alveolar Initiative for O probing pocke Bold: subgrou 	 ^aDuration and dose of smoking. ABL, alveolar bone loss; CAL, clinical attachment level; CI, confident interval; GOLD, Global Initiative for Chronic Obstructive Lung Disease; OR, odds ratio; PD, periodontal disease; PPD, probing pocket depth. Bold: subgroups with positive results. 						
Stratified	Stratified analyses regarding smoking status revealed that PD did not increase the risk						
.54 of COPD wh	of COPD whether in smokers (OR 1.46; 95% CI 0.92 to 2.31; p=0.11; 7 studies ^{15 19 20 29}						
313336) or ne	^{31 33 36}) or never smokers (OR 0.93; 95% CI 0.72 to 1.21; p=0.58; 6 studies ^{15 19 20 29 33 36})						

(figure 3).

1

2	
3	
Δ	
5	
ر م	
6	
7	
8	
٥.	
2	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
 2⊿	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
27	
34	
35	
36	
37	
28	
20	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
10	
+7 50	
50	
51	
52	
53	
51	
55	
56	
57	
58	
50	

60

258	Secondary outcome
259	Only four studies evaluated risk of COPD-related AE or mortality, with adjusting for
260	smoking. ^{16 21 44 45} Definition of AE was acute deterioration in clinical presentations
261	according to the recommendation in GOLD guideline. ^{21 44 45} These studies applied more
262	than one parameter to assess PD, in which the parameters of CAL, ABL and PPD
263	unanimously showed no association with risk of AE or mortality. Pooled analysis
264	showed that after adjusting for smoking status, PD was also not linked with COPD-
265	related AE or mortality (OR 1.18; 95% CI 0.71 to 1.97; p=0.52; I ² =36%) (figure 4).

266

267 **DISCUSSION**

This systematic review and meta-analysis identified 24 observational studies to investigate association of PD on risk of COPD and COPD-related events. The results indicated after adjusting for smoking status, a 1.20-fold increase in the odds of COPD was observed in patients with PD, but with more strict control for smoking intensity, PD no longer correlated with COPD risk, which was verified in the subgroup and stratified analyses. Meanwhile, PD was also not increase risk of COPD-related events (AE or mortality) when controlling for smoking.

To the best of our knowledge, this is the first and largest meta-analysis investigating association of PD with COPD risk and its clinical events, with adequately controlling the confounding effect of smoking. Also, in quantitative analysis, nearly all included

278	articles were adjusted for age, except the study by Scannapieco et al. ¹⁴ In prior evidence,
279	PD was suggested significantly increasing risk of COPD and COPD-related events.
280	However, the majority of studies has obvious flaws, such as only applying univariate
281	analyses, not controlling confounding effect of smoking, and using parameters with
282	relatively low specificity to determine PD. ^{13 25 45} To define periodontal disease as
283	accurately as possible, we preferentially extracted results concerning the parameter of
284	CAL, ABL or PPD rather than PLI, OHI or remaining teeth. CAL, ABL and PPD are
285	clinical measurements reflecting the destruction of periodontal tissues, also the basis for
286	PD diagnosis. ²⁵ Meanwhile, compared with previous meta-analyses, we enrolled more
287	studies, applied more rigorous screening criteria and most importantly, revealed opposite
288	results. In meta-analyses with incomplete adjustment for smoking, OR value for COPD
289	risk in relation to PD ranged from 1.64 to 2.08.46-48 However, our findings were similar
290	to studies conducted in never smokers, ¹⁵ ¹⁹ ²⁰ ²⁹ ³³ ³⁶ showing PD conferred no risk for
291	COPD. Additionally, pooled results regarding parameters of CAL, ABL and PPD
292	revealed that PD also did not increase risk of COPD-related AE or mortality. These
293	demonstrate that previously reported correlation between PD and COPD may be results
294	of flawed study design, confounding by smoking and even other factors, such as age and
295	living condition.

As a momentous inducer in inflammation-related pathological processes, tobacco is known to correlate with a variety of systemic disorders.⁴⁹ It is also one of the foremost risk factors for both PD and COPD.^{5 10} From the epidemiological perspective, tobacco

BMJ Open

smoking is a confounder with spuriously inflated effect on the relationship between PD and systemic diseases.⁴⁹ To investigate the true association between PD and COPD, it is of great importance to rigorously control the confounding effect of smoking, which means initiating research in never smokers. However, the majority of former studies failed to do that. After a wide search, only six studies focusing on never smokers were found, which unanimously indicated PD was not related with COPD risk. We also observed decreased magnitude of the association as the control for smoking elevated in the quantitative analysis. Therefore, it could be too early to make a certain conclusion on the COPD-PD relationship. Although interventional studies revealed that periodontal treatment reduced the risk of AE, a number of problems existed, including small sample size, limited study quality and unclear history of smoking or medication during the follow-up.¹⁷¹⁸ For example, compared with control subjects, patients in treatment groups may reduce smoking intentionally, which could spuriously enhance the positive effect of periodontal treatment. Consequently, future researches need to take these problems into account.

It is worth noting that, another possibility that smoking acts as an effect modifier in the COPD-PD relationship should not be ignored. Two observational studies performed stratified analyses concerning smoking status and found strong correlation of PD with COPD risk was restricted to smokers.^{15 20} However, this was not revealed in the current study, thus more investigations in smokers are required.

319 Besides, current evidence has demonstrated several issues to be addressed in future

relevant study, comprising inconsistent diagnostic criteria of COPD and PD, the lack of prospective study design and differing adjustments for covariates. These contribute to substantial heterogeneity among studies.^{46 47} The present study indicated the heterogeneity was partly explained by study design, diagnostic criteria of COPD and periodontal indexes used to assess PD. Significant association concerning PD and risk of COPD was only identified in subgroups lacking well designs, applying non-GOLD criteria or utilizing ABL as the measure of PD. For one thing, this demonstrated that, as sources of bias, observational study design and nonstandard diagnostic method for COPD could bring apparent errors, confusing the true relationship of PD with COPD. For another, given undetermined diagnostic criteria for PD, discrepancies between ABL and other indexes cannot fully support the COPD-PD association. Notably, as a radiographic measure, although ABL has been widely considered to reflect cumulative effects of periodontal attachment loss over time by chronic inflammation,²⁸ it does not only exist in PD. Non-periodontal diseases such as liver disorders, cancer and osteoporosis⁵⁰ could also result in ABL. As mentioned previously,²⁸ the observed correlation between ABL and COPD risk may relate to those non-periodontal diseases. Therefore, this remains to be explored further.

338 Limitations

339 Several potential limitations should be taken into consideration when interpreting the340 present results. First, all included studies are observational, which are highly subject to

BMJ Open

selection bias and confounding by indication. Second, substantial heterogeneity was identified in current study, though we conducted subgroup and stratified analyses to partly explain and reduce it. As stated above, several problems leading to heterogeneity need to be addressed in future researches. Third, the number of studies on risk of COPD-related events was limited, thus the result needs to be carefully understood. Limited number of studies in subgroup and stratified analyses suggested more relevant studies with larger sample size are required. Fourth, although confounding effects of age and smoking were controlled by stratified analysis and statistical adjustment, other potential confounders such as gender, living condition and socioeconomic status¹⁰ could also reduce reliability of the results. Fifth, obvious publication bias was noted in relevant meta-analyses,^{46 47} including the present study. For the purpose of rapid review,²³ we only included articles in English. There could exist non-English publications and unpublished evidence, despite we searched English-language studies as much as possible. Finally, although smoking status and intensity were considered in subgroup analysis, information regarding tobacco content and chemical composition were not collected. This information is difficult to obtain, especially from self-reported smoking, leaving a residual smoking-related bias. Consequently, it is advisable to explore relationship between COPD and PD in never smokers.

360 CONCLUSION

361 In summary, this systematic review and meta-analysis suggested that PD was not

> associated with risk of COPD and COPD-related events. Previously reported relationship between COPD and PD may be results of flawed study design and confounding by smoking. However, future well-designed studies are required to validate the present findings.

367 Abbreviations

ABL: Alveolar bone loss; AE: Acute exacerbation; BI: Bleeding index; CAL: Clinical
attachment level; CI: Confident interval; COPD: Chronic obstructive pulmonary disease;
GB: Gingival bleeding; GOLD: Global Initiative for Chronic Obstructive Lung Diseases;
HR: Hazard ratio; OHI: Oral health index; OR: Odds ratio; PD: Periodontal disease; PLI:
Plaque index; PPD: Probing pocket depth; RR: Relative risk.

374 Contributors LC and LL designed the study. MY and XL screened and selected relevant 375 studies. MY, RP and XL rated the study quality and extracted the data. MY, RP, XL and 376 JP analyzed the data. All authors interpreted the data, and MY, RP, XL, JP drafted the 377 paper. LC and LL critically revised the paper. All authors acknowledged and agreed with 378 the format and content of the paper before submission for publication. LC and LL are 379 the guarantors and responsible for the overall contents of this study.

Funding This research received no specific grant from any funding agency in the public,

382 commercial or not-for-profit sectors.

1 2		
3 4		
5 6	383	
7 8 9 10 11	384	Competing interests None declared.
	385	
12 13 14	386	Patient and public involvement Patients and/or the public were not involved in the
15 16 17	387	design, or conduct, or reporting, or dissemination plans of this research.
17 18 19	388	
20 21 22	389	Patient consent for publication Not applicable.
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	390	
	391	Ethics approval Not applicable.
	392	
	393	Data availability statement The data that support the findings of this study are available
	394	from the corresponding author upon reasonable request.
	395	
37 38	200	
39 40 41	396 397	Lei Chen https://orcid.org/0000-0003-3476-0035
42 43	001	
44 45	398	
46 47	399	REFERENCES
48 49	400	1. World Health Organization. The top 10 causes of death, 2020. Available:
50 51	401	https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
52 53	402	(accessed 13 May 2022)
54 55	403	2. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the
56 57	404	diagnosis, management and prevention of chronic obstructive pulmonary
58 59	405	disease (2022 report). Available: https://goldcopd.org/2022-gold-reports/
60		20

1

2 3			
4 5	406		(accessed 13 May 2022)
6 7	407	3.	Negewo NA, Gibson PG, McDonald VM. COPD and its comorbidities: Impact,
8 9	408		measurement and mechanisms. Respirology 2015;20:1160-71.
10 11 12 13 14 15	409	4.	Tan L, Tang X, Pan C, et al. Relationship among clinical periodontal,
	410		microbiologic parameters and lung function in participants with chronic
	411		obstructive pulmonary disease. J Periodontol 2019;90:134-40.
16 17	412	5.	Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet
18 19	413		2005;366:1809-20.
20 21	414	6.	Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe
22 23	415		periodontitis in 1990-2010: a systematic review and meta-regression. J Dent
24 25	416		<i>Res</i> 2014;93:1045-53.
26 27 28 29 30 31 32 33	417	7.	Sczepanik FSC, Grossi ML, Casati M, et al. Periodontitis is an inflammatory
	418		disease of oxidative stress: We should treat it that way. Periodontol 2000
	419		2020;84:45-68.
	420	8.	Usher AK, Stockley RA. The link between chronic periodontitis and COPD: a
34 35	421		common role for the neutrophil? BMC Med 2013;11:241.
36 37	422	9.	Dong J, Li W, Wang Q, et al. Relationships Between Oral Microecosystem and
37 38	423		Respiratory Diseases. Front Mol Biosci 2021;8:718222.
39 40	424	10.	Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol
41 42	425		2000 2013;62:59-94.
43 44	426	11.	Sapey E, Yonel Z, Edgar R, et al. The clinical and inflammatory relationships
45 46	427		between periodontitis and chronic obstructive pulmonary disease. J Clin
47 48	428		Periodontol 2020;47:1040-52.
49 50	429	12.	Scannapieco FA. Role of oral bacteria in respiratory infection. J Periodontol
51 52	430		1999;70:793-802.
53 54	431	13.	Kelly N, Winning L, Irwin C, et al. Periodontal status and chronic obstructive
55 56 57 58 59 60	432		pulmonary disease (COPD) exacerbations: a systematic review. BMC Oral
	433		<i>Health</i> 2021;21:425.
	434	14.	Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral 21

BMJ Open

2 3			
4 5	435		conditions and respiratory disease in a national sample survey population. Ann
6 7	436		Periodontol 1998;3:251-6.
8 9	437	15.	Si Y, Fan H, Song Y, et al. Association between periodontitis and chronic
10 11	438		obstructive pulmonary disease in a Chinese population. J Periodontol
12 13	439		2012;83:1288-96.
14 15	440	16.	Qian Y, Yuan W, Mei N, et al. Periodontitis increases the risk of respiratory
16 17	441		disease mortality in older patients. Exp Gerontol 2020;133:110878.
18 19	442	17.	Zhou X, Han J, Liu Z, et al. Effects of periodontal treatment on lung function
20 21	443		and exacerbation frequency in patients with chronic obstructive pulmonary
22	444		disease and chronic periodontitis: a 2-year pilot randomized controlled trial. J
24 25	445		Clin Periodontol 2014;41:564-72.
26 27	446	18.	Kucukcoskun M, Baser U, Oztekin G, et al. Initial periodontal treatment for
28	447		prevention of chronic obstructive pulmonary disease exacerbations. J
30 31	448		Periodontol 2013;84:863-70.
32	449	19.	Wang Z, Zhou X, Zhang J, et al. Periodontal health, oral health behaviours, and
33 34	450		chronic obstructive pulmonary disease. J Clin Periodontol 2009;36:750-5.
35 36 27	451	20.	Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic
37	452		obstructive pulmonary disease. J Periodontol 2004;75:9-15.
39 40	453	21.	Barros SP, Suruki R, Loewy ZG, et al. A cohort study of the impact of tooth
41 42	454		loss and periodontal disease on respiratory events among COPD subjects:
43 44	455		modulatory role of systemic biomarkers of inflammation. PLoS One
45 46	456		2013;8:e68592.
47 48	457	22.	Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic
49 50	458		review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev
51 52	459		2015;4:1.
53 54	460	23.	Nussbaumer-Streit B, Klerings I, Dobrescu AI, et al. Excluding non-English
55 56	461		publications from evidence-syntheses did not change conclusions: a meta-
57 58	462		epidemiological study. J Clin Epidemiol 2020;118:42-54.
59 60	463	24.	Wells G, Shea B, O'Connell D, <i>et al</i> . The Newcastle-Ottawa Scale (NOS) for 22

3			
4 5	464		assessing the quality of nonrandomised studies in meta-analyses, 2021.
6 7	465		Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
8 9	466		(accessed 21 March 2022).
10 11	467	25.	Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev
12 13	468		Dis Primers 2017;3:17038.
14 15	469	26.	Farook FF, Alodwene H, Alharbi R, et al. Reliability assessment between
16 17	470		clinical attachment loss and alveolar bone level in dental radiographs. Clin Exp
18 19	471		Dent Res 2020;6:596-601.
20 21	472	27.	Lin L. Bias caused by sampling error in meta-analysis with small sample sizes.
21	473		PLoS One 2018;13:e0204056.
23 24 25	474	28.	Hayes C, Sparrow D, Cohen M, et al. The association between alveolar bone
25 26	475		loss and pulmonary function: the VA Dental Longitudinal Study. Ann
27 28	476		Periodontol 1998;3:257-61.
29 30	477	29.	Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between
31 32	478		periodontal disease and chronic obstructive pulmonary disease. Ann
33 34	479		Periodontol 2001;6:71-7.
35 36	480	30.	Scannapieco FA, Ho AW. Potential associations between chronic respiratory
37 38	481		disease and periodontal disease: analysis of National Health and Nutrition
39 40	482		Examination Survey III. J Periodontol 2001;72:50-6.
41 42	483	31.	Leuckfeld I, Obregon-Whittle MV, Lund MB, et al. Severe chronic obstructive
43 44	484		pulmonary disease: association with marginal bone loss in periodontitis. <i>Respir</i>
45 46	485		Med 2008:102:488-94.
47	486	32.	Deo V. Bhongade ML. Ansari S. <i>et al.</i> Periodontitis as a potential risk factor
48 49	487		for chronic obstructive pulmonary disease: a retrospective study. <i>Indian J Dent</i>
50 51	488		<i>Res</i> 2009 [.] 20 [.] 466-70
52 53	489	33	Zhou X Han J Song Y. <i>et al.</i> Serum levels of 25-hydroxyvitamin D oral
54 55	490		health and chronic obstructive pulmonary disease <i>J Clin Periodontol</i>
56 57	491		2012:39·350-6
58 59	492	34	Ledić K. Marinković S. Puhar I. <i>et al.</i> Periodontal disease increases risk for
60	-102	<i>у</i> т.	23

BMJ Open

3 4			
5	493		chronic obstructive pulmonary disease. Coll Antropol 2013;37:937-42.
7 8 9 10 11	494	35.	Chung JH, Hwang HJ, Kim SH, et al. Associations Between Periodontitis and
	495		Chronic Obstructive Pulmonary Disease: The 2010 to 2012 Korean National
	496		Health and Nutrition Examination Survey. J Periodontol 2016;87:864-71.
12 13	497	36.	Harland J, Furuta M, Takeuchi K, et al. Periodontitis modifies the association
14 15	498		between smoking and chronic obstructive pulmonary disease in Japanese men.
16 17 18 19 20 21	499		J Oral Sci 2018;60:226-31.
	500	37.	Lopez-de-Andrés A, Vazquez-Vazquez L, Martinez-Huedo MA, et al. Is COPD
	501		associated with periodontal disease? A population-based study in Spain. Int J
22 23	502		Chron Obstruct Pulmon Dis 2018;13:3435-45.
24 25	503	38.	Takeuchi K, Matsumoto K, Furuta M, et al. Periodontitis Is Associated with
26 27 28 29 30 31 32 33 34 35 36	504		Chronic Obstructive Pulmonary Disease. J Dent Res 2019;98:534-40.
	505	39.	Bomble N, Shetiya SH, Agarwal DR. Association of periodontal status with
	506		lung function in patients with and without chronic obstructive pulmonary
	507		disease visiting a medical hospital in Pune: A comparative study. J Indian Soc
	508		Periodontol 2020;24:67-71.
	509	40.	Jung ES, Lee KH, Choi YY. Association between oral health status and chronic
37 38	510		obstructive pulmonary disease in Korean adults. Int Dent J 2020;70:208-13.
39 40	511	41.	Winning L, Polyzois I, Sanmartin Berglund J, et al. Periodontitis and airflow
41 42	512		limitation in older Swedish individuals. J Clin Periodontol 2020;47:715-25.
43 44	513	42.	Zhou X, Wang J, Liu W, et al. Periodontal Status and Microbiologic Pathogens
45 46	514		in Patients with Chronic Obstructive Pulmonary Disease and Periodontitis: A
47 48	515		Case-Control Study. Int J Chron Obstruct Pulmon Dis 2020;15:2071-9.
49 50	516	43.	Kataoka S, Kimura M, Yamaguchi T, et al. A cross-sectional study of
51 52	517		relationships between periodontal disease and general health: The Hitachi Oral
53 54	518		Healthcare Survey. BMC Oral Health 2021;21:644.
55 56	519	44.	Liu Z, Zhang W, Zhang J, et al. Oral hygiene, periodontal health and chronic
57 58	520		obstructive pulmonary disease exacerbations. J Clin Periodontol 2012;39:45-
59 60	521		52.
00			24

2 3			
4 5	522	45.	AbdelHalim H, AboElNaga H, Aggour R. Chronic obstructive pulmonary
6 7	523		disease exacerbations and periodontitis: a possible association. The Egyptian
8 9	524		Journal of Bronchology 2018.
10 11	525	46.	Zeng XT, Tu ML, Liu DY, et al. Periodontal disease and risk of chronic
12 13	526		obstructive pulmonary disease: a meta-analysis of observational studies. PLoS
14 15	527		One 2012;7:e46508.
16 17	528	47.	Gomes-Filho IS, Cruz SSD, Trindade SC, et al. Periodontitis and respiratory
18 19	529		diseases: A systematic review with meta-analysis. Oral Dis 2020;26:439-46.
20 21	530	48.	Wu Z, Xiao C, Chen F, et al. Pulmonary disease and periodontal health: a
22 23	531		meta-analysis. Sleep Breath 2022.
24 25	532	49.	Hujoel PP, Drangsholt M, Spiekerman C, et al. Periodontitis-systemic disease
26 27	533		associations in the presence of smokingcausal or coincidental? Periodontol
28 29	534		2000 2002;30:51-60.
30 31	535	50.	Intini G, Katsuragi Y, Kirkwood KL, et al. Alveolar bone loss: mechanisms,
32 33	536		potential therapeutic targets, and interventions. Adv Dent Res 2014;26:38-46.
34 35	537		
36 37	538		
38	550		
40 41	539		
41 42	540		
43 44	541		
45 46	011		
47 48 40	542		
49 50	543		
51 52	544	Fion	re legends
53 54	011	5 4	
55 56	545	Figur	e 1 PRISMA flow diagram of study selection.
57 58	546	Figur	e 2 Forest plot of the risk of COPD by periodontal disease, subgroup analysis based
59 60			25
			20

2	
3	
4	
5	
6	
/	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
30 27	
27 28	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

547 on adjusted by smoking status and intensity versus by smoking status only. Values more548 than one indicate a higher risk in patients with periodontal disease.

549 Figure 3 Forest plot of the risk of COPD by periodontal disease. A in smokers and B in

550 never smokers. Values more than one indicate a higher risk in patients with periodontal

551 disease.

. of CO. Figure 4 Forest plot of the risk of COPD-related events by periodontal disease. Values 552 more than one indicate a higher risk in patients with periodontal disease. 553

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
1		
2		
2		
3		
4		
5		
5		
6		
7		
/		
8		
0		
9		
10		
11		
11		
12		
12		
15		
14		
15		
15		
16		
17		
17		
18		
10		
12		
20		
21		
<u> </u>		
22		
23		
25		
24		
25		
25		
26		
27		
27		
28		
29		
27		
30		
30 31		:
30 31		:
30 31 32		:
30 31 32 33		:
30 31 32 33		:
30 31 32 33 34		:
30 31 32 33 34 35		:
30 31 32 33 34 35		:
30 31 32 33 34 35 36		:
30 31 32 33 34 35 36 37		:
30 31 32 33 34 35 36 37		:
30 31 32 33 34 35 36 37 38		:
30 31 32 33 34 35 36 37 38 39		:
30 31 32 33 34 35 36 37 38 39		:
 30 31 32 33 34 35 36 37 38 39 40 		:
30 31 32 33 34 35 36 37 38 39 40 41		:
30 31 32 33 34 35 36 37 38 39 40 41		:
30 31 32 33 34 35 36 37 38 39 40 41 42		:
30 31 32 33 34 35 36 37 38 39 40 41 42 43		:
30 31 32 33 34 35 36 37 38 39 40 41 42 43		:
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44		:
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 95		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57		
$\begin{array}{c} 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$		
$\begin{array}{c} 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 81\\ 57\\ 58\\ 81\\ 57\\ 58\\ 81\\ 57\\ 58\\ 81\\ 57\\ 58\\ 81\\ 57\\ 58\\ 81\\ 57\\ 58\\ 56\\ 57\\ 58\\ 81\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 57\\ 58\\ 58\\ 58\\ 57\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58$		

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.1.1 Adjusted for smoking in	ntensity				
2001 Garcia et al	0.174	0.2635	2.9%	1.19 [0.71, 1.99]	
2001 Scannapieco et al	0.3716	0.1795	5.3%	1.45 [1.02, 2.06]	
2004 Hyman et al	-0.5108	0.3537	1.7%	0.60 [0.30, 1.20]	
2008 Leuckfeld et al	2.3026	1.1617	0.2%	10.00 [1.03, 97.46]	
2009 Wang et al	0	0.0051	18.1%	1.00 [0.99, 1.01]	†
2012 Si et al	-1.6607	0.6196	0.6%	0.19 [0.06, 0.64]	
2012 Zhou et al	0.1222	0.2091	4.2%	1.13 [0.75, 1.70]	
2013 Ledić et al	1.1458	0.581	0.7%	3.14 [1.01, 9.82]	
2018 Harland et al	-0.0305	0.3484	1.8%	0.97 [0.49, 1.92]	
2019 Takeuchi et al	1.2556	0.5706	0.7%	3.51 [1.15, 10.74]	
Subtotal (95% CI)			36.2%	1.14 [0.86, 1.51]	
4 4 0 Not a disease of fear and a late					
1.1.2 Not adjusted for smoking	ng intensity				
1.1.2 Not adjusted for smokin 1998 Hayes et al	ng intensity 0.5878	0.1676	5.8%	1.80 [1.30, 2.50]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al	ng intensity 0.5878 1.5041	0.1676	5.8% 0.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female	ng intensity 0.5878 1.5041 0.7747	0.1676 0.7346 0.7195	5.8% 0.4% 0.5%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male	ng intensity 0.5878 1.5041 0.7747 0.207	0.1676 0.7346 0.7195 0.1213	5.8% 0.4% 0.5% 8.6%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Lopez-de-Andrés et al 2009 de	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906	0.1676 0.7346 0.7195 0.1213 0.0394	5.8% 0.4% 0.5% 8.6% 16.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565	5.8% 0.4% 0.5% 8.6% 16.2% 6.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.2021	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Vinning et al 2020 Zhou et al 2021 Kataoka et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.20 [1.42, 1.48]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI)	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	• • • •
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Ch	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 hi ² = 31.73, df = 8 (((R = 0.0002))	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 01); l ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Ch Test for overall effect: Z = 3.72	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 hi ² = 31.73, df = 8 (i (P = 0.0002)	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 001); I ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] 5%	• • • • •
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al male 2020 Jung et al 2020 Jung et al 2020 Winning et al 2020 Winning et al 2020 Winning et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI)	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 hi ² = 31.73, df = 8 (i (P = 0.0002)	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 2.2% 17.4% 6.3% 63.8% 01); I ² = 79	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] 5%	• • • • •
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al 2020 Jung et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Cf Total (95% CI) Heterogeneity: Tau ² = 0.01; Cf	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 $hi^2 = 31.73, df = 8 (f^2)$ (P = 0.0002)	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 6.3% 63.8% 01); l ² = 7; 100.0% 0001); l ² =	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] 5%	

Figure 2 Forest plot of the risk of COPD by periodontal disease, subgroup analysis based on adjusted by smoking status and intensity versus by smoking status only. Values more than one indicate a higher risk in patients with periodontal disease.

536x384mm (118 x 118 DPI)

A				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2001 Garcia et al	0.4886 0.1	1563	21.1%	1.63 [1.20, 2.21]	-
2004 Hyman et al	1.311 0	0.385	14.3%	3.71 [1.74, 7.89]	
2008 Leuckfeld et al	2.3026 1.1	.1617	3.5%	10.00 [1.03, 97.46]	· · · · ·
2009 Wang et al	0 0.0	.0103	23.3%	1.00 [0.98, 1.02]	•
2012 Si et al	-1.8326 0.8	.8461	5.8%	0.16 [0.03, 0.84]	
2012 Zhou et al	-0.2107 0.3	3729	14.6%	0.81 [0.39, 1.68]	
2018 Harland et al	0.8198 0.2	2787	17.5%	2.27 [1.31, 3.92]	
Total (95% CI)			100.0%	1.46 [0.92, 2.31]	🏲
Heterogeneity: Tau ² =	0.24; Chi² = 38.81, df =	= 6 (P	< 0.00001); l ² = 85%	
Test for overall effect: 2	Z = 1.61 (P = 0.11)				0.000 0.1 1 10 200
В				Odds Ratio	Odds Ratio
B Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV. Random, 95% CI	Odds Ratio IV. Random, 95% Cl
B <u>Study or Subgroup</u> 2001 Garcia et al	log[Odds Ratio] 0.174 0	<u>SE</u>).2635	Weight 15.5%	Odds Ratio <u>IV, Random, 95% CI</u> 1.19 [0.71, 1.99]	Odds Ratio IV. Random, 95% Cl
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al	log[Odds Ratio] 0.174 0 -0.5108 0	<u>SE</u>).2635).3537	<u>Weight</u> 15.5% 10.4%	Odds Ratio <u>IV. Random. 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20]	Odds Ratio
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al	<u>log[Odds Ratio]</u> 0.174 0 -0.5108 0 0 0	SE 0.2635 0.3537 0.0051	Weight 15.5% 10.4% 39.3%	Odds Ratio <u>IV. Random, 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01]	Odds Ratio
B Study or Subgroup 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al	log[Odds Ratio] 0.174 0 -0.5108 0 0 0 -1.6607 0	SE 0.2635 0.3537 0.0051 0.6196	Weight 15.5% 10.4% 39.3% 4.1%	Odds Ratio <u>IV. Random. 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64]	Odds Ratio
B Study or Subgroup 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al	log[Odds Ratio] 0.174 0 -0.5108 0 0 -1.6607 0 0.1222 0	SE 0.2635 0.3537 0.0051 0.6196 0.2091	Weight 15.5% 10.4% 39.3% 4.1% 20.0%	Odds Ratio <u>IV, Random, 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70]	Odds Ratio
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al	log[Odds Ratio] 0.174 0 -0.5108 0 0 -1.6607 0 0.1222 0 -0.0305 0	SE).2635).3537).0051).6196).2091).3484	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7%	Odds Ratio <u>IV, Random, 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92]	Odds Ratio
B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al	log[Odds Ratio] 0.174 0 -0.5108 0 0 -1.6607 0 0.1222 0 -0.0305 0	SE).2635).3537).0051).6196).2091).2091).3484	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7%	Odds Ratio IV. Random. 95% CI 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92]	Odds Ratio
B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al Total (95% CI)	log[Odds Ratio] 0.174 0 -0.5108 0 -1.6607 0 0.1222 0 -0.0305 0	SE).2635).3537).0051).6196).2091).3484	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 100.0%	Odds Ratio <u>IV. Random. 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92] 0.93 [0.72, 1.21]	Odds Ratio
B Study or Subgroup 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al Total (95% CI) Heterogeneity: Tau ² =	log[Odds Ratio] 0.174 0 -0.5108 0 0 0 -1.6607 0 0.1222 0 -0.0305 0 0.05; Chi ² = 10.05, df	<u>SE</u>).2635).3537).0051).6196).2091).3484 f = 5 (P	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 100.0% P = 0.07); I	Odds Ratio <u>IV. Random, 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92] 0.93 [0.72, 1.21] ² = 50%	Odds Ratio

Figure 3 Forest plot of the risk of COPD by periodontal disease. A in smokers and B in never smokers. Values more than one indicate a higher risk in patients with periodontal disease.

192x118mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	Odds Ratio Odds Ratio
7	Study or Subgroup log[Odds Ratio] SE Weight IV. Random, 95% Cl IV. Random, 95% Cl
8	2012 Liu et al -0.2877 0.2923 37.8% 0.75 [0.42, 1.33]
9	2018 AbdelHalim et al -0.734 2.1326 1.5% 0.48 [0.01, 31.37]
10	2020 Qian et al 0.9203 0.5475 17.2% 2.51 [0.86, 7.34]
11	Total (95% CI) 100.0% 1.18 [0.71, 1.97]
12	Heterogeneity: Tau ² = 0.09; Chi ² = 4.72, df = 3 (P = 0.19); l ² = 36% Toot for everyll effect: 7 = 0.64 (P = 0.63)
13	Test for overall effect. $Z = 0.04$ ($\Gamma = 0.02$)
14	
15	Figure 4 Forest plot of the risk of COPD-related events by periodontal disease. Values more than one
16	indicate a higher risk in patients with periodontal disease.
17	497x118mm (118 x 118 DPI)
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
ן כ בט	
5Z	
55 E1	
54 55	
55 56	
50	
57	
50 50	
59	For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml
00	for peer review only inter, / only pen. only.com/ site/ about/ guidennes.xhttm

ltem No	Checklist item	Reported on Page Number/Line Number	Reported on Section/Paragraph
			1
1	Identify the report as a systematic review, meta-analysis, or both.	Page 1 / Line 2	Title page
2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2 / Line 27-46	Abstract
3	Describe the rationale for the review in the context of what is already known.	Page 3-5 / Line 63-96	Introduction / Paragraph 1- 4
4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 5 / Line 96-99	Introduction / Paragraph 4
5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	Page 5 / Line 102-104	Methods / Paragraph 2
6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 6 / Line 111-115	Methods / Paragraph 2
7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 5 / Line 107,108	Methods / Paragraph 2
8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 5,6 / Line 108,109,119,120	Methods / Paragraph 2 Supplemental table S1
9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Page 6 / Line 116-122	Methods / Paragraph 3
10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 6,7 / Line 125,126,137,138	Methods / Paragraph 4
11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 6 / Line 126-133	Methods / Paragraph 4
	Item No 1 2 3 4 5 6 7 8 9 10 11	Item No Checklist item 1 Identify the report as a systematic review, meta-analysis, or both. 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. 3 Describe the rationale for the review in the context of what is already known. 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. 8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). 10 Descri	Item No Checklist item Reported on Page Number/Line 1 Identify the report as a systematic review, meta-analysis, or both. Page 1 / Line 2 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications feey findings: systematic review registration number. Page 2 / Line 27-46 3 Describe the rationale for the review in the context of what is already known. Page 3-5 / Line 63-96 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). Page 5 / Line 96-99 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. Page 5 / Line 102-104 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. Page 5 / Line 107,108 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify repeated. Page 6 / Line 111-115 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the

 BMJ Open

Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Page 7 / Line 133-137	Methods / Paragraph
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 7 / Line 141	Methods / Paragraph
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l ²) for each meta-analysis.	Page 7 / Line 148-151	Methods / Paragraph
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 8 / Line 162-164	Methods / Paragrap
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Page 7,8 / Line 152-162	Methods / Paragrap
RESULTS		5		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Page 8,9 / Line 174-181	Results / Paragraph Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 9,10 / Line 182-205	Results / Paragraph Table S2 and S3
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 10 / Line 208- 213	Results / Paragraph Table S4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 10,11 / Line 216-221	Results / Paragraph Figure 2 and 4
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 11 / Line 221-224 Page 13 / Line 262-264	Results / Paragraph 6,9; Figure 2 and 4
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 11 / Line 224-226, 229-231	Results / Paragraph
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Page 11-13 / Line 226-228, 232-243, 252-255	Results / Paragraph Table 1, Figure 3 a
DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 13-17 / Line 267-335	Discussion / Parage
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 17,18 / Line 338-357	Discussion / Parag
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 18 / Line 360-364	Conclusion / Parag
		3-2		
		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml		

Funding 27 I From: Moher D, Liberati A, Te Med 6(7): e1000097. doi:10.1 For more information, visit: y Please leave this space alone as it wi	escribe sources of funding for the systematic review and other support (e.g., supply of data); role of funders stematic review. 2/aff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Review 71/journal.pmed1000097 vw.prisma-statement.org.	for the Page 19 / Line 380,381	Funding
From: Moher D, Liberati A, Te Med 6(7): e1000097. doi:10.1 For more information, visit:	claff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Review 71/journal.pmed1000097 ww.prisma-statement.org.	ws and Meta-Analyses: The PR	ISMA Statement. PLoS
Med 6(7): e1000097. doi:10.1 For more information, visit: <u>v</u> Please leave this space alone as it wi	71/journal.pmed1000097 vw.prisma-statement.org. be supplemented by the editorial office when needed.		
For more information, visit: y	vw.prisma-statement.org. be supplemented by the editorial office when needed.		
Please leave this space alone as it wi	be supplemented by the editorial office when needed.		
	3-3		Updated on April 13, 20
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.x	html	
Table S1 Search strategy

Search term

- (Oral health) OR (periodontal disease) OR (periodontal health) OR (periodontitis)
 OR (clinical attachment level) OR (alveolar bone loss) OR (probing depth)
- 2. (Respiratory disease) OR (chronic obstructive pulmonary disease) OR (pulmonary function) OR (airflow limitation)
- 3. 1 AND 2

to peet exiew only

1 2 3 4 Table S2 Characteristics of included studies 5 6 7Year / Study Design Location No. COPD / Age (COPD / Assessment of Assessment of 8 9 **Control subjects Control subjects)** PD COPD 10 11 12998 Hayes et al1 Case-control United States 261/857 45.1±9.7/42.2±9.1 ABL FEV1 13 14 1998 Scannapieco *et al*² 15 Cross-sectional United States 77/309 NA OHI Self-reported 16 1**2**001 Garcia et al³ Case-control United States 279/833 NA ABL, PPD FEV1 18 19 2001 Scannapieco et al⁴ Cross-sectional United States 810/12,982 51.2±17.9/43.9±17.7 Self-reported CAL, GB 21 22004 Hyman *et al*⁵ 23 United States 993/6,632 $62.3{\pm}14.1/47.4{\pm}14.2$ Cross-sectional CAL GOLD 24 23008 Leuckfeld et al6 54.9±4.9/47.0±9.8 Cross-sectional 130/50 ABL GOLD Norway 26 27 28²⁰⁰⁹ Deo *et al*⁷ 150/50 41.4±7.5/43.6±5.5 CAL, GB FEV1 / FVC Case-control India 29 32009 Wang et al⁸ Case-control China 306/328 63.9±9.8/63.3±9.0 CAL, PLI GOLD 31 32 32012 Liu et al9 Case-control China 183/209* 64.3±10.1/63.6±9.7* CAL, PPD, BI GOLD 34 35 2012 Si *et al*¹⁰ 36 Case-control China 581/438 $63.9 \pm 9.4 / 62.8 \pm 9.5$ CAL, ABL, PPD, GOLD 37 PLI, BI 38 39 40 2012 Zhou *et al*¹¹ 41 63.6±10.3/62.1±9.1 Case-control China 193/181 CAL, ABL, PPD, GOLD 42 43 PLI, BI 44 45 $\frac{1}{46}$ Barros *et al*¹² Cohort United States 399/1,236§ 63.9±5.7/66.0±5.1# CAL, PPD GOLD 47 48 2013 Ledić *et al*¹³ 49 93/43 65.8±9.7/62.1±11.9 CAL GOLD Case-control Croatia 50 52/016 Chung et al14 $64.3{\pm}0.2/54.6{\pm}0.1$ Cross-sectional Korea 697/5,181 PPD, GB GOLD 52 53 2018 AbdelHalim *et al*¹⁵ 54 Cross-sectional Egypt 134/116* 56.8±10.4/55.3±9.1* CAL, PPD, BI, GOLD 55 56 PLI, OHI 57 58 52018 Harland *et al*¹⁶ PPD GOLD Cross-sectional Japan 149/1,325 61.3±9.1/54.5±8.7 60

1 2								
3 42018 Lopez-de-And: 5	rés <i>et al</i> ¹⁷	Case-control	Spain	2,699/2,699	63±14/61±14	Self-reported	Self-reported	
6 7 ²⁰¹⁹ Bomble <i>et al</i> ¹⁸ 8		Case-control	India	39/78	NA	CAL, OHI, PPD	GOLD	
92019 Takeuchi <i>et al</i> ¹ 10	9	Cohort	Japan	22/878	NA	CAL, PPD	GOLD	
11 1 2 020 Jung <i>et al</i> ²⁰ 13		Cross-sectional	Korea	1,134/6,585	62.6±0.4/53.6±0.2	PPD	FEV1 / FVC	
14 2020 Qian <i>et al</i> ²¹ 15		Cohort	China	23 [‡] /NA	83.1±4.8/80.3±3.7	ABL	NR	
12/020 Winning <i>et al</i> ²² 18	2	Cross-sectional	Sweden	86/740	NA	ABL	GOLD	
19 20 ²⁰ 20 Zhou <i>et al</i> ²³ 21		Case-control	China	60/60	63.1±10.1/60.0±9.4	CAL, PLI	GOLD	
$\frac{22}{2021}$ Kataoka <i>et al</i> ²⁴		Cross-sectional	Japan	464/249	54.1±9.4/NA	PPD	GOLD	
24	Continuous o	lata are presented as	s mean \pm standard	deviation (SD) unless	s otherwise indicated.			
25	*No. COPD	subjects with freque	ent exacerbation (≥2 exacerbations in t	he last year)/Infrequent ex	xacerbation (< 2		
27	exacerbation	s in the last year).						
28	[§] No. COPD subjects with events (hospitalization for exacerbation or COPD-related death) in the 5-year follow-up							
29	vicit/COPD subjects without events in the 5-year follow-up visit							
30	¹ No. COPD related mortality in a follow up visit more than 5 years							
3 I 2 7	TNO. COPID-related mortanty in a follow-up visit more than 5 years.							
33	ADL, alveola	ar bone loss; B I, ble	eating index; CAL		level; FEVI, forced expire			
34	second; FVC	c, forced vital capaci	ity; GB, gingival b	bleeding; GOLD, Glo	bal Initiative for Chronic	Obstructive Lung		
35	Disease; NA	, not available; OHI	, oral health index	; PD, periodontal dise	ease; PLI, plaque index; P	PD, probing		
36	pocket depth	l .						
37								
38								
39 40								
41								
42								
43								
44								
45								
40								
48								
49								
50								
51								
52 53								
54								
55								
56								
57								
58 50								
60								

2
3
1
4
2
6
7
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
38
39
10
40 //1
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54
22
56
57
58
59

Table S3	Adjustment	for confounders	s of included studies
----------	------------	-----------------	-----------------------

Study Author	Covariates in logistic regression multivariable model
Hayes <i>et al</i> ¹	Age, smoking, education, height
Scannapieco et al ²	Smoking
Garcia <i>et al</i> ³	Age, height, alcohol, education (with stratified analysis on smoking)
Leuckfeld et al ⁶	Age, female gender, pack years of smoking
Deo <i>et al</i> ⁷	Age, gender and smoking
Liu <i>et al</i> ⁹	Age, gender, BMI and smoking
Wang <i>et al</i> ⁸	Age, gender, BMI (with stratified analysis on smoking)
Si <i>et al</i> ¹⁰	Age, gender, occupation, educational level (with stratified analysis on
	smoking)
Zhou <i>et al</i> ¹¹	Age, gender, smoking, BMI, season (with stratified analysis on
	smoking)
Ledić <i>et al</i> ¹³	Age, gender, pack years of smoking, BMI
Lopez-de-Andrés <i>et al</i> ¹⁷	Age, gender, smoking, educational level, DM, obesity
Bomble <i>et al</i> ¹⁸	Smoking
Zhou <i>et al</i> ²³	Age, gender, smoking, BMI
Kataoka <i>et al</i> ²⁴	Age, smoking
Qian <i>et al</i> ²¹	Age, sex, education levels, BMI, smoking, drinking, hypertension, DM
Barros <i>et al</i> ¹²	Age, gender, Race, BMI, education, pack years of smoking,
	hypertension
Scannapieco <i>et al</i> ⁴	Age, gender, pack years of smoking, Race, education, income, dental
	visits, alcohol, DM
Hyman <i>et al</i> ⁵	Age, gender, Race, history of hypertension and heart attack, dental visit
	within 1 year, BMI, family income (with stratified analysis on
	smoking)
Chung <i>et al</i> ¹⁴	Age, smoking, family income, education, alcohol, exercise, BMI, tooth
	brushing frequency, DM, number of natural teeth
Harland <i>et al</i> ¹⁶	Age, number of present teeth, BMI, alcohol consumption, occupation,

	hypertension, DM (with stratified analysis on smoking)
Takeuchi et al ¹⁹	Age, gender, pack years of smoking, occupation, DM, BMI, physical
	activity, alcohol intake, number of present teeth
Jung <i>et al</i> ²⁰	Age, gender, smoking, educational level, household income, alcohol
	consumption, periodontal status, number of missing teeth, oral health
	factors
Winning <i>et al</i> ²²	Age, gender, smoking, height, BMI, exercise, DM, hypertension, MI,
	education level, living condition
AbdelHalim <i>et al</i> ¹⁵	Age, BMI, low-level of education, pack years of smoking, MRC,
	CAT, hospitalizations, COPD category (C-D), FVC (% predicted),
	FEV1 (% predicted), FEV1 / FVC (% predicted), MMEF (%
	predicted), PEF (% predicted), CRP

BMI, body mass index; CAT, chronic obstructive pulmonary disease assessment test; CRP, C-reactive protein; DM, diabetes mellitus; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; MI, myocardial infarction; MMEF, maximum mid-expiratory flow; MRC, Medical Research Council; PEF, peak expiratory flow.

Bold: the covariate of smoking intensity (duration and dose) or stratified analyses on smoking status.

.aufied analyses

Table S4 Quality assessment based on the Newcastle-Ottawa Scale

(A) Cohort study

7		Sel	ection			Outcome			Total
9 Study	Exposed	Nonexposed	Ascertainment	Outcome		Assessment	Length of	Adequacy	score
10 11 Author	cohort	cohort	of exposure	of interest	Comparability	of outcome	follow-up	of	
12								follow-up	
13 Barros <i>et al</i> ¹²	*	*	*			*	*	*	6
1 Bakeuchi <i>et al</i> ¹⁹	*	*	*	*		*	*	*	7
16. Qian <i>et al</i> ²¹		*	*			*	*		4

(B) Case-control / cross-sectional study

21	Selection					Outcome		Total	
22 23	Case	Representati-	Control	Control		Ascertainment	Same method	Non-resp	score
24 Study Author	definition	veness of the	selection	definition	Comparability	of exposure	of	onse rate	
25		C3565				1	ascertainment		
26 27		cases					ascertamment		
27							for cases and		
29							controls		
Hayes <i>et al</i> ¹	*		*	*	*	*	*	*	7
Scamapieco et al ²		*	*	*		*	*		5
$\operatorname{Farcia}_{34} et al^3$	*		*	*	*	*	*	*	7
Scannapieco et al4		*	*	*		*	*	*	6
Iynfan <i>et al⁵</i> 37	*	*	*	*		*	*	*	7
Leygkfeld et al6	*			*		*	*	*	5
De3 <i>et al</i> ⁷ 40	*	*		*	*	*	*	*	7
$\operatorname{Vapp}_{\mathfrak{F}} et al^{8}$	*	*		*	*	*	*	*	7
$\operatorname{Liu}^{42}_{et} al^9$	*	*		*	*	*	*	*	7
Si $q_{t}q_{l}^{10}$	*	*		*	*	*	*	*	7
$2hou^{5}et al^{11}$	*	*		*	*	*	*	*	7
Ledit $et al^{13}$	*	*		*	*	*	*	*	7
Chung et al^{14}	*	*	*	*		*	*	*	7
AbdelHalim <i>et al</i> ¹⁵	*			*		*	*	*	5
Hafland <i>et al</i> ¹⁶ 52	*	*		*		*	*	*	6
Logez-de-Andrés <i>et</i>		*	*	*	*		*	*	6
<i>u</i> ¹ 54									
55 Bomble <i>et al</i> ¹⁸	*	*		*	**	*	*	*	8
$un_{5}^{57}et al^{20}$		*	*	*		*	*	*	6
Wigging $et \ al^{22}$	*	*	*	*		*	*	*	7

1 2									
Zhou <i>et al</i> ²³	*	*			**	*	*	*	7
\neg Ka fa oka <i>et al</i> ²⁴	*	*	*	*		*	*	*	7
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60									

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV. Random, 95% CI
1998 Hayes et al	0.5878	0.1676	8.9%	1.80 [1.30, 2.50]	
2001 Garcia et al	0.174	0.2635	5.3%	1.19 [0.71, 1.99]	
2001 Scannapieco et al	0.3716	0.1795	8.3%	1.45 [1.02, 2.06]	
2004 Hyman et al	-0.5108	0.3537	3.4%	0.60 [0.30, 1.20]	
2009 Wang et al	0	0.0051	16.6%	1.00 [0.99, 1.01]	• •
2012 Si et al	-1.6607	0.6196	1.3%	0.19 [0.06, 0.64]	
2016 Chung et al female	0.7747	0.7195	1.0%	2.17 [0.53, 8.89]	
2016 Chung et al male	0.207	0.1213	11.4%	1.23 [0.97, 1.56]	-
2018 Harland et al	-0.0305	0.3484	3.5%	0.97 [0.49, 1.92]	
2018 Lopez-de-Andrés et al	0.1906	0.0394	15.8%	1.21 [1.12, 1.31]	•
2019 Takeuchi et al	1.2556	0.5706	1.5%	3.51 [1.15, 10.74]	
2020 Jung et al	0.1947	0.1565	9.4%	1.21 [0.89, 1.65]	+
2020 Winning et al	0.8372	0.3074	4.2%	2.31 [1.26, 4.22]	
2021 Kataoka et al	0.3221	0.1578	9.4%	1.38 [1.01, 1.88]	
Total (95% CI)			100.0%	1.24 [1.08, 1.43]	◆
Heterogeneity: Tau ² = 0.03; Cl	hi² = 70.75, df = 13	82%			
Test for overall effect: $7 = 2.96$	S(P = 0.003)				0.1 0.2 0.5 1 2 5 10

Figure S1 Sensitivity analysis on studies with larger sample size (N \ge 500). Values more than one indicate a higher risk of COPD in patients with PD.

ore review only

Figure S2 Funnel plot for risk of COPD, with pseudo 95% confidence limits.

References

- 1. Hayes C, Sparrow D, Cohen M, *et al.* The association between alveolar bone loss and pulmonary function: the VA Dental Longitudinal Study. *Ann Periodontol* 1998;3:257-61.
- 2. Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral conditions and respiratory disease in a national sample survey population. *Ann Periodontol* 1998;3:251-6.
- Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between periodontal disease and chronic obstructive pulmonary disease. *Ann Periodontol* 2001;6:71-7.
- Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and periodontal disease: analysis of National Health and Nutrition Examination Survey III. J Periodontol 2001;72:50-6.
- 5. Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic obstructive pulmonary disease. *J Periodontol* 2004;75:9-15.
- 6. Leuckfeld I, Obregon-Whittle MV, Lund MB, *et al.* Severe chronic obstructive pulmonary disease: association with marginal bone loss in periodontitis. *Respir Med* 2008;102:488-94.
- Deo V, Bhongade ML, Ansari S, *et al.* Periodontitis as a potential risk factor for chronic obstructive pulmonary disease: a retrospective study. *Indian J Dent Res* 2009;20:466-70.
- Wang Z, Zhou X, Zhang J, et al. Periodontal health, oral health behaviours, and chronic obstructive pulmonary disease. J Clin Periodontol 2009;36:750-5.
- 9. Liu Z, Zhang W, Zhang J, *et al.* Oral hygiene, periodontal health and chronic obstructive pulmonary disease exacerbations. *J Clin Periodontol* 2012;39:45-52.
- 10. Si Y, Fan H, Song Y, *et al.* Association between periodontitis and chronic obstructive pulmonary disease in a Chinese population. *J Periodontol* 2012;83:1288-96.
- Zhou X, Han J, Song Y, *et al.* Serum levels of 25-hydroxyvitamin D, oral health and chronic obstructive pulmonary disease. *J Clin Periodontol* 2012;39:350-6.
- 12. Barros SP, Suruki R, Loewy ZG, *et al.* A cohort study of the impact of tooth loss and periodontal disease on respiratory events among COPD subjects: modulatory role of systemic biomarkers of inflammation. *PLoS One* 2013;8:e68592.
- Ledić K, Marinković S, Puhar I, *et al.* Periodontal disease increases risk for chronic obstructive pulmonary disease. *Coll Antropol* 2013;37:937-42.

BMJ Open

14.	Chung JH, Hwang HJ, Kim SH, et al. Associations Between Periodontitis and Chronic
	Obstructive Pulmonary Disease: The 2010 to 2012 Korean National Health and Nutrition
	Examination Survey. J Periodontol 2016;87:864-71.
15.	AbdelHalim H, AboElNaga H, Aggour R. Chronic obstructive pulmonary disease
	exacerbations and periodontitis: a possible association. The Egyptian Journal of Bronchology
	2018.
16.	Harland J, Furuta M, Takeuchi K, et al. Periodontitis modifies the association between
	smoking and chronic obstructive pulmonary disease in Japanese men. J Oral Sci
	2018;60:226-31.
17.	Lopez-de-Andrés A, Vazquez-Vazquez L, Martinez-Huedo MA, et al. Is COPD associated
	with periodontal disease? A population-based study in Spain. Int J Chron Obstruct Pulmon
	Dis 2018;13:3435-45.
18.	Bomble N, Shetiya SH, Agarwal DR. Association of periodontal status with lung function in
	patients with and without chronic obstructive pulmonary disease visiting a medical hospital in
	Pune: A comparative study. J Indian Soc Periodontol 2020;24:67-71.
19.	Takeuchi K, Matsumoto K, Furuta M, et al. Periodontitis Is Associated with Chronic
	Obstructive Pulmonary Disease. J Dent Res 2019;98:534-40.
20.	Jung ES, Lee KH, Choi YY. Association between oral health status and chronic obstructive
	pulmonary disease in Korean adults. Int Dent J 2020;70:208-13.
21.	Qian Y, Yuan W, Mei N, et al. Periodontitis increases the risk of respiratory disease mortality
	in older patients. Exp Gerontol 2020;133:110878.
22.	Winning L, Polyzois I, Sanmartin Berglund J, et al. Periodontitis and airflow limitation in
	older Swedish individuals. J Clin Periodontol 2020;47:715-25.
23.	Zhou X, Wang J, Liu W, et al. Periodontal Status and Microbiologic Pathogens in Patients
	with Chronic Obstructive Pulmonary Disease and Periodontitis: A Case-Control Study. Int J
	Chron Obstruct Pulmon Dis 2020;15:2071-9.
24.	Kataoka S, Kimura M, Yamaguchi T, et al. A cross-sectional study of relationships between
	periodontal disease and general health: The Hitachi Oral Healthcare Survey. BMC Oral Health
	2021;21:644.

BMJ Open

The association between chronic obstructive pulmonary disease and periodontal disease: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067432.R1
Article Type:	Original research
Date Submitted by the Author:	25-Feb-2023
Complete List of Authors:	Yang, Mei; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine Peng, Ran; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine; 363 Hospital, Department of Respiratory and Critical Care Medicine Li, Xiaoou; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine Peng, Junjie; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine Liu, Lin; 363 Hospital, Department of Respiratory and Critical Care Medicine Chen, Lei; Sichuan University West China Hospital, Department of Respiratory and Critical Care Medicine
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Public health, Smoking and tobacco, Dentistry and oral medicine
Keywords:	Chronic airways disease < THORACIC MEDICINE, RESPIRATORY MEDICINE (see Thoracic Medicine), ORAL MEDICINE, Emphysema < THORACIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: The association between chronic obstructive pulmonary disease and periodontal

י ר	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
∠ I 22	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
22	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
1	
45	
46	
47	
48	
49	
-72	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
EU	
39	
60	

Title Page

disease: a systematic review and meta-analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Authors' full names: Mei Yang^{1*}, Ran Peng^{1,2*}, Xiaoou Li^{1*}, Junjie Peng¹, Lin Liu^{2#}, Lei Chen^{1#} Authors' affiliations: ¹Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China. ²Department of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan elien 610041, China * Contributed equally. #Correspondence to: Lei Chen (lchens@126.com), Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China; Lin Liu (lliniu@126.com), Department of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan 610041, China

21 Word count of the abstract: 274

23

24

25

26

27

1

BMJ Open

2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
30 21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50 57	
5/	
58	
59	
60	

The association between chronic obstructive pulmonary
disease and periodontal disease: a systematic review and
meta-analysis

28 ABSTRACT

Word count of the main text: 3153

Objectives Studies have suggested contradictory results on the relationship between
chronic obstructive pulmonary disease (COPD) and periodontal disease (PD). The aim
of this study was to determine whether PD increased the risk of COPD and COPDrelated clinical events.
Design Systematic review and meta-analysis.

34 Data sources PubMed, EMBASE and CENTRAL were searched from inception to 22
35 February 2023.

Eligibility criteria for studies We included trials and observational studies evaluating
association of PD with the risk of COPD or COPD-related events (exacerbation and
mortality), with statistical adjustment for smoking.

39 Data extraction and synthesis Two investigators independently extracted data from 40 selected studies using a standardized Excel file. Quality of studies was evaluated using 41 the Newcastle-Ottawa Scale. Odds ratio (OR) with 95% confident interval (CI) was 42 pooled in a random-effect model with inverse variance method.

> **Results** 22 observational studies with 51704 participants were included. Pooled analysis of 18 studies suggested that PD was weakly associated with the risk of COPD (OR 1.20, 95% CI 1.09 to 1.32). However, in stratified and subgroup analyses, with strict adjustment for smoking, PD no longer related to the risk of COPD (adjusting for smoking intensity: OR 1.14, 95% CI 0.86 to 1.51; smokers only: OR 1.46, 95% CI 0.92 to 2.31; never smokers only: OR 0.93, 95% CI 0.72 to 1.21). Moreover, PD did not increase the risk of COPD-related exacerbation or mortality (OR 1.18, 95% CI 0.71 to 1.97) in the pooled result of four studies. **Conclusions** This study demonstrates PD confers no risk for COPD and COPD-related events when strictly adjusted by smoking. Large-scale prospective cohort studies with control of potential confounding factors are warranted to validate the present findings. STRENGTHS AND LIMITATIONS OF THIS STUDY 1. This is the largest systematic review and meta-analysis on association between chronic obstructive pulmonary disease (COPD) and periodontal disease (PD) collecting data over 20 years. 2. This is the first meta-analysis investigating whether PD increases the risk of COPDrelated events (exacerbation or mortality).

> 3. Compared with previous reports, this study was conducted with more strict
> adjustment for confounding by smoking, which was the most important confounder
> in the COPD-PD relationship.

BMJ Open

64 4. Our study provided limited evidence on the outcome of COPD-related events65 because of limited data.

66 5. Clinical heterogeneity and publication bias compromised the evidence strength of67 this study, although subgroup and stratified analyses were performed.

69 INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death, resulting in enormous economic burden.¹ Commonly, COPD coexists with a variety of disorders, called comorbidities, which play significant roles in the progression and prognosis of COPD.^{2 3} Understanding the COPD-comorbidities relationship has been a momentous prerequisite for optimizing disease prevention and management strategies.²

Given ageing and widespread use of inhaled corticosteroids in COPD, periodontal disease (PD) has been a common comorbidity of COPD.⁴ It is a chronic inflammatory condition of tissues surrounding and supporting the teeth, including gingiva, bone and ligament,⁵ with the prevalence estimates over 10% around the world and especially prevalent in elderly individuals.⁶ To date, diagnosis and assessment of PD are mostly based on periodontal measurements including clinical attachment level (CAL), probing pocket depth (PPD) and alveolar bone loss (ABL).⁵ They are primary clinical manifestations of PD, reflecting the extent of periodontal tissue destruction.⁵

Based on the nature of inflammation,^{5 7} mounting evidence has shed light on the

2
3
Δ
-
5
6
7
8
0
9
10
11
12
12
15
14
15
16
17
10
IQ
19
20
21
22
23
24
25
26
20
27
28
29
30
21
31
32
33
34
25
55
36
37
38
30
29
40
41
42
43
11
44
45
46
47
48
40
49
50
51
52
52
22
54
55
56
57
57
58
59

60

1

association between PD and development of COPD.8 9 Currently three points are 85 proposed. First, they share the same risk factors, such as age, gender, smoking and 86 socioeconomic status.² ¹⁰ Second, they have similar pathogenetic mechanisms. Both 87 diseases are characterized by host susceptibility to environmental factors, immune 88 overreaction, oxidative stress and production of pro-inflammatory cytokines.^{7 8} Most 89 importantly, neutrophilic inflammation plays a key role in both diseases.⁸¹¹ Third, oral 90 bacteria released from the dental plaque in PD could trigger progression and acute 91 exacerbation (AE) of COPD.¹²¹³ 92

Meanwhile, epidemiological evidence has indicated that PD increases risk of COPD¹¹ 93 ^{14 15} and COPD-related events.^{13 16} Scannapieco *et al* revealed a 4.5-fold increased risk 94 of COPD in patients with PD, compared with those without.¹⁴ A dose-response 95 relationship was further implied between PD severity and lung function.¹⁵ Among 96 97 patients with both diseases, COPD-related AE and mortality also significantly linked with periodontal status.¹³ ¹⁶ Periodontal therapy, such as scaling and root planing 98 treatment, may ameliorate lung function and decrease frequency of AE in COPD with 99 chronic periodontitis.^{17 18} However, there were some other studies revealing opposite 100 results, resulting in a long-standing controversy.¹⁹⁻²¹ It is worth noting that, parameters 101 102 used to determine PD apparently varied across studies, and these studies also failed to 103 adequately control for confounders, especially smoking, the most important confounder 104 for the COPD-PD relationship. Therefore, to provide the latest and most convincing 105 evidence, we systematically reviewed current available literature to investigate whether

2	
3	
4	
5	
6	
7	
א	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠0 21	
∠ I つつ	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
-т∠ ⁄/ Э	
د ب	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
57	
58	
59	

60

PD increases the risk of COPD. The secondary objective was to evaluate the association
between PD and the risk of COPD-related events. Subgroup and stratified analyses were
also conducted to adjust for the confounding by smoking.

109

110 **METHODS**

This systematic review and meta-analysis was conducted and reported in accordance to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

113 guideline.²²

114

115 Search strategy and selection criteria

116 We searched PubMed, EMBASE and CENTRAL for records evaluating association 117 between COPD and PD, from inception to 22 February 2023. The search strategy was 118 described in online supplemental table S1. The language was restricted to English, for 119 the purpose of rapid review.²³ Studies meeting the following criteria were included: (1) 120 adult participants (≥ 18 years); (2) original studies with randomized controlled trial (RCT), cohort, case-control or cross-sectional study designs; (3) presenting clear 121 122 diagnostic or assessment criteria for COPD and PD; (4) evaluating association between 123 PD and the risk of COPD, or risk of COPD-related events (AE and mortality), with statistical adjustment for smoking, and providing the adjusted odds ratio (OR), relative 124 125 risk (RR) or hazard ratio (HR) for the risk of COPD, AE and mortality in relation to PD. According to the inclusion criteria, two independent investigators (MY and XL) 126

performed systematical search, screened titles and abstracts of all retrieved studies to exclude duplicate or irrelevant records. For articles requiring further assessment, fulltext reviews were carried out and references of retrieved articles and relevant reviews were also manually checked to identify additional eligible studies. Disagreements were resolved by discussion between the two reviewers or with the help of the third investigator (RP).

134 Data extraction and quality assessment

Two investigators (MY and RP) independently extracted data from selected studies using a standardized Excel (Microsoft Corporation) file. The following information was extracted: author, year of publication, country, study design, number of subjects (COPD and non-COPD), demographic characteristics of participants, periodontal variables applied to assess PD, diagnostic criteria for COPD, definition of COPD-related AE and mortality, adjusted OR, RR or HR for the risk of COPD, AE and mortality in relation to PD, as well as adjustment for confounders. The primary outcome was the risk of COPD. Secondary outcome was the risk of COPD-related adverse events, including AE and mortality. Quality of studies was independently evaluated using the Newcastle-Ottawa Scale²⁴ by two investigators (MY and XL). A score of ≥ 6 was considered a low risk while < 6 a high risk of bias. Both case-control and cohort studies had a maximum score of 9. Cross-sectional study was regarded as case-control study when performing quality assessment. Discrepancies regarding data extraction and quality assessment were

Data analysis

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ ⊃1
∠ I 22
22
23
24
25
26
27
28
29
30
31
27
JZ 22
22
34 25
35
36
37
38
39
40
41
42
43
13
44 15
45
40
4/
48
49
50
51
52
53
54
55
56
57
52
50
17

60

148	resolved through discussion and consensus.
149	

151 The final pooled estimate was expressed as OR with 95% confident interval (CI). 152 Considering CAL, ABL and PPD have been regarded as the primary parameters for 153 PD,²⁵²⁶ where more than one adjusted estimate was shown in the paper, we preferentially used the estimate regarding these parameters (CAL > ABL > PPD), or the estimate being 154 155 better adjusted for tobacco smoking (never smokers > adjusting for smoking intensity [duration and dose] > adjusting for smoking status), or the estimate regarding more 156 157 severe PD, where available. For case-control and cross-sectional studies, we estimated 158 the OR whereas for cohort studies we estimated the RR or HR. The random-effect model 159 with inverse variance method were applied due to potential heterogeneity resulting from 160 methodological differences. Heterogeneity across studies was identified with the I² 161 statistic. I² statistic >50% indicated significant heterogeneity.

To explore heterogeneity, subgroup analyses were conducted based on study design (case-control, cross-sectional and cohort studies), geographical location (Asia, North America, Europe), assessment of PD (CAL, ABL and PPD), definition of COPD (Global Initiative for Chronic Obstructive Lung Diseases, GOLD and non-GOLD criteria) and adjustment for smoking intensity (dose and duration of smoking). To better control the confounding effect of smoking, stratified analyses were performed in smokers and never smokers respectively.

To test the robustness of study findings, we performed sensitivity analysis on studies with relatively large sample size (\geq 500 participants), which tended to be more representative of the general population and with smaller bias in the overall estimates in meta-analyses.²⁷ Additionally, influence of a single study on the overall pooled estimate was tested by omitting one study in each turn. Publication bias was visually assessed using a funnel plot and quantitatively evaluated by the Egger's tests. P <0.05 was considered statistically significant. All statistical analyses were performed using Stata version 16 (StataCorp) and Review manager version 5.4 (Cochrane Collaboration). Patient and public involvement Review No patient involved. RESULTS **Study selection and characteristics**

A total of 30165 records were identified from the initial database search. 13662 records were removed for duplicates, and 16227 records were excluded after titles and abstracts screening because of irrelevant content and animal studies. The remaining 276 full-text articles were identified for eligibility, of which 254 were excluded for reasons including duplicates (six studies), reviews (183 studies), insufficient information (nine studies) and ineligible designs and outcomes (56 studies). Finally, 22 studies^{14-16 19-21 28-43} were included in the review. The selection process is shown in **figure 1**.

1		
2		
2		
2		
4		
5		
6		
0		
7		
8		
ō		
2	_	
1	0	
1	1	
1	2	
	2	
I	3	
1	4	
1	5	
1	<i>c</i>	
I	6	
1	7	
1	8	
1	0	
1	9	
2	0	
2	1	
2	c	
2	2	
2	3	
2	4	
2	5	
2	<i>c</i>	
2	6	
2	7	
2	8	
ົ	o O	
2	9	
3	0	
3	1	
З	2	
<u>-</u>	2	
3	3	,
3	¥ear	1
3	5	
2	6	
З	0	
3	7	
3	8	
2	0008	L
<i>з</i>	-	I
4	0	
4	1	
Δ	1998	S
-	2	
4	3	
4	4 001	(
4	5	
۸	c	
4	0	<i>c</i>
4	7 001	2
4	8	
^	o O	
+ 	2004	ŀ
5	U	
5	1	
5	2008	T
л г	<u>~</u> 0000	1
5	3	
5	4	Ŧ
5	5009	١
5	6	
.)		

190	The characteristics of included 22 studies were shown in table 1. The number of
191	participants was 51704 and there were 9973 (18.9%) patients with COPD. The mean age
192	of patients with COPD was between 45.1 and 83.1 years while the control subjects was
193	between 42.2 and 80.3 years. These studies were published between 1998 and 2021. The
194	sample size ranged from 120 to 13792. Nine studies were case-control studies ^{15 19 28 29 32}
195	³³ ³⁶ ⁴⁰ ⁴² and 10 studies were cross-sectional studies, ¹⁴ ²⁰ ³⁰ ³¹ ³⁴ ³⁵ ³⁸ ³⁹ ⁴¹ ⁴³ only three
196	studies with a cohort study design. ^{16 21 37} Additionally, 11 studies were conducted in
197	Asia, ^{15 16 19 32 34 35 37 38 40-42} while six studies in the North America, ^{14 20 21 28-30} four studies
198	in Europe ^{31 33 36 39} and one study in Africa. ⁴³
199	
200	Table 1 Characteristics of included studies

33 3¥ear / Study	Design	Location	No. COPD /	Age (COPD /	Assessment of	Assessment of
35						
36			Control subjects	Control subjects)	PD	COPD
37			Control subjects	Control subjects)	1 D	COLD
38						
39 998 Hayes <i>et al</i> ²⁸	Case-control	United States	261/857	45.1±9.7/42.2±9.1	ABL	FEV_1
40						
$\begin{array}{c} 41 \\ 42 \\ 42 \\ 42 \\ 41 \\ 42 \\ 41 \\ 41 \\ 41 \\ 41 \\ 41 \\ 41 \\ 41 \\ 41$	Cross-sectional	United States	77/309	NA	OHI	Self-reported
43						
4 2001 Garcia <i>et al</i> ²⁹ 4 5	Case-control	United States	279/833	NA	ABL, PPD	FEV_1
46						
42 001 Scannapieco <i>et al</i> ³⁰	Cross-sectional	United States	810/12,982	51.2±17.9/43.9±17.7	CAL, GB	Self-reported
48						
49 2004 Hyman <i>et al</i> ²⁰ 50	Cross-sectional	United States	993/6,632	62.3±14.1/47.4±14.2	CAL	GOLD
51						
52008 Leuckfeld et al ³¹	Cross-sectional	Norway	130/50	54.9±4.9/47.0±9.8	ABL	GOLD
53						
54 55 ²⁰⁰⁹ Wang <i>et al</i> ¹⁹	Case-control	China	306/328	63.9±9.8/63.3±9.0	CAL, PLI	GOLD
56						
57 012 Liu <i>et al</i> ⁴²	Case-control	China	183/209*	64.3±10.1/63.6±9.7	CAL, PPD, BI	GOLD
59						
60						
~~						

2 3								
4 52012 Si <i>et al</i> 6	l ¹⁵		Case-control	China	581/438	63.9±9.4/62.8±9.5	CAL, ABL, PPD,	GOLD
7 8 9							PLI, BI	
10 2012 Zhou e 11	et al ³²		Case-control	China	193/181	63.6±10.3/62.1±9.1	CAL, ABL, PPD,	GOLD
12 13 14							PLI, BI	
15 2013 Barros 16	et al ²¹		Cohort	United States	399/1,236 [§]	63.9±5.7/66.0±5.1	CAL, PPD	GOLD
1 <u>8</u> 013 Ledić a 19	et al ³³		Case-control	Croatia	93/43	65.8±9.7/62.1±11.9	CAL	GOLD
20 24016 Chung 22	, et al ³⁴		Cross-sectional	Korea	697/5,181	64.3±0.2/54.6±0.1	PPD, GB	GOLD
23 2018 Abdell 24	Halim a	et al ⁴³	Cross-sectional	Egypt	134/116*	56.8±10.4/55.3±9.1	CAL, PPD, BI,	GOLD
25 26 27							PLI, OHI	
28 29 ^{018 Harlan}	nd <i>et al</i> -	35	Cross-sectional	Japan	149/1,325	61.3±9.1/54.5±8.7	PPD	GOLD
30 3 <u>1</u> 018 Lopez- 32	-de-An	drés <i>et al³⁶</i>	Case-control	Spain	2,699/2,699	63±14/61±14	Self-reported	Self-reported
33 3 <u>4</u> 019 Takeuo	chi <i>et a</i>	l ³⁷	Cohort	Japan	22/878	NA	CAL, PPD	GOLD
36 2020 Jung <i>et</i> 37	t al ³⁸		Cross-sectional	Korea	1,134/6,585	62.6±0.4/53.6±0.2	PPD	FEV ₁ / FVC
38 32020 Qian <i>e</i> . 40	t al ¹⁶		Cohort	China	23 [‡] /NA	83.1±4.8/80.3±3.7	ABL	NR
41 42 ⁰²⁰ Winnin 42	ng <i>et a</i>	139	Cross-sectional	Sweden	86/740	NA	ABL	GOLD
43 4 <u>2</u> 020 Zhou <i>e</i> 45	et al ⁴⁰		Case-control	China	60/60	63.1±10.1/60.0±9.4	CAL, PLI	GOLD
46 4 2 021 Kataok 48	ka et al	41	Cross-sectional	Japan	464/249	54.1±9.4/NA	PPD	GOLD
49 20	01	Continuous da	ata are presented as	mean \pm standard of	deviation (SD) unless	otherwise indicated.		
50 51 20	02	*No. COPD s	ubjects with frequer	nt exacerbation (\geq	2 exacerbations in the	last year)/Infrequent exa	cerbation (< 2	
52 53 20	03	exacerbations	in the last year).					
54 20	04	[§] No. COPD st	ubjects with events	(hospitalization fo	or exacerbation or CO	PD-related death) in the 5	-year follow-up	
55 20	05	visit/COPD su	ubjects without even	nts in the 5-year fo	ollow-up visit.	,	- 1	
56 20	06	[‡] No. COPD-re	elated mortality in a	follow-up visit m	ore than 5 years.			
57 ² 58 20	07	ABL, alveola	r bone loss: BI ble	eding index: CAI	clinical attachment	level: FEV ₁ , forced expire	atory volume in 1	
59 20	08	second; FVC.	forced vital capaci	ty; GB, gingival l	bleeding: GOLD. Glo	bal Initiative for Chronic	Obstructive Lung	
60	'	,	oupuor	,, - , <u></u> ,				

Disease; NA, not available; OHI, oral health index; PD, periodontal disease; PLI, plaque index; PPD, probing pocket depth. All included articles performed multivariable analyses, in which the risk of COPD, or risk of COPD-related events (AE or mortality), was identified as the dependent variable and PD as the independent variable. Controlling for confounding by smoking included stratification (smokers and never smokers) or covariance adjustment in multivariable models (the degree of control: never smokers > adjusting for smoking intensity [duration and dose] > adjusting for smoking status). The adjustment for confounders of included studies was detailedly presented in online supplemental table S2. 16 articles reported the adjusted ORs and 4 reported adjusted RRs, two studies reporting HRs. Definition of COPD comprised the GOLD criteria,² FEV₁ <65% of predicted volume, having a history of chronic bronchitis and / or emphysema, self-reported and others. Periodontal parameters used for PD assessment were CAL, ABL, PPD, gingival bleeding (GB), bleeding index (BI), plaque index (PLI) and oral health index (OHI).

226 Assessment of bias

Based on the Newcastle-Ottawa Scale, quality assessment for the 22 studies was shown in online supplemental table S3. Among them, 18 studies^{15 19-21 28-30 32-42} were rated as high quality with a total score of \geq 6 whereas four studies^{14 16 31 43} as a score of <6, indicating a high risk of bias. The main reasons for lower scores were selection bias (representativeness of sample population), especially for control groups and

2
2
2
4
5
6
7
8
9
10
11
12
12
1.0
14
15
16
17
18
19
20
21
22
22
∠_) 24
24
25
26
27
28
29
30
31
32
32
22
54 25
35
36
37
38
39
40
41
42
43
11
-+-+ 1 =
45 42
46
47
48
49
50
51
52
53
57
54
22 52
56
57
58
59

232 comparability of cases and control subjects.

233

1

234 **Primary outcome**

18 studies^{14 15 19 20 28-41} provided data for the risk of COPD in relation to PD. Quantitative 235 236 analysis demonstrated that after adjusting for smoking status, PD increased the risk of 237 COPD, but only by a ratio of 1.20 (95% CI 1.09 to 1.32, p=0.0002, I²=79%) (figure 2). Further exclusion of any single study did not materially alter the overall pooled OR, with 238 239 a range from 1.17 (95% CI 1.06-1.28) to 1.28 (95% CI 1.12-1.46). Sensitivity analysis limited to studies with larger sample size $(\geq 500)^{15 \ 19 \ 20 \ 28 \ 30 \ 34 \ 39 \ 41}$ revealed similar results 240 (OR 1.24, 95% CI 1.08 to 1.43, p=0.003, I²=82%) (online supplemental figure S1). 241 242 However, significant publication bias was noted by visual inspections of the funnel plot (online supplemental figure S2) and the Egger's test for small study effects (bias 243 coefficient 1.49, 95% CI 0.44 to 2.55, p=0.008). 244

245 Subgroup analyses indicated that assessment parameters of PD (p=0.02), study design 246 (p=0.05) and diagnosis of COPD (p=0.05) were the potential main causes of heterogeneity (table 2). Moreover, there were several findings in subgroup analyses. 247 248 First, after further controlling for smoking intensity, PD did not increase the risk of COPD (OR 1.14, 95% CI 0.86 to 1.51, p=0.38, 10 studies^{15 19 20 29-33 35 37}), similar to the 249 subgroup applying a GOLD criterion (OR 1.10, 95% CI 1.00 to 1.22, p=0.06, 12 250 studies¹⁵ ¹⁹ ²⁰ ³¹⁻³⁵ ³⁷ ³⁹⁻⁴¹). Second, among the parameters of CAL, ABL and PPD, only 251 subgroup using the parameter of ABL showed a significant association between PD and 252

253	the risk of COPD (C	OR 1.98, 95% CI 1	32 to 2.97, p=0.0	001, six studies ¹⁵	28 29 31 32	³⁹).					
254	Third, in the three geographical locations (Asia, North America and Europe), only the										
255	subgroup of Europe indicated that PD increased the risk of COPD (OR 2.05, 95% CI										
256	1.07 to 3.95, p=0.03,	four studies ^{31 33 36}	³⁹).								
257											
258	Tabl	e 2 Subgroup analy	yses regarding the	risk of COPD							
S	ubgroups	No. Studies	No. Participants	OR value	Р	I ² , %					
			/Cases	(95% CI)	value						
A	djusted for smoking intens	sity ^a									
	Yes	10	27,246 / 3,556	1.14 (0.86-1.51)	0.38	67					
	No	8	22,158 / 5,478	1.29 (1.13-1.48)	0.0002	75					
А	ssessment of PD										
	CAL	8	24,600 / 3,058	1.04 (0.96-1.14)	0.33	75					
	ABL	6	4,629 / 1,530	1.98 (1.32-2.97)	0.001	56					
	PPD	8	19,189 / 3,519	1.16 (0.89-1.51)	0.27	63					
G	eographical location										
	Asia	9	18,831 / 3,606	1.07 (0.99-1.17)	0.08	65					
	North America	5	24,033 / 2,420	1.37 (0.93-2.01)	0.11	63					
	Europe	4	6,540 / 3,008	2.05 (1.07-3.95)	0.03	71					
А	ssessment of COPD										
		12	10 870 / 2 774	1 10 (1 00 1 22)	0.06	71					

			BMJ Open			
	Non-GOLD	6	29,525 / 5,260	1.35 (1.14-1.61)	0.0007	
S	tudy design		9,911 / 4,472 38,593 / 4,540		0.03 0.007	86 45
	Case-control	8		1.12 (1.01-1.24) 1.34 (1.08-1.66)		
	Cross-sectional	9				
	Cohort	1	878 / 22	3.51 (1.15-10.74)	0.03	-
259	^a Duration and dose of sm	oking.				
260	ABL, alveolar bone loss;	CAL, clinical attac	chment level; CI, con	fident interval; GOL	D, Global	
261	Initiative for Chronic Ob	structive Lung Dise	ease; OR, odds ratio;	PD, periodontal dise	ase; PPD,	
262	probing pocket depth.					
263	Bold: subgroups with pos	sitive results.				
264						
265	Stratified analyses regarding smoking status revealed that PD did not increase the risk					
266	of COPD whether in smokers (OR 1.46, 95% CI 0.92 to 2.31, p=0.11, seven studies ^{15 19}					
267	^{20 29 31 32 35}) or never smokers (OR 0.93, 95% CI 0.72 to 1.21, p=0.58, six studies ^{15 19 20 29}					
268	^{32 35}) (figure 3).					
269						
070						
270	Secondary outcome					
271	Only four studies eval	uated the risk of (COPD-related AE	or mortality ¹⁶²¹⁴²	⁴³ Definit	ion
1	Sing rour studies eval			or mortunty.	Domin	.011
272	of AE was acute deter	ioration in clinica	al presentations ac	cording to the reco	mmendat	ion
				-		
273	in GOLD guideline. ²¹	^{42 43} Pooled analy	sis showed that aft	er adjusting for sm	oking sta	tus,
274	PD did not increase th	e risk of COPD-1	related AE or mort	ality (OR 1.18, 95	% CI 0.7	l to
	1 0- - - - - - - - - -					
275	1.97, p=0.52, I ² =36%)) (figure 4).				
276						
	DISCUSSION					
277	DISCUSSION					
			15			
	For peer rev	iew only - http://bm	nionen bmi com/site/	about/quidelines xht	ml	

Page 17 of 41

BMJ Open

This systematic review and meta-analysis identified 22 observational studies to investigate the association between COPD and PD. The results indicated that, after strictly adjusting for confounding by smoking, PD did not increase the risk of COPD, as well as the risk of COPD-related AE or mortality. Moreover, these findings were consistent across the subgroup and stratified analyses.

To the best of our knowledge, this is the first and largest meta-analysis investigating the association of PD with the risk of COPD and its clinical events, with adequately controlling the confounding effect of smoking. Besides, nearly all included articles were adjusted for age, except the study by Scannapieco et al.¹⁴ Prior publications have suggested that PD significantly increased the risk of COPD and COPD-related events. However, the majority of studies have non-negligible flaws, such as only performing univariate analyses, not controlling the confounding by smoking, and using parameters with relatively low specificity for determining PD.^{13 25 43} In the present study, to define PD as accurately as possible, we preferentially extracted data concerning the parameters of CAL, ABL and PPD rather than PLI, OHI or remaining teeth. CAL, ABL and PPD are clinical measurements reflecting the destruction of periodontal tissues and momentous parameters for diagnosis of PD.^{25 44} Meanwhile, compared with previous meta-analyses, we enrolled more studies, applied more rigorous screening criteria and most importantly, revealed opposite results. In the meta-analyses with incomplete adjustment for smoking, OR value for the risk of COPD ranged from 1.28 to 2.08.45-48 However, our findings were similar to studies conducted in never smokers, 15 19 20 29 32 35

which showed that PD conferred no risk for COPD. Additionally, pooled analyses regarding parameters of CAL, ABL and PPD revealed that PD also did not increase the risk of COPD-related AE or mortality. These findings demonstrate that previously reported correlation between PD and COPD may be results of flawed study design, confounding by smoking and even other factors, such as age and living condition. As a momentous inducer for inflammation-related pathological processes, tobacco is known to correlate with a variety of systemic disorders.⁴⁹ It is also one of the foremost risk factors for both COPD and PD.^{5 10} From the epidemiological perspective, tobacco smoking is a confounder with spuriously inflated effect on the relationship between PD and systemic diseases.⁴⁹ To investigate the true association between PD and COPD, it is of great importance to rigorously control the confounding effect of smoking, which means initiating research in never smokers. However, the majority of former studies failed to do that. After a wide search, only six studies focusing on never smokers were found, which unanimously indicated PD was not related with the risk of COPD. We also observed a decreased intensity of the association between both diseases with the increase of control for smoking. Therefore, it could be too early to make a certain conclusion on the COPD-PD relationship. Although interventional studies revealed that periodontal treatment reduced the risk of AE, a number of problems existed, including small sample size, limited study quality and unclear history of smoking or medication during the follow-up.¹⁷¹⁸ For example, compared with control subjects, patients in treatment groups may reduce smoking intentionally, which could spuriously enhance the positive effect

BMJ Open

of periodontal treatment. Consequently, future researches need to take these problemsinto account.

It is worth noting that, another possibility that smoking acts as an effect modifier in the COPD-PD relationship should not be ignored. Two observational studies performing stratified analyses concerning smoking status found that the strong correlation of PD with the risk of COPD was restricted to smokers.^{15 20} However, this was not revealed in the present study, thus more investigations in smokers and never smokers respectively are required.

Besides, current evidence has demonstrated several issues to be addressed in future study, comprising inconsistent diagnostic criteria of COPD and PD, the lack of prospective study design and differing adjustments for covariates. These contribute to substantial heterogeneity among studies.⁴⁵ ⁴⁶ The present study indicated the heterogeneity was partly explained by study design, diagnostic criteria of COPD and periodontal indexes used to assess PD. Significant association concerning PD and risk of COPD was only identified in subgroups lacking well designs, applying non-GOLD criteria or utilizing ABL as the measure of PD. For one thing, this demonstrated that, as sources of bias, observational study design and nonstandard diagnostic method for COPD could induce apparent deviations, confusing the true relationship between COPD and PD. For another, given undetermined diagnostic criteria for PD, discrepancies between ABL and other indexes cannot fully support the COPD-PD association. Notably, as a radiographic measure, although ABL has been widely considered to reflect

cumulative effects of periodontal attachment loss over time by chronic inflammation,²⁸ it does not only exist in PD. Non-periodontal diseases such as liver disorders, cancer and osteoporosis⁵⁰ could also result in ABL. As mentioned previously,²⁸ the observed correlation between ABL and risk of COPD may relate to those non-periodontal diseases.

346 Limitations

Several potential limitations should be taken into consideration when interpreting the present results. First, all included studies are observational, which are highly subject to selection bias and confounding by indication. Second, substantial heterogeneity was identified in current study, though we conducted subgroup and stratified analyses to partly explain and reduce it. As stated above, several problems leading to heterogeneity need to be addressed in future researches. Third, the number of studies on risk of COPD-related events was limited, thus the result needs to be carefully understood. Limited number of studies in subgroup and stratified analyses suggested more relevant studies with larger sample size are required. Fourth, although confounding effects of age and smoking were controlled by stratified analysis and statistical adjustment, other potential confounders such as gender, living condition and socioeconomic status¹⁰ could also reduce reliability of the results. Fifth, obvious publication bias was noted in relevant meta-analyses,^{45 46} including the present study. For the purpose of rapid review,²³ we only included articles in English. There could exist non-English publications and unpublished evidence, although we searched English-language studies as much as

BMJ Open

possible. Finally, although smoking status and intensity were considered in subgroup
analysis, information regarding tobacco content and chemical composition were not
collected. This information is difficult to obtain, especially from self-reported smoking,
leaving a residual smoking-related bias. Consequently, it is advisable to explore
relationship between COPD and PD in never smokers.

368 CONCLUSION

In summary, this systematic review and meta-analysis suggests that PD is not associated
with the risk of COPD and COPD-related events after strict adjustment for smoking,
although the positive relationship between COPD and PD was previously reported.
Large-scale prospective cohort studies with control of potential confounding factors are
warranted to validate the present findings.

375 Abbreviations

ABL: Alveolar bone loss; AE: Acute exacerbation; BI: Bleeding index; CAL: Clinical

attachment level; CI: Confident interval; COPD: Chronic obstructive pulmonary disease;

378 GB: Gingival bleeding; GOLD: Global Initiative for Chronic Obstructive Lung Diseases;

379 HR: Hazard ratio; OHI: Oral health index; OR: Odds ratio; PD: Periodontal disease; PLI:

380 Plaque index; PPD: Probing pocket depth; RR: Relative risk.

Contributors LC and LL designed the study. MY and XL screened and selected relevant

2	
2	
л Л	
-	
s c	
07	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
л Л1	
12	
42 12	
45	
44	
45	
46	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
· / · /	

1

studies. MY, RP and XL rated the study quality and extracted the data. MY, RP, XL and 383 JP analyzed the data. All authors interpreted the data, and MY, RP, XL, JP drafted the 384 paper. LC and LL critically revised the paper. All authors acknowledged and agreed with 385 386 the format and content of the paper before submission for publication. LC and LL are 387 the guarantors and responsible for the overall contents of this study. 388 **Funding** This study was supported in part by grant 2016YFC0901100 from the National 389 390 Key Research and Development Program of China. 391 Competing interests None declared. 392 393 Patient and public involvement Patients and/or the public were not involved in the 394 395 design, or conduct, or reporting, or dissemination plans of this research. 396 Patient consent for publication Not applicable. 397 398 399 Ethics approval Not applicable. 400 Data availability statement All data relevant to the study are included in the article or 401 402 uploaded as supplementary information. 403

2 3							
4							
5 6	404	ORCID iD					
7 8	405	Lei Chen https://orcid.org/0000-0003-3476-0035					
9 10 11	406						
12 13	407	REI	FERENCES				
14 15	108	1	World Health Organization. The top 10 causes of death 2020. Available:				
15	400	1.	https://www.who.int/news.room/fact.sheets/detail/the.top.10.causes.of.death (accessed 25				
17	403		Echrupy 2022)				
18	410	2	Challe (i ci ci chali cha ci cha bian Diana Challet (a fa di li chali				
19	411	2.	Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis,				
20 21	412		management and prevention of chronic obstructive pulmonary disease (2023 report).				
21	413		Available: <u>https://goldcopd.org/2023-gold-report-2/</u> (accessed 25 February 2023).				
23	414	3.	Negewo NA, Gibson PG, McDonald VM. COPD and its comorbidities: Impact,				
24	415		measurement and mechanisms. Respirology 2015;20:1160-1171.				
25	416	4.	Tan L, Tang X, Pan C, et al. Relationship among clinical periodontal, microbiologic				
26 27	417		parameters and lung function in participants with chronic obstructive pulmonary disease. J				
27	418		Periodontol 2019;90:134-140.				
29	419	5.	Pihlstrom BL, Michalowicz BS, Johnson NW, Periodontal diseases, Lancet				
30	420		2005-366-1809-1820				
31	421	6	Kassehaum NJ Bernahé F. Dahiya M <i>et al.</i> Global hurden of severe periodontitis in 1990.				
32 33	421 1/22	0.	2010: a systematic review and meta-regression L Dant Res 2014.93:1045-1053				
34	422	7	2010. a systematic review and meta-regression. J Dent Res 2014, 95, 1045-1055.				
35	423	7.	Sczepanik FSC, Grossi ML, Casati M, <i>et al.</i> Periodonitis is an inflaminatory disease of				
36	424	0	oxidative stress: We should treat it that way. <i>Periodontol 2000 2020</i> ;84:45-68.				
37	425	8.	Usher AK, Stockley RA. The link between chronic periodontitis and COPD: a common				
30 39	426		role for the neutrophil? <i>BMC Med</i> 2013;11:241.				
40	427	9.	Dong J, Li W, Wang Q, et al. Relationships Between Oral Microecosystem and				
41	428		Respiratory Diseases. Front Mol Biosci 2021;8:718222.				
42	429	10.	Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol 2000				
43	430		2013;62:59-94.				
44 45	431	11.	Sapey E, Yonel Z, Edgar R, et al. The clinical and inflammatory relationships between				
46	432		periodontitis and chronic obstructive pulmonary disease. J Clin Periodontol 2020:47:1040-				
47	433		1052				
48	434	12	Scannanieco FA Role of oral bacteria in respiratory infection <i>I Periodontal</i> 1999:70:793-				
49 50	135	12.					
50	426	12	002.				
52	430	13.	Keny N, winning L, fiwin C, <i>et al.</i> Periodonial status and chronic obstructive pullionary				
53	437		disease (COPD) exacerbations: a systematic review. BMC Oral Health 2021;21:425.				
54	438	14.	Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral conditions				
55 56	439		and respiratory disease in a national sample survey population. Ann Periodontol				
57	440		1998;3:251-256.				
58	441	15.	Si Y, Fan H, Song Y, et al. Association between periodontitis and chronic obstructive				
59	442		pulmonary disease in a Chinese population. J Periodontol 2012;83:1288-1296.				
60							

1 2

3			
4	443	16.	Qian Y, Yuan W, Mei N, et al. Periodontitis increases the risk of respiratory disease
5 6	444		mortality in older patients. Exp Gerontol 2020;133:110878.
7	445	17.	Zhou X, Han J, Liu Z, et al. Effects of periodontal treatment on lung function and
8	446		exacerbation frequency in patients with chronic obstructive pulmonary disease and chronic
9 10	447		periodontitis: a 2-year pilot randomized controlled trial. J Clin Periodontol 2014;41:564-
11	448		572.
12	449	18.	Kucukcoskun M, Baser U, Oztekin G, et al. Initial periodontal treatment for prevention of
13 14	450		chronic obstructive pulmonary disease exacerbations. J Periodontol 2013;84:863-870.
14	451	19.	Wang Z, Zhou X, Zhang J, et al. Periodontal health, oral health behaviours, and chronic
16	452		obstructive pulmonary disease. J Clin Periodontol 2009;36:750-755.
17	453	20.	Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic obstructive
18 19	454		pulmonary disease. J Periodontol 2004;75:9-15.
20	455	21.	Barros SP, Suruki R, Loewy ZG, et al. A cohort study of the impact of tooth loss and
21	456		periodontal disease on respiratory events among COPD subjects: modulatory role of
22	457		systemic biomarkers of inflammation. PLoS One 2013;8:e68592.
24	458	22.	Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and
25	459		meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.
26 27	460	23.	Nussbaumer-Streit B, Klerings I, Dobrescu AI, et al. Excluding non-English publications
28	461		from evidence-syntheses did not change conclusions: a meta-epidemiological study. J Clin
29	462		<i>Epidemiol</i> 2020;118:42-54.
30 21	463	24.	Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the
32	464		quality of nonrandomised studies in meta-analyses, 2021. Available:
33	465		http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed 25 February
34	466		2023).
35 36	467	25.	Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers
37	468		2017;3:17038.
38	469	26.	Farook FF, Alodwene H, Alharbi R, et al. Reliability assessment between clinical
39 40	470		attachment loss and alveolar bone level in dental radiographs. Clin Exp Dent Res
41	471		2020;6:596-601.
42	472	27.	Lin L. Bias caused by sampling error in meta-analysis with small sample sizes. <i>PLoS One</i>
43	473		2018;13:e0204056.
44 45	474	28.	Hayes C, Sparrow D, Cohen M, et al. The association between alveolar bone loss and
46	475		pulmonary function: the VA Dental Longitudinal Study. Ann Periodontol 1998;3:257-261.
47	476	29.	Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between periodontal
48 49	477		disease and chronic obstructive pulmonary disease. Ann Periodontol 2001;6:71-77.
50	478	30.	Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and
51	479		periodontal disease: analysis of National Health and Nutrition Examination Survey III. J
52 53	480		Periodontol 2001;72:50-56.
54	481	31.	Leuckfeld I, Obregon-Whittle MV, Lund MB, et al. Severe chronic obstructive pulmonary
55	482		disease: association with marginal bone loss in periodontitis. Respir Med 2008;102:488-
56 57	483		494.
58	484	32.	Zhou X, Han J, Song Y, et al. Serum levels of 25-hydroxyvitamin D, oral health and
59	485		chronic obstructive pulmonary disease. J Clin Periodontol 2012;39:350-356.
60			
1			
----------	-----	-----	--
2			
5 4			
5	486	33.	Ledić K, Marinković S, Puhar I, <i>et al.</i> Periodontal disease increases risk for chronic
6	487		obstructive pulmonary disease. Coll Antropol 2013;37:937-942.
7 0	488	34.	Chung JH, Hwang HJ, Kim SH, et al. Associations Between Periodontitis and Chronic
o 9	489		Obstructive Pulmonary Disease: The 2010 to 2012 Korean National Health and Nutrition
10	490		Examination Survey. J Periodontol 2016;87:864-871.
11	491	35.	Harland J, Furuta M, Takeuchi K, et al. Periodontitis modifies the association between
12	492		smoking and chronic obstructive pulmonary disease in Japanese men. J Oral Sci
15 14	493		2018;60:226-231.
15	494	36.	Lopez-de-Andrés A, Vazquez-Vazquez L, Martinez-Huedo MA, et al. Is COPD associated
16	495		with periodontal disease? A population-based study in Spain. Int J Chron Obstruct Pulmon
17	496		Dis 2018;13:3435-3445.
18 19	497	37.	Takeuchi K, Matsumoto K, Furuta M, et al. Periodontitis Is Associated with Chronic
20	498		Obstructive Pulmonary Disease. J Dent Res 2019;98:534-540.
21	499	38.	Jung ES, Lee KH, Choi YY, Association between oral health status and chronic obstructive
22	500		pulmonary disease in Korean adults. Int Dent J 2020:70:208-213.
23 24	501	39	Winning L. Polyzois I. Sanmartin Berglund L. <i>et al.</i> Periodontitis and airflow limitation in
25	502	57.	older Swedish individuals I Clin Periodontol 2020:47:715-725
26	503	40	Zhou X. Wang I. Liu W. et al. Periodontal Status and Microbiologic Pathogens in Patients
27 20	504	40.	with Chronic Obstructive Pulmonary Disease and Periodontitis: A Case-Control Study Int
20 29	505		I Chron Obstruct Pulmon Dis 2020:15:2071 2079
30	505	41	Votacka S. Kimura M. Vomaguchi T. et al. A cross spational study of relationships
31	500	41.	hatween periodental disease and concerl health. The Uitechi Oral Healthean Survey <i>BMC</i>
32	507		Over Hardel 2021-21-(44
33 34	506	42	
35	509	42.	Liu Z, Zhang W, Zhang J, <i>et al.</i> Oral hygiene, periodontal health and chronic obstructive
36	510	10	pulmonary disease exacerbations. J Clin Periodontol 2012;39:45-52.
37	511	43.	Abdelhalim H, Aboelnaga H, Aggour R. Chronic obstructive pulmonary disease
30 39	512		exacerbations and periodontitis: a possible association. Egyptian Journal of Bronchology
40	513		2018;12.
41	514	44.	Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: Consensus report of workgroup 2
42 42	515		of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant
45 44	516		Diseases and Conditions. J Clin Periodontol 2018;45 Suppl 20:S162-s170.
45	517	45.	Zeng XT, Tu ML, Liu DY, et al. Periodontal disease and risk of chronic obstructive
46	518		pulmonary disease: a meta-analysis of observational studies. PLoS One 2012;7:e46508.
47	519	46.	Gomes-Filho IS, Cruz SSD, Trindade SC, et al. Periodontitis and respiratory diseases: A
40 49	520		systematic review with meta-analysis. Oral Dis 2020;26:439-446.
50	521	47.	Wu Z, Xiao C, Chen F, et al. Pulmonary disease and periodontal health: a meta-analysis.
51	522		Sleep Breath 2022.
52	523	48.	Molina A, Huck O, Herrera D, et al. The association between respiratory diseases and
55 54	524		periodontitis: A systematic review and meta-analysis. J Clin Periodontol 2023.
55	525	49.	Hujoel PP, Drangsholt M, Spiekerman C. <i>et al.</i> Periodontitis-systemic disease associations
56	526		in the presence of smokingcausal or coincidental? <i>Periodontol 2000</i> 2002:30:51-60
57	527	50	Intini G Katsuragi Y Kirkwood KL <i>et al.</i> Alveolar hone loss: mechanisms, notential
50 59	528	20.	theraneutic targets and interventions $Adv Dent Res 2014.26.38-46$
60	020		anorapourlo ungolo, una monvontiono. 2017 Den Res 2017,20.30-70.

Figure legends

Figure 1 PRISMA flow diagram of study selection.

For peer teries only

1 2 2		
5 4		
5 6	550	Figure 2 Forest plot of the risk of COPD by periodontal disease, subgroup analysis based
7 8 9	551	on adjusted by smoking status and intensity versus by smoking status only. Values more
10 11	552	than one indicate a higher risk in patients with periodontal disease.
12 13 14	553	Figure 3 Forest plot of the risk of COPD by periodontal disease. A in smokers and B in
15 16	554	never smokers. Values more than one indicate a higher risk in patients with periodontal
17 18 19	555	disease.
20 21 22	556	Figure 4 Forest plot of the risk of COPD-related events by periodontal disease. Values
23 24	557	more than one indicate a higher risk in patients with periodontal disease.
25 26		
20 27		
28		
29		
30		
31 32		
33		
34		
35		
36		
37 38		
39		
40		
41		
42		
43 44		
45		
46		
47		
48		
49 50		
50		
52		
53		
54		
55		
57		
58		
59		
60		26
		20

PRISMA 2009 Flow Diagram

Figure 1 PRISMA flow diagram of study selection.

215x279mm (200 x 200 DPI)

1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 20 21 22 32 4 5 6 7 8 9 30 31 2 3 34 5 36 7 8 9 0 11 2 3 2 4 5 6 7 8 9 0 11 2 3 2 4 5 6 7 8 9 0 11 2 3 2 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 31 2 3 3 4 5 3 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 31 2 3 3 4 5 3 6 7 8 9 0 0 1 2 2 3 4 5 3 6 7 8 9 0 0 1 2 2 3 3 4 5 3 6 7 8 9 0 0 1 2 2 3 4 5 3 6 7 8 9 0 1 2 2 3 3 4 5 3 6 7 8 9 0 1 2 2 3 3 4 5 3 6 7 8 9 0 0 1 2 2 3 3 4 5 3 6 7 8 9 40 1 2 3 3 4 5 3 6 7 8 9 40 1 2 3 3 4 5 3 6 7 8 9 40 1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Fig smol
48 49 50 51 52 53 54 55 56 57 58 59 60	

04 1 0 1 0 1		05	Mr		
Study or Subgroup Id	og[Odds Ratio]	SE	weight	IV, Random, 95% CI	IV. Random, 95% CI
1.1.1 Adjusted for smoking inte	ensity		0.00/		
2001 Garcia et al	0.174 0.	.2635	2.9%	1.19 [0.71, 1.99]	
2001 Scannapieco et al	0.3716 0	.1795	5.3%	1.45 [1.02, 2.06]	
2004 Hyman et al	-0.5108 0	.3537	1.7%	0.60 [0.30, 1.20]	
2008 Leuckfeld et al	2.3026 1	.1617	0.2%	10.00 [1.03, 97.46]	
2009 Wang et al	0 0.	.0051	18.1%	1.00 [0.99, 1.01]	
2012 Si et al	-1.6607 0.	.6196	0.6%	0.19 [0.06, 0.64]	•
2012 Zhou et al	0.1222 0.	.2091	4.2%	1.13 [0.75, 1.70]	
2013 Ledić et al	1.1458	0.581	0.7%	3.14 [1.01, 9.82]	
2018 Harland et al	-0.0305 0	.3484	1.8%	0.97 [0.49, 1.92]	
2019 Takeuchi et al	1.2556 0.	.5706	0.7%	3.51 [1.15, 10.74]	
Subtotal (95% CI)			36.2%	1.14 [0.86, 1.51]	
1.1.2 Not aujusted for smoking	intensity				
1.1.2 Not aujusted for smoking	intensity				
1998 Haves et al	0 5878 0	1676	5.8%	1 80 [1 30 2 50]	
1998 Hayes et al 1998 Scannapieco et al	0.5878 0.	.1676	5.8% 0.4%	1.80 [1.30, 2.50] 4 50 [1 07 18 99]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female	0.5878 0. 1.5041 0. 0.7747 0.	.1676 .7346 7195	5.8% 0.4% 0.5%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2 17 [0 53, 8 89]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0.	.1676 .7346 .7195 1213	5.8% 0.4% 0.5% 8.6%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0.	.1676 .7346 .7195 .1213 0394	5.8% 0.4% 0.5% 8.6% 16.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020. Jung et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0.	.1676 .7346 .7195 .1213 .0394	5.8% 0.4% 0.5% 8.6% 16.2% 6.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al	0.5878 0 1.5041 0 0.7747 0 0.207 0 0.1906 0 0.1947 0 0.8372 0	.1676 .7346 .7195 .1213 .0394 .1565 .3074	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0.	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0. 0.3221 0.	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI)	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0. 0.3221 0.	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02: Chi ²	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0. 0.3221 0. = 31.73. df = 8 (P =	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% (1): ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Vinning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Chi ² Test for overall effect: Z = 3.72 (F	0.5878 0 1.5041 0 0.7747 0 0.207 0 0.1906 0 0.1947 0 0.8372 0 0.0488 0 0.3221 0 = 31.73, df = 8 (P = P = 0.0002)	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 1); l ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	* *
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Vinning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Chi ² : Test for overall effect: Z = 3.72 (F Total (95% CI)	0.5878 0. 1.5041 0. 0.7747 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.488 0. 0.3221 0. = 31.73, df = 8 (P = 2 = 0.0002)	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 1); ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] %	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Chi ² Total (95% CI) Heterogeneity: Tau ² = 0.01; Chi ²	0.5878 0 1.5041 0 0.7747 0 0.207 0 0.1906 0 0.1947 0 0.8372 0 0.0488 0 0.3221 0 = 31.73, df = 8 (P = 2 = 0.0002) = 86.21, df = 18 (P	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 1); ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] % 1.20 [1.09, 1.32] 79%	

Figure 2 Forest plot of the risk of COPD by periodontal disease, subgroup analysis based on adjusted by smoking status and intensity versus by smoking status only. Values more than one indicate a higher risk in patients with periodontal disease.

536x384mm (118 x 118 DPI)

А				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2001 Garcia et al	0.4886 0	0.1563	21.1%	1.63 [1.20, 2.21]	+
2004 Hyman et al	1.311	0.385	14.3%	3.71 [1.74, 7.89]	
2008 Leuckfeld et al	2.3026 1	1.1617	3.5%	10.00 [1.03, 97.46]	· · · · · ·
2009 Wang et al	0 0	0.0103	23.3%	1.00 [0.98, 1.02]	+
2012 Si et al	-1.8326 0	0.8461	5.8%	0.16 [0.03, 0.84]	
2012 Zhou et al	-0.2107 0	0.3729	14.6%	0.81 [0.39, 1.68]	
2018 Harland et al	0.8198 0	0.2787	17.5%	2.27 [1.31, 3.92]	
Total (95% CI)			100.0%	1.46 [0.92, 2.31]	•
Heterogeneity: Tau ² =	0.24; Chi ² = 38.81, di	f = 6 (P	< 0.00001); l ² = 85%	
Test for overall effect:	Z = 1.61 (P = 0.11)			0.0	005 0.1 1 10 200
	(
	,				
В	(Odds Ratio	Odds Ratio
B Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% Cl	Odds Ratio IV. Random, 95% Cl
B <u>Study or Subgroup</u> 2001 Garcia et al	log[Odds Ratio] 0.174	<u>SE</u> 0.2635	Weight 15.5%	Odds Ratio IV. Random. 95% CI 1.19 [0.71, 1.99]	Odds Ratio IV. Random, 95% Cl
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al	log[Odds Ratio] 0.174 -0.5108	SE 0.2635 0.3537	<u>Weight</u> 15.5% 10.4%	Odds Ratio <u>IV. Random, 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20]	Odds Ratio
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al	log[Odds Ratio] 0.174 -0.5108 0	SE 0.2635 0.3537 0.0051	Weight 15.5% 10.4% 39.3%	Odds Ratio <u>IV. Random, 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01]	Odds Ratio
B Study or Subgroup 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al	log[Odds Ratio] 0.174 -0.5108 0 -1.6607	SE 0.2635 0.3537 0.0051 0.6196	Weight 15.5% 10.4% 39.3% 4.1%	Odds Ratio <u>IV, Random, 95% CI</u> 1.19 (0.71, 1.99) 0.60 (0.30, 1.20) 1.00 (0.99, 1.01] 0.19 (0.06, 0.64)	Odds Ratio
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al	log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222	SE 0.2635 0.3537 0.0051 0.6196 0.2091	Weight 15.5% 10.4% 39.3% 4.1% 20.0%	Odds Ratio <u>IV, Random, 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70]	Odds Ratio
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al	log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222 -0.0305	SE 0.2635 0.3537 0.0051 0.6196 0.2091 0.3484	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7%	Odds Ratio <u>IV. Random, 95% Cl</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92]	Odds Ratio
B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al Total (95% CI)	log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222 -0.0305	SE 0.2635 0.3537 0.0051 0.6196 0.2091 0.3484	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 100.0%	Odds Ratio <u>IV. Random. 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92] 0.93 [0.72, 1.21]	Odds Ratio
B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al Total (95% CI) Heterogeneity: Tau ² =	log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222 -0.0305 : 0.05; Chi ² = 10.05, c	SE 0.2635 0.3537 0.0051 0.6196 0.2091 0.3484 df = 5 (F	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 100.0% P = 0.07); I	Odds Ratio <u>IV. Random. 95% CI</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92] 0.93 [0.72, 1.21] ² = 50%	Odds Ratio IV. Random, 95% CI

Figure 3 Forest plot of the risk of COPD by periodontal disease. A in smokers and B in never smokers. Values more than one indicate a higher risk in patients with periodontal disease.

192x118mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	Odds Ratio Odds Ratio
7	Study or Subgroup log[Odds Ratio] SE Weight IV. Random, 95% Cl IV. Random, 95% Cl
8	2012 Liu et al -0.2877 0.2923 37.8% 0.75 [0.42, 1.33]
9	2018 AbdelHalim et al -0.734 2.1326 1.5% 0.48 [0.01, 31.37]
10	2020 Qian et al 0.9203 0.5475 17.2% 2.51 [0.86, 7.34]
11	Total (95% CI) 100.0% 1.18 [0.71, 1.97]
12	Heterogeneity: Tau ² = 0.09; Chi ² = 4.72, df = 3 (P = 0.19); l ² = 36% Toot for everyll offect 7 = 0.64 (P = 0.52) 0.01 0.1 1 10 100
13	Test for overall effect. $\Sigma = 0.04 (\Gamma = 0.32)$
14	
15	Figure 4 Forest plot of the risk of COPD-related events by periodontal disease. Values more than one
16	indicate a higher risk in patients with periodontal disease.
17	497x118mm (118 x 118 DPI)
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1 Search strategy

Search term

- (Oral health) OR (periodontal disease) OR (periodontal health) OR (periodontitis)
 OR (clinical attachment level) OR (alveolar bone loss) OR (probing depth)
- (Respiratory disease) OR (chronic obstructive pulmonary disease) OR (pulmonary function) OR (airflow limitation)
- 3. 1 AND 2

to peet eview only

Study Author	Covariates in logistic regression multivariable model
Hayes <i>et al¹</i>	Age, smoking, education, height
Scannapieco et al ²	Smoking
Garcia <i>et al</i> ³	Age, height, alcohol, education (with stratified analysis on smoking
Leuckfeld <i>et al</i> ⁴	Age, female gender, pack years of smoking
Liu <i>et al⁵</i>	Age, gender, BMI and smoking
Wang <i>et al</i> ⁶	Age, gender, BMI (with stratified analysis on smoking)
Si et al ⁷	Age, gender, occupation, educational level (with stratified analysis
	smoking)
Zhou <i>et al</i> ⁸	Age, gender, smoking, BMI, season (with stratified analysis on
	smoking)
Ledić <i>et al</i> ⁹	Age, gender, pack years of smoking, BMI
Lopez-de-Andrés et al ¹⁰	Age, gender, smoking, educational level, DM, obesity
Zhou <i>et al</i> ¹¹	Age, gender, smoking, BMI
Kataoka <i>et al</i> ¹²	Age, smoking
Qian <i>et al</i> ¹³	Age, sex, education levels, BMI, smoking, drinking, hypertension, D
Barros <i>et al</i> ¹⁴	Age, gender, Race, BMI, education, pack years of smoking,
	hypertension
Scannapieco et al ¹⁵	Age, gender, pack years of smoking, Race, education, income, dent
	visits, alcohol, DM
Hyman <i>et al</i> ¹⁶	Age, gender, Race, history of hypertension and heart attack, dental v
	within 1 year, BMI, family income (with stratified analysis on
	smoking)
Chung <i>et al</i> ¹⁷	Age, smoking, family income, education, alcohol, exercise, BMI, too
	brushing frequency, DM, number of natural teeth
Harland <i>et al</i> ^{18}	Age, number of present teeth, BMI, alcohol consumption, occupation
	hypertension, DM (with stratified analysis on smoking)
Takeuchi et al ¹⁹	Age, gender, pack years of smoking, occupation, DM, BMI, physica

	activity, alcohol intake, number of present teeth
Jung <i>et al</i> ²⁰	Age, gender, smoking, educational level, household income, alcohol
	consumption, periodontal status, number of missing teeth, oral health
	factors
Winning <i>et al</i> ²¹	Age, gender, smoking, height, BMI, exercise, DM, hypertension, MI,
	education level, living condition
AbdelHalim <i>et al</i> ²²	Age, BMI, low-level of education, pack years of smoking, MRC,
	CAT, hospitalizations, COPD category (C-D), FVC (% predicted),
	FEV1 (% predicted), FEV1 / FVC (% predicted), MMEF (%
	predicted), PEF (% predicted), CRP

BMI, body mass index; CAT, chronic obstructive pulmonary disease assessment test; CRP, C-reactive protein; DM, diabetes mellitus; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; MI, myocardial infarction; MMEF, maximum mid-expiratory flow; MRC, Medical Research Council; PEF, peak expiratory flow.

Bold: the covariate of smoking intensity (duration and dose) or stratified analyses on smoking status.

2 3 Table S3 Quality assessment based on the Newcastle-Ottawa Scale 4 5 6 (A) Cohort study 7 8 Selection Outcome Total 9 Study Exposed Nonexposed Ascertainment Outcome Assessment Length of Adequacy score 10 11 of Author cohort cohort of exposure of interest Comparability of outcome follow-up 12 follow-up 13 **1**Barros *et al*¹⁴ * * * * * * 6 15 Takeuchi *et al*¹⁹ 16 * * * * * * * 7 . . . $1\bar{Q}_{ian} et al^{13}$ * * * * 4 ••• ... 18 19 (B) Case-control / cross-sectional study 20 21 Selection Outcome Total 22 23 Representati-Control Same method of Case Control Ascertainment Nonscore 24 25 Study Author definition -veness of the selection definition Comparability of exposure ascertainment -response 26 for cases and cases rate 27 controls 28 29 Playes et al¹ * * * * * 7 . . . 30 3\$cannapieco et al² 5 ³Garcia *et al*³ * * 7 . . . 33 32 cannapieco et al¹⁵ 6 35. Hyman *et al*¹⁶ * * 7 36 3₽euckfeld *et al*⁴ 5 . . . 38 Wang et al⁶ 7 . . . 39 4⊖iu et al⁵ 7 . . . 4§i et al⁷ 7 . . . 42 4**Z**hou et al⁸ 7 . . . 44 dedić et al⁹ 7 . . . 45

57 5Kataoka *et al*¹² 59

46 hung *et al*¹⁷

4 Harland *et al*¹⁸

5@opez-de-Andrés

5 Winning *et al*²¹

*

 $5\mathfrak{E}_{hou} et al^{11}$

48

51 $52^{t} al^{10}$ 5 Jung *et al*²⁰

54

⁴AbdelHalim *et al*²²

60

. . .

*

**

7

5

6

6

6

7

7

7

*

*

. . .

. . .

*

. . .

*

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1998 Hayes et al	0.5878	0.1676	8.9%	1.80 [1.30, 2.50]	
2001 Garcia et al	0.174	0.2635	5.3%	1.19 [0.71, 1.99]	
2001 Scannapieco et al	0.3716	0.1795	8.3%	1.45 [1.02, 2.06]	
2004 Hyman et al	-0.5108	0.3537	3.4%	0.60 [0.30, 1.20]	
2009 Wang et al	0	0.0051	16.6%	1.00 [0.99, 1.01]	•
2012 Si et al	-1.6607	0.6196	1.3%	0.19 [0.06, 0.64]	
2016 Chung et al female	0.7747	0.7195	1.0%	2.17 [0.53, 8.89]	· · · · · · · · · · · · · · · · · · ·
2016 Chung et al male	0.207	0.1213	11.4%	1.23 [0.97, 1.56]	
2018 Harland et al	-0.0305	0.3484	3.5%	0.97 [0.49, 1.92]	
2018 Lopez-de-Andrés et al	0.1906	0.0394	15.8%	1.21 [1.12, 1.31]	•
2019 Takeuchi et al	1.2556	0.5706	1.5%	3.51 [1.15, 10.74]	· · · · · · · · · · · · · · · · · · ·
2020 Jung et al	0.1947	0.1565	9.4%	1.21 [0.89, 1.65]	
2020 Winning et al	0.8372	0.3074	4.2%	2.31 [1.26, 4.22]	
2021 Kataoka et al	0.3221	0.1578	9.4%	1.38 [1.01, 1.88]	
Total (95% CI)			100.0%	1.24 [1.08, 1.43]	•
Heterogeneity: Tau ² = 0.03; C	hi² = 70.75. df = 13	(P < 0.00)	0001): l ² =	82%	
Test for overall effect: $7 = 2.96$	5(P = 0.003)		<i>,</i> ,		0.1 0.2 0.5 1 2 5 10

Figure S1 Sensitivity analysis on studies with larger sample size (N \geq 500). Values more than one indicate a higher risk of COPD in patients with PD.

ore review only

Figure S2 Funnel plot for the risk of COPD, with pseudo 95% confidence limits.

Revenues of the second se

References

- 1. Hayes C, Sparrow D, Cohen M, *et al.* The association between alveolar bone loss and pulmonary function: the VA Dental Longitudinal Study. *Ann Periodontol* 1998;3:257-261.
- Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral conditions and respiratory disease in a national sample survey population. *Ann Periodontol* 1998;3:251-256.
- 3. Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between periodontal disease and chronic obstructive pulmonary disease. *Ann Periodontol* 2001;6:71-77.
- 4. Leuckfeld I, Obregon-Whittle MV, Lund MB, *et al.* Severe chronic obstructive pulmonary disease: association with marginal bone loss in periodontitis. *Respir Med* 2008;102:488-494.
- 5. Liu Z, Zhang W, Zhang J, *et al.* Oral hygiene, periodontal health and chronic obstructive pulmonary disease exacerbations. *J Clin Periodontol* 2012;39:45-52.
- 6. Wang Z, Zhou X, Zhang J, *et al.* Periodontal health, oral health behaviours, and chronic obstructive pulmonary disease. *J Clin Periodontol* 2009;36:750-755.
- 7. Si Y, Fan H, Song Y, *et al.* Association between periodontitis and chronic obstructive pulmonary disease in a Chinese population. *J Periodontol* 2012;83:1288-1296.
- 8. Zhou X, Han J, Song Y, *et al.* Serum levels of 25-hydroxyvitamin D, oral health and chronic obstructive pulmonary disease. *J Clin Periodontol* 2012;39:350-356.
- 9. Ledić K, Marinković S, Puhar I, *et al.* Periodontal disease increases risk for chronic obstructive pulmonary disease. *Coll Antropol* 2013;37:937-942.
- Lopez-de-Andrés A, Vazquez-Vazquez L, Martinez-Huedo MA, et al. Is COPD associated with periodontal disease? A population-based study in Spain. Int J Chron Obstruct Pulmon Dis 2018;13:3435-3445.
- 11. Zhou X, Wang J, Liu W, *et al.* Periodontal Status and Microbiologic Pathogens in Patients with Chronic Obstructive Pulmonary Disease and Periodontitis: A Case-Control Study. *Int J Chron Obstruct Pulmon Dis* 2020;15:2071-2079.
- 12. Kataoka S, Kimura M, Yamaguchi T, *et al.* A cross-sectional study of relationships between periodontal disease and general health: The Hitachi Oral Healthcare Survey. *BMC Oral Health* 2021;21:644.
- 13. Qian Y, Yuan W, Mei N, *et al.* Periodontitis increases the risk of respiratory disease mortality in older patients. *Exp Gerontol* 2020;133:110878.
- 14. Barros SP, Suruki R, Loewy ZG, *et al.* A cohort study of the impact of tooth loss and periodontal disease on respiratory events among COPD subjects: modulatory role of systemic biomarkers of inflammation. *PLoS One* 2013;8:e68592.
- 15. Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and periodontal disease: analysis of National Health and Nutrition Examination Survey III. *J Periodontol* 2001;72:50-56.
- 16. Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic obstructive pulmonary disease. *J Periodontol* 2004;75:9-15.
- Chung JH, Hwang HJ, Kim SH, *et al.* Associations Between Periodontitis and Chronic Obstructive Pulmonary Disease: The 2010 to 2012 Korean National Health and Nutrition Examination Survey. *J Periodontol* 2016;87:864-871.

1		
2 3 4 5 6	18.	Harland J, Furuta M, Takeuchi K, <i>et al.</i> Periodontitis modifies the association between smoking and chronic obstructive pulmonary disease in Japanese men. <i>J Oral Sci</i> 2018:60:226-231
7 8	19.	Takeuchi K, Matsumoto K, Furuta M, <i>et al.</i> Periodontitis Is Associated with Chronic
9		Obstructive Pulmonary Disease. J Dent Res 2019;98:534-540.
10	20.	Jung ES, Lee KH, Choi YY. Association between oral health status and chronic
11		obstructive pulmonary disease in Korean adults. Int Dent J 2020;70:208-213.
13	21.	Winning L, Polyzois I, Sanmartin Berglund J, et al. Periodontitis and airflow limitation in
14		older Swedish individuals. J Clin Periodontol 2020;47:715-725.
15	22.	Abdelhalim H, Aboelnaga H, Aggour R. Chronic obstructive pulmonary disease
16 17		exacerbations and periodontitis: a possible association. Egyptian Journal of Bronchology
18		2018;12.
19		
20		
21 22		
22		
24		
25		
26 27		
27 28		
29		
30		
31		
32		
33 34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44 45		
46		
47		
48		
49 50		
50 51		
52		
53		
54		
55 56		
50 57		
58		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Section/topic	ltem No	Checklist item	Reported on Page Number/Line Number	Reported on Section/Paragraph
TITLE	-			1
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Page 1 / Line 2,3	Title page
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2,3 / Line 28-52	Abstract
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 4,5 / Line 69-103	Introduction / Paragraph 1- 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 5 / Line 103-107	Introduction / Paragraph 4
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	Page 5,6 / Line 110-112	Methods / Paragraph 1
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 6 / Line 118-124	Methods / Paragraph 2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 6 / Line 115,116	Methods / Paragraph 2
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 6 / Line 116-118	Methods / Paragraph 2 Supplemental table S1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Page 6 / Line 125-131	Methods / Paragraph 3
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 7 / Line 134,135	Methods / Paragraph 4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 7 / Line 135-140	Methods / Paragraph 4

 BMJ Open

Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Page 7 / Line 142-147	Methods / Paragraph 4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 7 / Line 150	Methods / Paragraph 5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l ²) for each meta-analysis.	Page 8 / Line 156-160	Methods / Paragraph 5
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 8 / Line 171-173	Methods / Paragraph 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Page 8 / Line 161-171	Methods / Paragraph 6,7
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Page 9 / Line 181-188	Results / Paragraph 1; Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 9-12 / Line 189-223	Results / Paragraph 2-4; Table 1 and S2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 12 / Line 225- 231	Results / Paragraph 5; Table S3
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 12,13 / Line 234-243	Results / Paragraph 6; Figure 2 and 4
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 12 / Line 234-236 Page 15 / Line 272-274	Results / Paragraph 6,8; Figure 2 and 4
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 12,13 / Line 237-238; 241-243	Results / Paragraph 6; Figure S2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Page 12 / Line 238-240; Page 13,14 / Line 244-267	Results / Paragraph 6-8; Table 2, Figure 2,3 and
DISCUSSION	1	·		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 15-18 / Line 277-343	Discussion / Paragraph
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 18 / Line 346-365	Discussion / Paragraph
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 19 / Line 368-372	Conclusion / Paragraph

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Page 20 / Line 388,389	Funding
rom: Moher D led 6(7): e1000 or more inform lease leave this sp	Liberati A 0097. doi:10 ation, visit: ace alone as i	, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and N 0.1371/journal.pmed1000097 www.prisma-statement.org. t will be supplemented by the editorial office when needed.	⊥ ⁄leta-Analyses: The PR	SMA Statement. PLoS
		3-3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		Updated on April 13, 20

BMJ Open

The association between chronic obstructive pulmonary disease and periodontal disease: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067432.R2
Article Type:	Original research
Date Submitted by the Author:	16-May-2023
Complete List of Authors:	Yang, Mei; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine Peng, Ran; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine; 363 Hospital, Department of Respiratory and Critical Care Medicine Li, Xiaoou; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine Peng, Junjie; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine Liu, Lin; 363 Hospital, Department of Respiratory and Critical Care Medicine Chen, Lei; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Public health, Smoking and tobacco, Dentistry and oral medicine
Keywords:	Chronic airways disease < THORACIC MEDICINE, RESPIRATORY MEDICINE (see Thoracic Medicine), ORAL MEDICINE, Emphysema < THORACIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
20 20	
29	
30	
31	
32	
33	
34	
35	
36	
20	
5/	
38	
39	
40	
41	
42	
43	
ΔΔ	
77	
43	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	
60	

1 Title Page

2 Title: The association between chronic obstructive pulmonary disease and periodontal
3 disease: a systematic review and meta-analysis
4

5 Authors' full names: Mei Yang^{1*}, Ran Peng^{1,2*}, Xiaoou Li^{1*}, Junjie Peng¹, Lin Liu^{2#},

6 Lei Chen^{1#}

7 Authors' affiliations: ¹Department of Pulmonary and Critical Care Medicine, West

8 China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

²Department of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan
610041, China

é.

12 * Contributed equally.

13

11

#Correspondence to: Lei Chen (lchens@126.com), Department of Pulmonary and
Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan
610041, China; Lin Liu (lliniu@126.com), Department of Respiratory and Critical Care
Medicine, 363 Hospital, Chengdu, Sichuan 610041, China

18

21

19 Word count of the abstract: 274

20 Word count of the main text: 3168

1		
2		
3		
4		
5	22	
0 7		
/ 8	23	The association between chronic obstructive pulmonary
9	20	
10	0.4	disaasa and nariadantal disaasa, a systematia raviaw and
11	24	uisease and periodonial disease: a systematic review and
12		
13	25	meta-analysis
14		
15	26	
10 17	20	
17	07	
19	27	ADSTRACT
20		
21	28	Objectives Studies have suggested contradictory results on the relationship between
22		
23	29	chronic obstructive pulmonary disease (COPD) and periodontal disease (PD). The aim
24		
25 26	30	of this study was to determine whether PD increased the risk of COPD and COPD-
27	00	of this study was to determine whether is increased the risk of COLD and COLD
28	0.4	
29	31	related clinical events.
30		
31	32	Design Systematic review and meta-analysis.
32 22		
34	33	Data sources PubMed, EMBASE and CENTRAL were searched from inception to 22
35		
36	34	February 2023
37	04	r cordury 2025.
38	05	
39	35	Eligibility criteria for studies we included triais and observational studies evaluating
40 41		
42	36	association of PD with the risk of COPD or COPD-related events (exacerbation and
43		
44	37	mortality), with statistical adjustment for smoking.
45		
46	38	Data avtraction and synthesis Two investigators independently extracted data from
4/	50	Data extraction and synthesis 1 wo investigators independently extracted data nom
40 49		
50	39	selected studies using a standardized Excel file. Quality of studies was evaluated using
51		
52	40	the Newcastle-Ottawa Scale. Odds ratio (OR) with 95% confident interval (CI) was
53		
54	41	pooled in a random-effect model with inverse variance method.
55 56		•
57	۸۵	Results 22 observational studies with 51704 participants were included. Pooled analysis
58	72	results 22 observational studies with 51704 participants were included. I obled allalysis
59		
60		

of 18 studies suggested that PD was weakly associated with the risk of COPD (OR 1.20,
95% CI 1.09 to 1.32). However, in stratified and subgroup analyses, with strict
adjustment for smoking, PD no longer related to the risk of COPD (adjusting for
smoking intensity: OR 1.14, 95% CI 0.86 to 1.51; smokers only: OR 1.46, 95% CI 0.92
to 2.31; never smokers only: OR 0.93, 95% CI 0.72 to 1.21). Moreover, PD did not
increase the risk of COPD-related exacerbation or mortality (OR 1.18, 95% CI 0.71 to
1.97) in the pooled result of four studies.

Conclusions This study demonstrates PD confers no risk for COPD and COPD-related
events when strictly adjusted by smoking. Large-scale prospective cohort studies with
control of potential confounding factors are warranted to validate the present findings.

54 STRENGTHS AND LIMITATIONS OF THIS STUDY

This is the largest systematic review and meta-analysis on association between
 chronic obstructive pulmonary disease (COPD) and periodontal disease (PD)
 collecting data over 20 years.

58 2. This is the first meta-analysis investigating whether PD increases the risk of COPD59 related events (exacerbation or mortality).

60 3. Compared with previous reports, this study was conducted with more strict
61 adjustment for confounding by smoking, which was the most important confounder
62 in the COPD-PD relationship.

63 4. Our study provided limited evidence on the outcome of COPD-related events

BMJ Open

64 because of limited data.

65 5. Clinical heterogeneity and publication bias compromised the evidence strength of
66 this study, although subgroup and stratified analyses were performed.

68 INTRODUCTION

69 Chronic obstructive pulmonary disease (COPD) is the third leading cause of death, 70 resulting in enormous economic burden.¹ Commonly, COPD coexists with a variety of 71 disorders, called comorbidities, which play significant roles in the progression and 72 prognosis of COPD.^{2 3} Understanding the COPD-comorbidities relationship has been a 73 momentous prerequisite for optimizing disease prevention and management strategies.² 74 ³

Given ageing and widespread use of inhaled corticosteroids in COPD, periodontal disease (PD) has been a common comorbidity of COPD.⁴ It is a chronic inflammatory condition of tissues surrounding and supporting the teeth, including gingiva, bone and ligament,⁵ with the prevalence estimates over 10% around the world and especially prevalent in elderly individuals.⁶ To date, diagnosis and assessment of PD are mostly based on periodontal measurements including clinical attachment level (CAL), probing pocket depth (PPD) and alveolar bone loss (ABL).⁵ They are primary clinical manifestations of PD, reflecting the extent of periodontal tissue destruction.⁵

Based on the nature of inflammation,^{5 7} mounting evidence has shed light on the
association between PD and development of COPD.^{8 9} Currently three points are

proposed. First, they share the same risk factors, such as age, gender, smoking and socioeconomic status.² ¹⁰ Second, they have similar pathogenetic mechanisms. Both diseases are characterized by host susceptibility to environmental factors, immune overreaction, oxidative stress and production of pro-inflammatory cytokines.^{7 8} Most importantly, neutrophilic inflammation plays a key role in both diseases.^{8 11} Third, oral bacteria released from the dental plaque in PD could trigger progression and acute exacerbation (AE) of COPD.^{12 13}

Meanwhile, epidemiological evidence has indicated that PD increases risk of COPD¹¹ ^{14 15} and COPD-related events.^{13 16} Scannapieco *et al* revealed a 4.5-fold increased risk of COPD in patients with PD, compared with those without.¹⁴ A dose-response relationship was further implied between PD severity and lung function.¹⁵ Among patients with both diseases, COPD-related AE and mortality also significantly linked with periodontal status.¹³ ¹⁶ Periodontal therapy, such as scaling and root planing treatment, may ameliorate lung function and decrease frequency of AE in COPD with chronic periodontitis.^{17 18} However, there were some other studies revealing opposite results, resulting in a long-standing controversy.¹⁹⁻²¹ It is worth noting that, parameters used to determine PD apparently varied across studies, and these studies also failed to adequately control for confounders, especially smoking, the most important confounder for the COPD-PD relationship. Therefore, to provide the latest and most convincing evidence, we systematically reviewed current available literature to investigate whether PD increases the risk of COPD. The secondary objective was to evaluate the association

BMJ Open

between PD and the risk of COPD-related events. Subgroup and stratified analyses werealso conducted to adjust for the confounding by smoking.

109 METHODS

This systematic review and meta-analysis was conducted and reported in accordance to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guideline.²²

114 Search strategy and selection criteria

We searched PubMed, EMBASE and CENTRAL for records evaluating association between COPD and PD, from inception to 22 February 2023. The search strategy was described in **online supplemental table 1**. The language was restricted to English, for the purpose of rapid review.²³ Studies meeting the following criteria were included: (1) adult participants (≥ 18 years); (2) original studies with randomized controlled trial (RCT), cohort, case-control or cross-sectional study designs; (3) presenting clear diagnostic or assessment criteria for COPD and PD; (4) evaluating association between PD and the risk of COPD, or risk of COPD-related events (AE and mortality), with statistical adjustment for smoking, and providing the adjusted odds ratio (OR), relative risk (RR) or hazard ratio (HR) for the risk of COPD, AE and mortality in relation to PD. According to the inclusion criteria, two independent investigators (MY and XL) performed systematical search, screened titles and abstracts of all retrieved studies to

127 exclude duplicate or irrelevant records. For articles requiring further assessment, full-128 text reviews were carried out and references of retrieved articles and relevant reviews 129 were also manually checked to identify additional eligible studies. Disagreements were 130 resolved by discussion between the two reviewers or with the help of the third 131 investigator (RP).

133 E

Data extraction and quality assessment

Two investigators (MY and RP) independently extracted data from selected studies using a standardized Excel (Microsoft Corporation) file. The following information was extracted: author, year of publication, country, study design, number of subjects (COPD) and non-COPD), demographic characteristics of participants, periodontal variables applied to assess PD, diagnostic criteria for COPD, definition of COPD-related AE and mortality, adjusted OR, RR or HR for the risk of COPD, AE and mortality in relation to PD, as well as adjustment for confounders. The primary outcome was the risk of COPD. Secondary outcome was the risk of COPD-related adverse events, including AE and mortality. Quality of studies was independently evaluated using the Newcastle-Ottawa Scale²⁴ by two investigators (MY and XL). A score of ≥ 6 was considered a low risk while < 6 a high risk of bias. Both case-control and cohort studies had a maximum score of 9. Cross-sectional study was regarded as case-control study when performing quality assessment. Discrepancies regarding data extraction and quality assessment were resolved through discussion and consensus.

BMJ Open

148	
149	Data analysis
150	The final pooled estimate was expressed as OR with 95% confident interval (CI).
151	Considering CAL, ABL and PPD have been regarded as the primary parameters for
152	PD, ²⁵²⁶ where more than one adjusted estimate was shown in the paper, we preferentially
153	used the estimate regarding these parameters (CAL > ABL > PPD), or the estimate being
154	better adjusted for tobacco smoking (never smokers > adjusting for smoking intensity
155	[duration and dose] > adjusting for smoking status), or the estimate regarding more
156	severe PD, where available. For case-control and cross-sectional studies, we estimated
157	the OR whereas for cohort studies we estimated the RR or HR. The random-effect model
158	with inverse variance method were applied due to potential heterogeneity resulting from
159	methodological differences. Heterogeneity across studies was identified with the I ²
160	statistic. I ² statistic $>50\%$ indicated significant heterogeneity.
161	To explore heterogeneity, subgroup analyses were conducted based on study design
162	(case-control, cross-sectional and cohort studies), geographical location (Asia, North
163	America, Europe), assessment of PD (CAL, ABL and PPD), definition of COPD (Global
164	Initiative for Chronic Obstructive Lung Diseases, GOLD and non-GOLD criteria) and
165	adjustment for smoking intensity (dose and duration of smoking). To better control the
166	confounding effect of smoking, stratified analyses were performed in smokers and never
167	smokers respectively.
168	To test the robustness of study findings, we performed sensitivity analysis on studies

with relatively large sample size (\geq 500 participants), which tended to be more representative of the general population and with smaller bias in the overall estimates in meta-analyses.²⁷ Additionally, influence of a single study on the overall pooled estimate was tested by omitting one study in each turn. Publication bias was visually assessed using a funnel plot and quantitatively evaluated by the Egger's tests. P <0.05 was considered statistically significant. All statistical analyses were performed using Stata version 16 (StataCorp) and Review manager version 5.4 (Cochrane Collaboration). Patient and public involvement

No patients or other individuals are involved in the design, conduct, reporting or erez ez dissemination of this research.

RESULTS

Study selection and characteristics

A total of 30165 records were identified from the initial database search. 13662 records were removed for duplicates, and 16227 records were excluded after titles and abstracts screening because of irrelevant content and animal studies. The remaining 276 full-text articles were identified for eligibility, of which 254 were excluded for reasons including duplicates (six studies), reviews (183 studies), insufficient information (nine studies) and ineligible designs and outcomes (56 studies). Finally, 22 studies^{14-16 19-21 28-43} were included in the review. The selection process is shown in figure 1.

1		
2		
2		
2		
4		
5		
6		
0		
7		
8		
ō		
2	_	
1	0	
1	1	
1	2	
	2	
I	3	
1	4	
1	5	
1	<i>c</i>	
I	6	
1	7	
1	8	
1	0	
1	9	
2	0	
2	1	
2	c	
2	2	
2	3	
2	4	
2	5	
2	<i>c</i>	
2	6	
2	7	
2	8	
_ ວ	o O	
2	9	
3	0	
3	1	
З	2	
<u>-</u>	2	
3	3	,
3	¥ear	1
3	5	
- 2	6	
З	0	
3	7	
3	8	
2	0008	L
<i>з</i>	-	I
4	0	
4	1	
Δ	1998	S
-	2	
4	3	
4	4 001	(
4	5	
۸	c	
4	0	<i>c</i>
4	7 001	2
4	8	
^	o O	
+ 	2004	ŀ
5	U	
5	1	
5	2008	T
л г	<u>~</u> 0000	1
5	3	
5	4	Ŧ
5	5009	١
5	6	
.)		

190	The characteristics of included 22 studies were shown in table 1. The number of
191	participants was 51704 and there were 9973 (18.9%) patients with COPD. The mean age
192	of patients with COPD was between 45.1 and 83.1 years while the control subjects was
193	between 42.2 and 80.3 years. These studies were published between 1998 and 2021. The
194	sample size ranged from 120 to 13792. Nine studies were case-control studies ^{15 19 28 29 32}
195	³³ ³⁶ ⁴⁰ ⁴² and 10 studies were cross-sectional studies, ¹⁴ ²⁰ ³⁰ ³¹ ³⁴ ³⁵ ³⁸ ³⁹ ⁴¹ ⁴³ only three
196	studies with a cohort study design. ^{16 21 37} Additionally, 11 studies were conducted in
197	Asia, ^{15 16 19 32 34 35 37 38 40-42} while six studies in the North America, ^{14 20 21 28-30} four studies
198	in Europe ^{31 33 36 39} and one study in Africa. ⁴³
199	
200	Table 1 Characteristics of included studies

33 3¥ear / Study	Design	Location	No. COPD /	Age (COPD /	Assessment of	Assessment of
35						
36			Control subjects	Control subjects)	PD	COPD
37			Control subjects	Control subjects)	1 D	COLD
38						
39 998 Hayes <i>et al</i> ²⁸	Case-control	United States	261/857	45.1±9.7/42.2±9.1	ABL	FEV_1
40						
$\begin{array}{c} 41\\ 42\\ \end{array}$	Cross-sectional	United States	77/309	NA	OHI	Self-reported
43						
42 001 Garcia <i>et al</i> ²⁹ 45	Case-control	United States	279/833	NA	ABL, PPD	FEV_1
46						
42 001 Scannapieco <i>et al</i> ³⁰	Cross-sectional	United States	810/12,982	51.2±17.9/43.9±17.7	CAL, GB	Self-reported
48						
49 2004 Hyman <i>et al</i> ²⁰ 50	Cross-sectional	United States	993/6,632	62.3±14.1/47.4±14.2	CAL	GOLD
51						
52008 Leuckfeld et al ³¹	Cross-sectional	Norway	130/50	54.9±4.9/47.0±9.8	ABL	GOLD
53						
54 55 ²⁰⁰⁹ Wang <i>et al</i> ¹⁹	Case-control	China	306/328	63.9±9.8/63.3±9.0	CAL, PLI	GOLD
56						
57 012 Liu <i>et al</i> ⁴²	Case-control	China	183/209*	64.3±10.1/63.6±9.7	CAL, PPD, BI	GOLD
59						
60						
~~						

2 3								
4 52012 Si <i>et al</i> 6	l ¹⁵		Case-control	China	581/438	63.9±9.4/62.8±9.5	CAL, ABL, PPD,	GOLD
7 8 9							PLI, BI	
10 2012 Zhou e 11	et al ³²		Case-control	China	193/181	63.6±10.3/62.1±9.1	CAL, ABL, PPD,	GOLD
12 13 14							PLI, BI	
15 2013 Barros 16	et al ²¹		Cohort	United States	399/1,236 [§]	63.9±5.7/66.0±5.1	CAL, PPD	GOLD
1 <u>8</u> 013 Ledić a 19	et al ³³		Case-control	Croatia	93/43	65.8±9.7/62.1±11.9	CAL	GOLD
20 24016 Chung 22	, et al ³⁴		Cross-sectional	Korea	697/5,181	64.3±0.2/54.6±0.1	PPD, GB	GOLD
23 2018 Abdell 24	Halim a	et al ⁴³	Cross-sectional	Egypt	134/116*	56.8±10.4/55.3±9.1	CAL, PPD, BI,	GOLD
25 26 27							PLI, OHI	
28 29 ^{018 Harlan}	nd <i>et al</i> -	35	Cross-sectional	Japan	149/1,325	61.3±9.1/54.5±8.7	PPD	GOLD
30 3 <u>1</u> 018 Lopez- 32	-de-An	drés <i>et al³⁶</i>	Case-control	Spain	2,699/2,699	63±14/61±14	Self-reported	Self-reported
33 3 <u>4</u> 019 Takeuo	chi <i>et a</i>	l ³⁷	Cohort	Japan	22/878	NA	CAL, PPD	GOLD
36 2020 Jung <i>et</i> 37	t al ³⁸		Cross-sectional	Korea	1,134/6,585	62.6±0.4/53.6±0.2	PPD	FEV ₁ / FVC
38 32020 Qian <i>e</i> . 40	t al ¹⁶		Cohort	China	23 [‡] /NA	83.1±4.8/80.3±3.7	ABL	NR
41 42 ⁰²⁰ Winnin 42	ng <i>et a</i>	139	Cross-sectional	Sweden	86/740	NA	ABL	GOLD
43 4 <u>2</u> 020 Zhou <i>e</i> 45	et al ⁴⁰		Case-control	China	60/60	63.1±10.1/60.0±9.4	CAL, PLI	GOLD
46 4 2 021 Kataok 48	ka et al	41	Cross-sectional	Japan	464/249	54.1±9.4/NA	PPD	GOLD
49 20	01	Continuous da	ata are presented as	mean \pm standard of	deviation (SD) unless	otherwise indicated.		
50 51 20	02	*No. COPD s	ubjects with frequer	nt exacerbation (\geq	2 exacerbations in the	last year)/Infrequent exa	cerbation (< 2	
52 53 20	03	exacerbations	in the last year).					
54 20	04	[§] No. COPD st	ubjects with events	(hospitalization fo	or exacerbation or CO	PD-related death) in the 5	-year follow-up	
55 20	05	visit/COPD su	ubjects without even	nts in the 5-year fo	ollow-up visit.	,	- 1	
56 20	06	[‡] No. COPD-re	elated mortality in a	follow-up visit m	ore than 5 years.			
57 ² 58 20	07	ABL, alveola	r bone loss: BI ble	eding index: CAI	clinical attachment	level: FEV ₁ , forced expire	atory volume in 1	
59 20	08	second; FVC.	forced vital capaci	ty; GB, gingival l	bleeding: GOLD. Glo	bal Initiative for Chronic	Obstructive Lung	
60	'	,	oupuor	,, - , <u></u> ,				

Disease; NA, not available; OHI, oral health index; PD, periodontal disease; PLI, plaque index; PPD, probing pocket depth. All included articles performed multivariable analyses, in which the risk of COPD, or risk of COPD-related events (AE or mortality), was identified as the dependent variable and PD as the independent variable. Controlling for confounding by smoking included stratification (smokers and never smokers) or covariance adjustment in multivariable models (the degree of control: never smokers > adjusting for smoking intensity [duration and dose] > adjusting for smoking status). The adjustment for confounders of included studies was detailedly presented in online supplemental table 2. 16 articles reported the adjusted ORs and 4 reported adjusted RRs, two studies reporting HRs. Definition of COPD comprised the GOLD criteria,² FEV₁ <65% of predicted volume, having a history of chronic bronchitis and / or emphysema, self-reported and others. Periodontal parameters used for PD assessment were CAL, ABL, PPD, gingival bleeding (GB), bleeding index (BI), plaque index (PLI) and oral health index (OHI). Assessment of bias

Based on the Newcastle-Ottawa Scale, quality assessment for the 22 studies was shown
in online supplemental table 3. Among them, 18 studies^{15 19-21 28-30 32-42} were rated as
high quality with a total score of ≥6 whereas four studies^{14 16 31 43} as a score of <6,
indicating a high risk of bias. The main reasons for lower scores were selection bias
(representativeness of sample population), especially for control groups and

ว
2
3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
25
∠_) 24
24
25
26
27
28
29
30
21
51
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
75 76
40
4/
48
49
50
51
52
52
55
54
55
56
57
58
59

232 comparability of cases and control subjects.

233

1

234 **Primary outcome**

18 studies^{14 15 19 20 28-41} provided data for the risk of COPD in relation to PD. Quantitative 235 236 analysis demonstrated that after adjusting for smoking status, PD increased the risk of 237 COPD, but only by a ratio of 1.20 (95% CI 1.09 to 1.32, p=0.0002, I²=79%) (figure 2). Further exclusion of any single study did not materially alter the overall pooled OR, with 238 239 a range from 1.17 (95% CI 1.06-1.28) to 1.28 (95% CI 1.12-1.46). Sensitivity analysis limited to studies with larger sample size $(\geq 500)^{15 \ 19 \ 20 \ 28 \ 30 \ 34 \ 39 \ 41}$ revealed similar results 240 241 (OR 1.24, 95% CI 1.08 to 1.43, p=0.003, $I^2=82\%$) (online supplemental figure 1). 242 However, significant publication bias was noted by visual inspections of the funnel plot (online supplemental figure 2) and the Egger's test for small study effects (bias 243 coefficient 1.49, 95% CI 0.44 to 2.55, p=0.008). 244

245 Subgroup analyses indicated that assessment parameters of PD (p=0.02), study design 246 (p=0.05) and diagnosis of COPD (p=0.05) were the potential main causes of heterogeneity (table 2). Moreover, there were several findings in subgroup analyses. 247 248 First, after further controlling for smoking intensity, PD did not increase the risk of COPD (OR 1.14, 95% CI 0.86 to 1.51, p=0.38, 10 studies^{15 19 20 29-33 35 37}), similar to the 249 subgroup applying a GOLD criterion (OR 1.10, 95% CI 1.00 to 1.22, p=0.06, 12 250 studies¹⁵ ¹⁹ ²⁰ ³¹⁻³⁵ ³⁷ ³⁹⁻⁴¹). Second, among the parameters of CAL, ABL and PPD, only 251 subgroup using the parameter of ABL showed a significant association between PD and 252

253	the risk of COPD (C	OR 1.98, 95% CI 1	32 to 2.97, p=0.0	001, six studies ¹⁵	28 29 31 32	³⁹).
254	Third, in the three ge	eographical locatio	ons (Asia, North A	merica and Euro	pe), only	the
255	subgroup of Europe	indicated that PD	increased the risk	of COPD (OR 2	.05, 95%	6 CI
256	1.07 to 3.95, p=0.03,	four studies ^{31 33 36}	³⁹).			
257						
258	Tabl	e 2 Subgroup analy	yses regarding the	risk of COPD		
S	ubgroups	No. Studies	No. Participants	OR value	Р	I ² , %
			/Cases	(95% CI)	value	
A	djusted for smoking intens	sity ^a				
	Yes	10	27,246 / 3,556	1.14 (0.86-1.51)	0.38	67
	No	8	22,158 / 5,478	1.29 (1.13-1.48)	0.0002	75
А	ssessment of PD					
	CAL	8	24,600 / 3,058	1.04 (0.96-1.14)	0.33	75
	ABL	6	4,629 / 1,530	1.98 (1.32-2.97)	0.001	56
	PPD	8	19,189 / 3,519	1.16 (0.89-1.51)	0.27	63
G	eographical location					
	Asia	9	18,831 / 3,606	1.07 (0.99-1.17)	0.08	65
	North America	5	24,033 / 2,420	1.37 (0.93-2.01)	0.11	63
	Europe	4	6,540 / 3,008	2.05 (1.07-3.95)	0.03	71
А	ssessment of COPD					
		12	10 870 / 2 774	1 10 (1 00 1 22)	0.06	71

			BMJ Open			
	Non-GOLD	6	29,525 / 5,260	1.35 (1.14-1.61)	0.0007	
St	tudy design					
	Case-control	8	9,911 / 4,472	1.12 (1.01-1.24)	0.03	8
	Cross-sectional	9	38,593 / 4,540	1.34 (1.08-1.66)	0.007	4:
	Cohort	1	878 / 22	3.51 (1.15-10.74)	0.03	-
259	^a Duration and dose of sm	oking.				
260	ABL, alveolar bone loss;	CAL, clinical attac	chment level; CI, con	fident interval; GOL	D, Global	
261	Initiative for Chronic Ob	structive Lung Dise	ease; OR, odds ratio;	PD, periodontal dise	ase; PPD,	
262	probing pocket depth.					
263	Bold: subgroups with pos	sitive results.				
264						
265	Stratified analyses r	regarding smokin	g status revealed t	hat PD did not incr	rease the r	risk
266	of COPD whether in s	smokers (OR 1.4	6, 95% CI 0.92 to	2.31, p=0.11, seve	n studies ¹	5 19
267	^{20 29 31 32 35}) or never sr	nokers (OR 0.93	, 95% CI 0.72 to 1	.21, p=0.58, six stu	udies ^{15 19 2}	20 29
268	^{32 35}) (online supplem	ental figure 3).				
269						
270	Secondary outcome					
271	Only four studies eval	uated the risk of (COPD-related AE	or mortality. ^{16 21 42}	⁴³ Definit	ion
272	of AF was acute deter	ioration in clinic	al presentations ac	cording to the reco	mmendat	ion
070	in COLD avidaling 21	42.43 De alad analys	aig ab avoid that aft			1011
213	In GOLD guideline.21	Pooled analy	sis snowed that all	er adjusting for sm	oking sta	lus,
274	PD did not increase th	e risk of COPD-	related AE or mort	ality (OR 1.18, 95	% CI 0.71	l to
275	1.97, p=0.52, I ² =36%)) (figure 3).				
276						
277	DISCUSSION					
			15			

Page 17 of 41

BMJ Open

This systematic review and meta-analysis identified 22 observational studies to investigate the association between COPD and PD. The results indicated that, after strictly adjusting for confounding by smoking, PD did not increase the risk of COPD, as well as the risk of COPD-related AE or mortality. Moreover, these findings were consistent across the subgroup and stratified analyses.

To the best of our knowledge, this is the first and largest meta-analysis investigating the association of PD with the risk of COPD and its clinical events, with adequately controlling the confounding effect of smoking. Besides, nearly all included articles were adjusted for age, except the study by Scannapieco et al.¹⁴ Prior publications have suggested that PD significantly increased the risk of COPD and COPD-related events. However, the majority of studies have non-negligible flaws, such as only performing univariate analyses, not controlling the confounding by smoking, and using parameters with relatively low specificity for determining PD.^{13 25 43} In the present study, to define PD as accurately as possible, we preferentially extracted data concerning the parameters of CAL, ABL and PPD rather than PLI, OHI or remaining teeth. CAL, ABL and PPD are clinical measurements reflecting the destruction of periodontal tissues and momentous parameters for diagnosis of PD.^{25 44} Meanwhile, compared with previous meta-analyses, we enrolled more studies, applied more rigorous screening criteria and most importantly, revealed opposite results. In the meta-analyses with incomplete adjustment for smoking, OR value for the risk of COPD ranged from 1.28 to 2.08.45-48 However, our findings were similar to studies conducted in never smokers, 15 19 20 29 32 35
which showed that PD conferred no risk for COPD. Additionally, pooled analyses regarding parameters of CAL, ABL and PPD revealed that PD also did not increase the risk of COPD-related AE or mortality. These findings demonstrate that previously reported correlation between PD and COPD may be results of flawed study design, confounding by smoking and even other factors, such as age and living condition. As a momentous inducer for inflammation-related pathological processes, tobacco is known to correlate with a variety of systemic disorders.⁴⁹ It is also one of the foremost risk factors for both COPD and PD.^{5 10} From the epidemiological perspective, tobacco smoking is a confounder with spuriously inflated effect on the relationship between PD and systemic diseases.⁴⁹ To investigate the true association between PD and COPD, it is of great importance to rigorously control the confounding effect of smoking, which means initiating research in never smokers. However, the majority of former studies failed to do that. After a wide search, only six studies focusing on never smokers were found, which unanimously indicated PD was not related with the risk of COPD. We also observed a decreased intensity of the association between both diseases with the increase of control for smoking. Therefore, it could be too early to make a certain conclusion on the COPD-PD relationship. Although interventional studies revealed that periodontal treatment reduced the risk of AE, a number of problems existed, including small sample size, limited study quality and unclear history of smoking or medication during the follow-up.¹⁷¹⁸ For example, compared with control subjects, patients in treatment groups may reduce smoking intentionally, which could spuriously enhance the positive effect

BMJ Open

of periodontal treatment. Consequently, future researches need to take these problemsinto account.

It is worth noting that, another possibility that smoking acts as an effect modifier in the COPD-PD relationship should not be ignored. Two observational studies performing stratified analyses concerning smoking status found that the strong correlation of PD with the risk of COPD was restricted to smokers.^{15 20} However, this was not revealed in the present study, thus more investigations in smokers and never smokers respectively are required.

Besides, current evidence has demonstrated several issues to be addressed in future study, comprising inconsistent diagnostic criteria of COPD and PD, the lack of prospective study design and differing adjustments for covariates. These contribute to substantial heterogeneity among studies.⁴⁵ ⁴⁶ The present study indicated the heterogeneity was partly explained by study design, diagnostic criteria of COPD and periodontal indexes used to assess PD. Significant association concerning PD and risk of COPD was only identified in subgroups lacking well designs, applying non-GOLD criteria or utilizing ABL as the measure of PD. For one thing, this demonstrated that, as sources of bias, observational study design and nonstandard diagnostic method for COPD could induce apparent deviations, confusing the true relationship between COPD and PD. For another, given undetermined diagnostic criteria for PD, discrepancies between ABL and other indexes cannot fully support the COPD-PD association. Notably, as a radiographic measure, although ABL has been widely considered to reflect

cumulative effects of periodontal attachment loss over time by chronic inflammation,²⁸ it does not only exist in PD. Non-periodontal diseases such as liver disorders, cancer and osteoporosis⁵⁰ could also result in ABL. As mentioned previously,²⁸ the observed correlation between ABL and risk of COPD may relate to those non-periodontal diseases.

346 Limitations

Several potential limitations should be taken into consideration when interpreting the present results. First, all included studies are observational, which are highly subject to selection bias and confounding by indication. Second, substantial heterogeneity was identified in current study, though we conducted subgroup and stratified analyses to partly explain and reduce it. As stated above, several problems leading to heterogeneity need to be addressed in future researches. Third, the number of studies on risk of COPD-related events was limited, thus the result needs to be carefully understood. Limited number of studies in subgroup and stratified analyses suggested more relevant studies with larger sample size are required. Fourth, although confounding effects of age and smoking were controlled by stratified analysis and statistical adjustment, other potential confounders such as gender, living condition and socioeconomic status¹⁰ could also reduce reliability of the results. Fifth, obvious publication bias was noted in relevant meta-analyses,^{45 46} including the present study. For the purpose of rapid review,²³ we only included articles in English. There could exist non-English publications and unpublished evidence, although we searched English-language studies as much as

BMJ Open

possible. Finally, although smoking status and intensity were considered in subgroup
analysis, information regarding tobacco content and chemical composition were not
collected. This information is difficult to obtain, especially from self-reported smoking,
leaving a residual smoking-related bias. Consequently, it is advisable to explore
relationship between COPD and PD in never smokers.

368 CONCLUSION

In summary, this systematic review and meta-analysis suggests that PD is not associated
with the risk of COPD and COPD-related events after strict adjustment for smoking,
although the positive relationship between COPD and PD was previously reported.
Large-scale prospective cohort studies with control of potential confounding factors are
warranted to validate the present findings.

375 Abbreviations

ABL: Alveolar bone loss; AE: Acute exacerbation; BI: Bleeding index; CAL: Clinical

attachment level; CI: Confident interval; COPD: Chronic obstructive pulmonary disease;

378 GB: Gingival bleeding; GOLD: Global Initiative for Chronic Obstructive Lung Diseases;

379 HR: Hazard ratio; OHI: Oral health index; OR: Odds ratio; PD: Periodontal disease; PLI:

380 Plaque index; PPD: Probing pocket depth; RR: Relative risk.

Contributors LC and LL designed the study. MY and XL screened and selected relevant

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
<u>∽</u> ∠ 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
10	
4U	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

383	studies. MY, RP and XL rated the study quality and extracted the data. MY, RP, XL and
384	JP analyzed the data. All authors interpreted the data, and MY, RP, XL, JP drafted the
385	paper. LC and LL critically revised the paper. All authors acknowledged and agreed with
386	the format and content of the paper before submission for publication. LC and LL are
387	the guarantors and responsible for the overall contents of this study.
388	
389	Funding This study was supported in part by grant 2016YFC0901100 from the National
390	Key Research and Development Program of China.
391	
392	Competing interests None declared.
393	
394	Patient and public involvement No patients or other individuals are involved in the
395	design, conduct, reporting or dissemination of this research.
396	
397	Patient consent for publication Not applicable.
398	
399	Ethics approval Not applicable.
400	
401	Data availability statement All data relevant to the study are included in the article or
402	uploaded as supplementary information.

2 3			
4			
5 6	404	ORC	CID iD
7 8	405	Lei C	Chen https://orcid.org/0000-0003-3476-0035
9 10 11	406		
12 13	407	REI	FERENCES
14 15	108	1	World Health Organization. The top 10 causes of death 2020. Available:
15	400 400	1.	https://www.who.int/news.com/fact.sheets/detail/the.top.10.causes.of.death (accessed 25
17	409		<u>Intips.//www.wno.int/news-room/ract-sneets/detail/the-top-ro-causes-or-death</u> (accessed 25
18	410	•	February 2023).
19	411	2.	Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis,
20 21	412		management and prevention of chronic obstructive pulmonary disease (2023 report).
21 22	413		Available: <u>https://goldcopd.org/2023-gold-report-2/</u> (accessed 25 February 2023).
23	414	3.	Negewo NA, Gibson PG, McDonald VM. COPD and its comorbidities: Impact,
24	415		measurement and mechanisms. Respirology 2015;20:1160-1171.
25	416	4.	Tan L, Tang X, Pan C, et al. Relationship among clinical periodontal, microbiologic
26	417		parameters and lung function in participants with chronic obstructive pulmonary disease. J
27	418		Periodontal 2019:90:134-140
20 29	/10	5	Pibletrom BL Michalowicz BS Johnson NW Periodontal diseases Lancat
30	420	5.	2005.266.1800 1820
31	420	6	
32	421	6.	Kassebaum NJ, Bernabe E, Dahiya M, et al. Global burden of severe periodontitis in 1990-
33 24	422		2010: a systematic review and meta-regression. J Dent Res 2014;93:1045-1053.
35	423	7.	Sczepanik FSC, Grossi ML, Casati M, et al. Periodontitis is an inflammatory disease of
36	424		oxidative stress: We should treat it that way. Periodontol 2000 2020;84:45-68.
37	425	8.	Usher AK, Stockley RA. The link between chronic periodontitis and COPD: a common
38	426		role for the neutrophil? BMC Med 2013;11:241.
39	427	9.	Dong J, Li W, Wang Q, et al. Relationships Between Oral Microecosystem and
40 41	428		Respiratory Diseases. Front Mol Biosci 2021:8:718222.
42	429	10	Genco RI Borgnakke WS Risk factors for periodontal disease <i>Periodontal 2000</i>
43	/30	10.	2013-62-50-04
44	404	11	Sonay E. Vanal Z. Edgar D. at al. The alinical and inflammatagy relationshing between
45	431	11.	Sapey E, Yonei Z, Edgar K, <i>et al.</i> The clinical and inframinatory relationships between
40 47	432		periodontitis and chronic obstructive pulmonary disease. J Clin Periodontol 2020;47:1040-
48	433		1052.
49	434	12.	Scannapieco FA. Role of oral bacteria in respiratory infection. J Periodontol 1999;70:793-
50	435		802.
51	436	13.	Kelly N, Winning L, Irwin C, et al. Periodontal status and chronic obstructive pulmonary
52 53	437		disease (COPD) exacerbations: a systematic review. BMC Oral Health 2021;21:425.
55	438	14.	Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral conditions
55	439		and respiratory disease in a national sample survey population. Ann Periodontol
56	440		1998.3:251-256
57	<u></u>	15	Si V Fan H Song V et al Association between periodontitis and chronic obstructive
58 50	140	13.	nulmonary disease in a Chinese nonvestion <i>J Deviedentel</i> 2012;02:1200-1206
60	442		pumonary disease in a Chinese population. <i>J Fertodoniol</i> 2012,03.1200-1290.

1 2

3			
4	443	16.	Qian Y, Yuan W, Mei N, et al. Periodontitis increases the risk of respiratory disease
5 6	444		mortality in older patients. Exp Gerontol 2020;133:110878.
7	445	17.	Zhou X, Han J, Liu Z, et al. Effects of periodontal treatment on lung function and
8	446		exacerbation frequency in patients with chronic obstructive pulmonary disease and chronic
9 10	447		periodontitis: a 2-year pilot randomized controlled trial. J Clin Periodontol 2014;41:564-
11	448		572.
12	449	18.	Kucukcoskun M, Baser U, Oztekin G, et al. Initial periodontal treatment for prevention of
13 14	450		chronic obstructive pulmonary disease exacerbations. J Periodontol 2013;84:863-870.
14	451	19.	Wang Z, Zhou X, Zhang J, et al. Periodontal health, oral health behaviours, and chronic
16	452		obstructive pulmonary disease. J Clin Periodontol 2009;36:750-755.
17	453	20.	Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic obstructive
18 19	454		pulmonary disease. J Periodontol 2004;75:9-15.
20	455	21.	Barros SP, Suruki R, Loewy ZG, et al. A cohort study of the impact of tooth loss and
21	456		periodontal disease on respiratory events among COPD subjects: modulatory role of
22	457		systemic biomarkers of inflammation. PLoS One 2013;8:e68592.
24	458	22.	Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and
25	459		meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.
26 27	460	23.	Nussbaumer-Streit B, Klerings I, Dobrescu AI, et al. Excluding non-English publications
28	461		from evidence-syntheses did not change conclusions: a meta-epidemiological study. J Clin
29	462		<i>Epidemiol</i> 2020;118:42-54.
30 21	463	24.	Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the
32	464		quality of nonrandomised studies in meta-analyses, 2021. Available:
33	465		http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed 25 February
34	466		2023).
35 36	467	25.	Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers
37	468		2017;3:17038.
38	469	26.	Farook FF, Alodwene H, Alharbi R, et al. Reliability assessment between clinical
39 40	470		attachment loss and alveolar bone level in dental radiographs. Clin Exp Dent Res
41	471		2020;6:596-601.
42	472	27.	Lin L. Bias caused by sampling error in meta-analysis with small sample sizes. <i>PLoS One</i>
43	473		2018;13:e0204056.
44 45	474	28.	Hayes C, Sparrow D, Cohen M, et al. The association between alveolar bone loss and
46	475		pulmonary function: the VA Dental Longitudinal Study. Ann Periodontol 1998;3:257-261.
47	476	29.	Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between periodontal
48 49	477		disease and chronic obstructive pulmonary disease. Ann Periodontol 2001;6:71-77.
50	478	30.	Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and
51	479		periodontal disease: analysis of National Health and Nutrition Examination Survey III. J
52 53	480		Periodontol 2001;72:50-56.
54	481	31.	Leuckfeld I, Obregon-Whittle MV, Lund MB, et al. Severe chronic obstructive pulmonary
55	482		disease: association with marginal bone loss in periodontitis. Respir Med 2008;102:488-
56 57	483		494.
58	484	32.	Zhou X, Han J, Song Y, et al. Serum levels of 25-hydroxyvitamin D, oral health and
59	485		chronic obstructive pulmonary disease. J Clin Periodontol 2012;39:350-356.
60			

1			
2			
5 4			
5	486	33.	Ledić K, Marinković S, Puhar I, <i>et al.</i> Periodontal disease increases risk for chronic
6	487		obstructive pulmonary disease. Coll Antropol 2013;37:937-942.
7 0	488	34.	Chung JH, Hwang HJ, Kim SH, et al. Associations Between Periodontitis and Chronic
o 9	489		Obstructive Pulmonary Disease: The 2010 to 2012 Korean National Health and Nutrition
10	490		Examination Survey. J Periodontol 2016;87:864-871.
11	491	35.	Harland J, Furuta M, Takeuchi K, et al. Periodontitis modifies the association between
12	492		smoking and chronic obstructive pulmonary disease in Japanese men. J Oral Sci
15 14	493		2018;60:226-231.
15	494	36.	Lopez-de-Andrés A, Vazquez-Vazquez L, Martinez-Huedo MA, et al. Is COPD associated
16	495		with periodontal disease? A population-based study in Spain. Int J Chron Obstruct Pulmon
17	496		Dis 2018;13:3435-3445.
18	497	37.	Takeuchi K, Matsumoto K, Furuta M, et al. Periodontitis Is Associated with Chronic
20	498		Obstructive Pulmonary Disease. J Dent Res 2019;98:534-540.
21	499	38.	Jung ES, Lee KH, Choi YY, Association between oral health status and chronic obstructive
22	500		pulmonary disease in Korean adults. Int Dent J 2020:70:208-213.
23 24	501	39	Winning L. Polyzois I. Sanmartin Berglund L. <i>et al.</i> Periodontitis and airflow limitation in
25	502	57.	older Swedish individuals I Clin Periodontol 2020:47:715-725
26	503	40	Zhou X. Wang I. Liu W. et al. Periodontal Status and Microbiologic Pathogens in Patients
27 20	504	40.	with Chronic Obstructive Pulmonary Disease and Periodontitis: A Case-Control Study Int
20 29	505		I Chron Obstruct Pulmon Dis 2020:15:2071 2079
30	505	41	Votacka S. Kimura M. Vomaguchi T. et al. A cross spatianal study of relationships
31	500	41.	hatween periodental disease and concerl health. The Uitechi Oral Healthean Survey <i>BMC</i>
32	507		Our Hught 2021-21-(44
33 34	506	42	
35	509	42.	Liu Z, Zhang W, Zhang J, <i>et al.</i> Oral hygiene, periodontal health and chronic obstructive
36	510	10	pulmonary disease exacerbations. J Clin Periodontol 2012;39:45-52.
37	511	43.	Abdelhalim H, Aboelnaga H, Aggour R. Chronic obstructive pulmonary disease
30 39	512		exacerbations and periodontitis: a possible association. Egyptian Journal of Bronchology
40	513		2018;12.
41	514	44.	Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: Consensus report of workgroup 2
42 42	515		of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant
45 44	516		Diseases and Conditions. J Clin Periodontol 2018;45 Suppl 20:S162-s170.
45	517	45.	Zeng XT, Tu ML, Liu DY, et al. Periodontal disease and risk of chronic obstructive
46	518		pulmonary disease: a meta-analysis of observational studies. PLoS One 2012;7:e46508.
47	519	46.	Gomes-Filho IS, Cruz SSD, Trindade SC, et al. Periodontitis and respiratory diseases: A
40 49	520		systematic review with meta-analysis. Oral Dis 2020;26:439-446.
50	521	47.	Wu Z, Xiao C, Chen F, et al. Pulmonary disease and periodontal health: a meta-analysis.
51	522		Sleep Breath 2022.
52	523	48.	Molina A, Huck O, Herrera D, et al. The association between respiratory diseases and
55 54	524		periodontitis: A systematic review and meta-analysis. J Clin Periodontol 2023.
55	525	49.	Hujoel PP, Drangsholt M, Spiekerman C. <i>et al.</i> Periodontitis-systemic disease associations
56	526		in the presence of smokingcausal or coincidental? <i>Periodontol 2000</i> 2002:30:51-60
57	527	50	Intini G Katsuragi Y Kirkwood KL <i>et al.</i> Alveolar hone loss: mechanisms, notential
50 59	528	20.	theraneutic targets and interventions $Adv Dent Res 2014.26.38-46$
60	020		anorapourlo ungolo, una monvontiono. 2017 Den Res 2017,20.30-70.

2 3		
4 5 6	529	
7 8 9	530	
9 10 11	531	
12 13 14	532	
15 16 17	533	
18 19 20	534	
20 21 22	535	
23 24 25	536	
26 27 28	537	
29 30	538	
31 32 33	539	
34 35 26	540	
37 38	541	
39 40 41	542	
42 43	543	
44 45 46	544	
47 48 49	545	
50 51 52	540	Figure legends
52 53 54	548	Figure 1 PRISMA flow diagram of study selection
55 56 57	5/0	Figure 2 Forest plot of the risk of COPD by periodontal disease subgroup analysis based
58 59 60	040	Figure 2 Forest protor the fisk of COLD by periodonial disease, subgroup analysis based

BMJ Open

on adjusted by smoking status and intensity versus by smoking status only. Values more than one indicate a higher risk in patients with periodontal disease. Figure 3 Forest plot of the risk of COPD-related events by periodontal disease. Values more than one indicate a higher risk in patients with periodontal disease. to beet terien only

PRISMA 2009 Flow Diagram

Figure 1 PRISMA flow diagram of study selection.

215x279mm (200 x 200 DPI)

1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 20 21 22 32 4 5 6 7 8 9 30 31 2 3 34 5 36 7 8 9 0 11 2 3 2 4 5 6 7 8 9 0 11 2 3 2 4 5 6 7 8 9 0 11 2 3 2 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 31 2 3 3 4 5 3 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 31 2 3 3 4 5 3 6 7 8 9 0 0 1 2 2 3 4 5 3 6 7 8 9 0 0 1 2 2 3 3 4 5 3 6 7 8 9 0 0 1 2 2 3 4 5 3 6 7 8 9 0 1 2 2 3 3 4 5 3 6 7 8 9 0 1 2 2 3 3 4 5 3 6 7 8 9 0 0 1 2 2 3 3 4 5 3 6 7 8 9 40 1 2 3 3 4 5 3 6 7 8 9 40 1 2 3 3 4 5 3 6 7 8 9 40 1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Fig smol
48 49 50 51 52 53 54 55 56 57 58 59 60	

04 1 0 1 0 1		05	Mr		
Study or Subgroup	og[Odds Ratio]	SE	weight	IV, Random, 95% CI	IV. Random, 95% CI
1.1.1 Adjusted for smoking inte	ensity		0.00/		
2001 Garcia et al	0.174 0.	.2635	2.9%	1.19 [0.71, 1.99]	
2001 Scannapieco et al	0.3716 0	.1795	5.3%	1.45 [1.02, 2.06]	
2004 Hyman et al	-0.5108 0	.3537	1.7%	0.60 [0.30, 1.20]	
2008 Leuckfeld et al	2.3026 1	.1617	0.2%	10.00 [1.03, 97.46]	
2009 Wang et al	0 0.	.0051	18.1%	1.00 [0.99, 1.01]	
2012 Si et al	-1.6607 0.	.6196	0.6%	0.19 [0.06, 0.64]	•
2012 Zhou et al	0.1222 0.	.2091	4.2%	1.13 [0.75, 1.70]	
2013 Ledić et al	1.1458	0.581	0.7%	3.14 [1.01, 9.82]	
2018 Harland et al	-0.0305 0	.3484	1.8%	0.97 [0.49, 1.92]	
2019 Takeuchi et al	1.2556 0.	.5706	0.7%	3.51 [1.15, 10.74]	
Subtotal (95% CI)			36.2%	1.14 [0.86, 1.51]	
1.1.2 Not aujusted for smoking	intensity				
1.1.2 Not aujusted for smoking	intensity				
1998 Haves et al	0 5878 0	1676	5.8%	1 80 [1 30 2 50]	
1998 Hayes et al 1998 Scannapieco et al	0.5878 0.	.1676	5.8% 0.4%	1.80 [1.30, 2.50] 4 50 [1 07 18 99]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female	0.5878 0. 1.5041 0. 0.7747 0.	.1676 .7346 7195	5.8% 0.4% 0.5%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2 17 [0 53, 8 89]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0.	.1676 .7346 .7195 1213	5.8% 0.4% 0.5% 8.6%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0.	.1676 .7346 .7195 .1213 0394	5.8% 0.4% 0.5% 8.6% 16.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020. Jung et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0.	.1676 .7346 .7195 .1213 .0394	5.8% 0.4% 0.5% 8.6% 16.2% 6.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al	0.5878 0 1.5041 0 0.7747 0 0.207 0 0.1906 0 0.1947 0 0.8372 0	.1676 .7346 .7195 .1213 .0394 .1565 .3074	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0.	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0. 0.3221 0.	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI)	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0. 0.3221 0.	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02: Chi ²	0.5878 0. 1.5041 0. 0.7747 0. 0.207 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.0488 0. 0.3221 0. = 31.73. df = 8 (P =	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% (1): ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Vinning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Chi ² Test for overall effect: Z = 3.72 (F	0.5878 0 1.5041 0 0.7747 0 0.207 0 0.1906 0 0.1947 0 0.8372 0 0.0488 0 0.3221 0 = 31.73, df = 8 (P = P = 0.0002)	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 1); l ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	* *
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Vinning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Chi ² : Test for overall effect: Z = 3.72 (F Total (95% CI)	0.5878 0. 1.5041 0. 0.7747 0. 0.1906 0. 0.1947 0. 0.8372 0. 0.488 0. 0.3221 0. = 31.73, df = 8 (P = 2 = 0.0002)	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 1); ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] %	
1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Chi ² Total (95% CI) Heterogeneity: Tau ² = 0.01; Chi ²	0.5878 0 1.5041 0 0.7747 0 0.207 0 0.1906 0 0.1947 0 0.8372 0 0.0488 0 0.3221 0 = 31.73, df = 8 (P = 2 = 0.0002) = 86.21, df = 18 (P	.1676 .7346 .7195 .1213 .0394 .1565 .3074 .0237 .1578 = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 1); ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] % 1.20 [1.09, 1.32] 79%	

Figure 2 Forest plot of the risk of COPD by periodontal disease, subgroup analysis based on adjusted by smoking status and intensity versus by smoking status only. Values more than one indicate a higher risk in patients with periodontal disease.

536x384mm (118 x 118 DPI)

BMJ Open

1	
2	
3	
4	
5	
6	Odds Ratio Odds Ratio
7	Study or Subgroup log[Odds Ratio] SE Weight IV. Random, 95% Cl IV. Random, 95% Cl
8	2012 Liu et al -0.2877 0.2923 37.8% 0.75 [0.42, 1.33]
9	2018 AbdelHalim et al -0.734 2.1326 1.5% 0.48 [0.01, 31.37]
10	2020 Qian et al 0.9203 0.5475 17.2% 2.51 [0.86, 7.34]
11	Total (95% CI) 100.0% 1.18 [0.71, 1.97]
12	Heterogeneity: Tau ² = 0.09; Chi ² = 4.72, df = 3 (P = 0.19); l ² = 36% Test for overall effect: Z = 0.64 (P = 0.52) 0.01 0.1 1 10 100
13	
14	Figure 2 Found to be affiled with a figure of CODD welched assesses by maximum dented discovery Maker and the maximum
15	Figure 3 Forest plot of the risk of COPD-related events by periodontal disease. Values more than one
16	multate a myner fisk in patients with periodonital disease.
17	497x118mm (118 x 118 DPI)
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
2J 2/	
24	
25	
26	
27	
28	
29	
30	
31	
27	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
75	
40	
4/	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	

59 60

Table 1 Search strategy

Search term

- (Oral health) OR (periodontal disease) OR (periodontal health) OR (periodontitis)
 OR (clinical attachment level) OR (alveolar bone loss) OR (probing depth)
- (Respiratory disease) OR (chronic obstructive pulmonary disease) OR (pulmonary function) OR (airflow limitation)
- 3. 1 AND 2

lini.

2
2
5
4
5
6
7
8
0
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
22
23
24
25
26
27
20
20
29
30
31
32
33
31
24
35
36
37
38
39
40
U 4-1
41
42
43
44
45
46
17
47
48
49
50
51
52
52
55
54
55
56
57
58
59

Table 2 Adjustment for confounders of included studies
--

Study Author	Covariates in logistic regression multivariable model
Hayes <i>et al</i> ^{l}	Age, smoking, education, height
Scannapieco <i>et al</i> ²	Smoking
Garcia <i>et al³</i>	Age, height, alcohol, education (with stratified analysis on smoking)
Leuckfeld et al ⁴	Age, female gender, pack years of smoking
Liu <i>et al⁵</i>	Age, gender, BMI and smoking
Wang <i>et al</i> ⁶	Age, gender, BMI (with stratified analysis on smoking)
Si <i>et al</i> ⁷	Age, gender, occupation, educational level (with stratified analysis on
	smoking)
Zhou <i>et al</i> ⁸	Age, gender, smoking, BMI, season (with stratified analysis on
	smoking)
Ledić <i>et al</i> ⁹	Age, gender, pack years of smoking, BMI
Lopez-de-Andrés et al ¹⁰	Age, gender, smoking, educational level, DM, obesity
Zhou <i>et al</i> ¹¹	Age, gender, smoking, BMI
Kataoka <i>et al</i> ¹²	Age, smoking
Qian <i>et al</i> ¹³	Age, sex, education levels, BMI, smoking, drinking, hypertension, DM
Barros <i>et al</i> ¹⁴	Age, gender, Race, BMI, education, pack years of smoking,
	hypertension
Scannapieco et al ¹⁵	Age, gender, pack years of smoking, Race, education, income, dental
	visits, alcohol, DM
Hyman <i>et al</i> ¹⁶	Age, gender, Race, history of hypertension and heart attack, dental visit
	within 1 year, BMI, family income (with stratified analysis on
	smoking)
Chung <i>et al</i> ¹⁷	Age, smoking, family income, education, alcohol, exercise, BMI, tooth
	brushing frequency, DM, number of natural teeth
Harland <i>et al</i> ^{18}	Age, number of present teeth, BMI, alcohol consumption, occupation,
	hypertension, DM (with stratified analysis on smoking)
Takeuchi et al ¹⁹	Age, gender, pack years of smoking, occupation, DM, BMI, physical

	activity, alcohol intake, number of present teeth
Jung et al ²⁰	Age, gender, smoking, educational level, household income, alcohol
	consumption, periodontal status, number of missing teeth, oral health
	factors
Winning <i>et al</i> ²¹	Age, gender, smoking, height, BMI, exercise, DM, hypertension, MI,
	education level, living condition
AbdelHalim <i>et al</i> ²²	Age, BMI, low-level of education, pack years of smoking, MRC,
	CAT, hospitalizations, COPD category (C-D), FVC (% predicted),
	FEV1 (% predicted), FEV1 / FVC (% predicted), MMEF (%
	predicted), PEF (% predicted), CRP

BMI, body mass index; CAT, chronic obstructive pulmonary disease assessment test; CRP, C-reactive protein; DM, diabetes mellitus; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; MI, myocardial infarction; MMEF, maximum mid-expiratory flow; MRC, Medical Research Council; PEF, peak expiratory flow.

Bold: the covariate of smoking intensity (duration and dose) or stratified analyses on smoking status.

Table 3 Quality assessment based on the Newcastle-Ottawa Scale

(A) Cohort study

8		Sele	ection				Total		
9 Study	Exposed	Nonexposed	Ascertainment	Outcome		Assessment	Length of	Adequacy	score
11 Author 12	cohort	cohort	of exposure	of interest	Comparability	of outcome	follow-up	of follow up	
13								Tonow-up	
1 arros <i>et al</i> ¹⁴	*	*	*			*	*	*	6
15 Takeuchi <i>et al¹⁹</i> 16	*	*	*	*		*	*	*	7
1 Jan <i>et al</i> ¹³		*	*			*	*		4
18			÷						

(B) Case-control / cross-sectional study

21									
22		Selection	on				Outcome		Total
23	Case	Representati-	Control	Control		Ascertainment	Same method of	Non-	score
24	1 0 10			1					
25 Study Author	definition	-veness of the	selection	definition	Comparability	of exposure	ascertainment	-response	
26		cases		0			for cases and	rate	
27							controls		
28							controls		
² Hayes <i>et al</i> ¹ 30	*		*	*	*	*	*	*	7
3\$cannapieco <i>et al</i> ²		*	*	*		*	*		5
3 _{Garcia} et al ³ 33	*		*	*	*	*	*	*	7
32 cannapieco et al ¹⁵		*	*	*		*	*	*	6
35. Hyman <i>et al¹⁶</i> 36	*	*	*	*		*	*	*	7
3 ¹ / ₂ euckfeld <i>et al</i> ⁴	*			*		*	*	*	5
38 _{Wang} et al ⁶ 39	*	*		*	*	*	*	*	7
$4\mathbf{\dot{b}}$ iu et al ⁵	*	*		*	*	*	*	*	7
$43i et al^7$	*	*		*	*	*	*	*	7
42 43 hou <i>et al</i> ⁸	*	*		*	*	*	*	*	7
$44_{edić} et al^{9}$	*	*		*	*	*	*	*	7
46 ^{hung} et al^{17}	*	*	*	*		*	*	*	7
$\frac{4}{4}$ AbdelHalim <i>et al</i> ²²	*			*		*	*	*	5
$_{4}$ Harland <i>et al</i> ¹⁸	*	*		*		*	*	*	6
5£ _{opez-de-Andrés} 51		*	*	*	*		*	*	6
$52^{t} a l^{10}$									
53 $_{\text{ung }et al^{20}}$		*	*	*		*	*	*	6
5 Winning <i>et al</i> ²¹	*	*	*	*		*	*	*	7
$5_{2hou} et al^{11}$	*	*			**	*	*	*	7
$5\mathbf{K}$ ataoka <i>et al</i> ¹²	*	*	*	*		*	*	*	7

3					Odds Ratio	Odds Ratio
4	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
5	1998 Hayes et al	0.5878	0.1676	8.9%	1.80 [1.30, 2.50]	
6	2001 Garcia et al	0.174	0.2635	5.3%	1.19 [0.71, 1.99]	
-	2001 Scannapieco et al	0.3716	0.1795	8.3%	1.45 [1.02, 2.06]	
/	2004 Hyman et al	-0.5108	0.3537	3.4%	0.60 [0.30, 1.20]	
8	2009 Wang et al	0	0.0051	16.6%	1.00 [0.99, 1.01]	•
0	2012 Si et al	-1.6607	0.6196	1.3%	0.19 [0.06, 0.64]	
9	2016 Chung et al female	0.7747	0.7195	1.0%	2.17 [0.53, 8.89]	
10	2016 Chung et al male	0.207	0.1213	11.4%	1.23 [0.97, 1.56]	-
11	2018 Harland et al	-0.0305	0.3484	3.5%	0.97 [0.49, 1.92]	
	2018 Lopez-de-Andrés et al	0.1906	0.0394	15.8%	1.21 [1.12, 1.31]	•
12	2019 Takeuchi et al	1.2556	0.5706	1.5%	3.51 [1.15, 10.74]	· · · · · · · · · · · · · · · · · · ·
13	2020 Jung et al	0.1947	0.1565	9.4%	1.21 [0.89, 1.65]	+
14	2020 Winning et al	0.8372	0.3074	4.2%	2.31 [1.26, 4.22]	
14	2021 Kataoka et al	0.3221	0.1578	9.4%	1.38 [1.01, 1.88]	
15						
16	Total (95% CI)			100.0%	1.24 [1.08, 1.43]	•
10	Heterogeneity: Tau ² = 0.03; C	hi² = 70.75, df = 13	(P < 0.0	0001); l² =	82%	
1/	Test for overall effect: Z = 2.9	6 (P = 0.003)				0.1 0.2 0.5 1 2 5 10
18		. ,				

Figure 1 Sensitivity analysis on studies with larger sample size (N \geq 500). Values more than one indicate a higher risk of COPD in patients with PD.

opper to the second

Figure 2 Funnel plot for the risk of COPD, with pseudo 95% confidence limits.

Α				Odds Ratio		Odds R	atio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% Cl		IV, Random	1, 95% CI	
2001 Garcia et al	0.4886	0.1563	21.1%	1.63 [1.20, 2.21]		-	-	
2004 Hyman et al	1.311	0.385	14.3%	3.71 [1.74, 7.89]				
2008 Leuckfeld et al	2.3026	1.1617	3.5%	10.00 [1.03, 97.46]				
2009 Wang et al	0	0.0103	23.3%	1.00 [0.98, 1.02]		•		
2012 Si et al	-1.8326	0.8461	5.8%	0.16 [0.03, 0.84]				
2012 Zhou et al	-0.2107	0.3729	14.6%	0.81 [0.39, 1.68]			-	
2018 Harland et al	0.8198	0.2787	17.5%	2.27 [1.31, 3.92]		-	•	
Total (95% CI)			100.0%	1.46 [0.92, 2.31]				
		- C (D	- 0 0000	1) 12 - 050/	+			
Heterogeneity: Tau ² =	0.24; Chi ² = 38.81,	ar = 6 (P	< 0.0000	$1); 1^{2} = 85\%$	0.005	0.4	10	000
Heterogeneity: Tau ² = Test for overall effect:	0.24; Chi ² = 38.81, Z = 1.61 (P = 0.11)	ai = 6 (P	< 0.0000	1); 1- = 85%	0.005	0.1 1	10	200
Heterogeneity: Tau ² = Test for overall effect:	0.24; Chi² = 38.81, Z = 1.61 (P = 0.11)	at = 6 (P	< 0.0000	1); 1- = 85%	0.005	0.1 1	10	200
Heterogeneity: Tau ² = Test for overall effect: B	0.24; Chi² = 38.81, Z = 1.61 (P = 0.11)	ar = 6 (P	< 0.0000	Odds Ratio	0.005	0.1 1 Odds F	10 Ratio	200
Heterogeneity: Tau ² = Test for overall effect: B Study or Subgroup	0.24; Chi ² = 38.81, Z = 1.61 (P = 0.11) log[Odds Ratio]	ar = 6 (P	< 0.0000	Odds Ratio IV, Random, 95% C	0.005	0.1 1 Odds F <u>IV. Randon</u>	10 Ratio n. 95% Cl	200
Heterogeneity: Tau ² = Test for overall effect: B Study or Subgroup 2001 Garcia et al	0.24; Chi ² = 38.81, · Z = 1.61 (P = 0.11) log[Odds Ratio] 0.174	ur = 6 (P <u>SE</u> 0.2635	< 0.0000	Odds Ratio <u>IV. Random, 95% Ci</u> 1.19 (0.71, 1.99)	0.005	0.1 1 Odds F IV, Randon	10 Ratio n. 95% Cl	200
Heterogeneity: Tau ² = Test for overall effect: B Study or Subgroup 2001 Garcia et al 2004 Hyman et al	0.24; Chi* = 38.81, Z = 1.61 (P = 0.11) log[Odds Ratio] 0.174 -0.5108	ar = 6 (P 0.2635 0.3537	< 0.0000 Weight 15.5% 10.4%	Odds Ratio <u>IV. Random, 95% Ci</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20]	0.005	0.1 1 Odds F IV. Randon	10 Ratio n. 95% Cl	200
Heterogeneity: Tau ² = Test for overall effect: B Study or Subgroup 2001 Garcia et al 2004 Hyman et al 2009 Wang et al	0.24; Chi* = 38.81, Z = 1.61 (P = 0.11) log[Odds Ratio] 0.174 -0.5108 0	0.2635 0.3537 0.0051	 Weight 15.5% 10.4% 39.3% 	Odds Ratio IV. Random, 95% Cl 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01]	0.005 I	0.1 1 Odds F IV. Randon	10 Ratio n. 95% Cl	200
Heterogeneity: Tau ² = Test for overall effect: B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al	0.24; Chr = 38.81, Z = 1.61 (P = 0.11) log[Odds Ratio] 0.174 -0.5108 0 -1.6607	0.2635 0.3537 0.0051 0.6196	 Weight 15.5% 10.4% 39.3% 4.1% 	Odds Ratio <u>IV. Random, 95% Ci</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64]	0.005 I	0.1 1 Odds F IV. Randon	10 Ratio n. 95% Cl	200
Heterogeneity: Tau ² = Test for overall effect: B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al	0.24; Chr = 38.81, Z = 1.61 (P = 0.11) log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222	0.2635 0.2635 0.3537 0.0051 0.6196 0.2091	 Weight 15.5% 10.4% 39.3% 4.1% 20.0% 	Odds Ratio <u>IV. Random, 95% Ci</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70]	0.005 I	0.1 1 Odds F IV. Randon	10 Ratio n. 95% CI	200
Heterogeneity: Tau ² = Test for overall effect: B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al	0.24; Chi" = 38.81, . Z = 1.61 (P = 0.11) 0.174 -0.5108 0 -1.6607 0.1222 -0.0305	0.2635 0.3537 0.0051 0.6196 0.2091 0.3484	 Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 	Odds Ratio IV. Random, 95% Cl 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92]	0.005 I	0.1 1 Odds F IV. Randon	10 Ratio n. 95% CI	200
Heterogeneity: Tau ² = Test for overall effect: B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al Total (95% CI)	0.24; Chi ² = 38.81, Z = 1.61 (P = 0.11) 0.174 -0.5108 0 -1.6607 0.1222 -0.0305	0.2635 0.3537 0.0051 0.6196 0.2091 0.3484	 Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 100.0% 	Odds Ratio <u>IV, Random, 95% C</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92] 0.93 [0.72, 1.21]	0.005 I	0.1 1 Odds F IV. Randon	10 Ratio n. 95% Cl	200
Heterogeneity: Tau ² = Test for overall effect: B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al Total (95% CI) Heterogeneity: Tau ² =	0.24; Chi ² = 38.81, Z = 1.61 (P = 0.11) 0.174 -0.5108 0 -1.6607 0.1222 -0.0305 = 0.05: Chi ² = 10.05	df = 6 (P 0.2635 0.3537 0.0051 0.6196 0.2091 0.3484 df = 5 (f	 Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 100.0% P = 0.071 	Odds Ratio IV. Random, 95% Cl 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92] 0.93 [0.72, 1.21] I ² = 50%	0.005	0.1 1 Odds F IV. Randon	10 Ratio n. 95% CI	200

Figure 3 Forest plot of the risk of COPD by periodontal disease. A in smokers and **B** in never smokers. Values more than one indicate a higher risk in patients with periodontal disease.

References

- 1. Hayes C, Sparrow D, Cohen M, *et al.* The association between alveolar bone loss and pulmonary function: the VA Dental Longitudinal Study. *Ann Periodontol* 1998;3:257-261.
- Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral conditions and respiratory disease in a national sample survey population. *Ann Periodontol* 1998;3:251-256.
- 3. Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between periodontal disease and chronic obstructive pulmonary disease. *Ann Periodontol* 2001;6:71-77.
- 4. Leuckfeld I, Obregon-Whittle MV, Lund MB, *et al.* Severe chronic obstructive pulmonary disease: association with marginal bone loss in periodontitis. *Respir Med* 2008;102:488-494.
- 5. Liu Z, Zhang W, Zhang J, *et al.* Oral hygiene, periodontal health and chronic obstructive pulmonary disease exacerbations. *J Clin Periodontol* 2012;39:45-52.
- 6. Wang Z, Zhou X, Zhang J, *et al.* Periodontal health, oral health behaviours, and chronic obstructive pulmonary disease. *J Clin Periodontol* 2009;36:750-755.
- 7. Si Y, Fan H, Song Y, *et al.* Association between periodontitis and chronic obstructive pulmonary disease in a Chinese population. *J Periodontol* 2012;83:1288-1296.
- 8. Zhou X, Han J, Song Y, *et al.* Serum levels of 25-hydroxyvitamin D, oral health and chronic obstructive pulmonary disease. *J Clin Periodontol* 2012;39:350-356.
- 9. Ledić K, Marinković S, Puhar I, *et al.* Periodontal disease increases risk for chronic obstructive pulmonary disease. *Coll Antropol* 2013;37:937-942.
- Lopez-de-Andrés A, Vazquez-Vazquez L, Martinez-Huedo MA, et al. Is COPD associated with periodontal disease? A population-based study in Spain. Int J Chron Obstruct Pulmon Dis 2018;13:3435-3445.
- 11. Zhou X, Wang J, Liu W, *et al.* Periodontal Status and Microbiologic Pathogens in Patients with Chronic Obstructive Pulmonary Disease and Periodontitis: A Case-Control Study. *Int J Chron Obstruct Pulmon Dis* 2020;15:2071-2079.
- 12. Kataoka S, Kimura M, Yamaguchi T, *et al.* A cross-sectional study of relationships between periodontal disease and general health: The Hitachi Oral Healthcare Survey. *BMC Oral Health* 2021;21:644.
- 13. Qian Y, Yuan W, Mei N, *et al.* Periodontitis increases the risk of respiratory disease mortality in older patients. *Exp Gerontol* 2020;133:110878.
- 14. Barros SP, Suruki R, Loewy ZG, *et al.* A cohort study of the impact of tooth loss and periodontal disease on respiratory events among COPD subjects: modulatory role of systemic biomarkers of inflammation. *PLoS One* 2013;8:e68592.
- 15. Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and periodontal disease: analysis of National Health and Nutrition Examination Survey III. *J Periodontol* 2001;72:50-56.
- 16. Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic obstructive pulmonary disease. *J Periodontol* 2004;75:9-15.
- Chung JH, Hwang HJ, Kim SH, *et al.* Associations Between Periodontitis and Chronic Obstructive Pulmonary Disease: The 2010 to 2012 Korean National Health and Nutrition Examination Survey. *J Periodontol* 2016;87:864-871.

1		
2 3 4 5 6	18.	Harland J, Furuta M, Takeuchi K, <i>et al.</i> Periodontitis modifies the association between smoking and chronic obstructive pulmonary disease in Japanese men. <i>J Oral Sci</i> 2018:60:226-231
7 8	19.	Takeuchi K, Matsumoto K, Furuta M, <i>et al.</i> Periodontitis Is Associated with Chronic
9		Obstructive Pulmonary Disease. J Dent Res 2019;98:534-540.
10	20.	Jung ES, Lee KH, Choi YY. Association between oral health status and chronic
11		obstructive pulmonary disease in Korean adults. Int Dent J 2020;70:208-213.
13	21.	Winning L, Polyzois I, Sanmartin Berglund J, et al. Periodontitis and airflow limitation in
14		older Swedish individuals. J Clin Periodontol 2020;47:715-725.
15	22.	Abdelhalim H, Aboelnaga H, Aggour R. Chronic obstructive pulmonary disease
16 17		exacerbations and periodontitis: a possible association. Egyptian Journal of Bronchology
18		2018;12.
19		
20		
21 22		
22		
24		
25		
26		
27 28		
29		
30		
31		
32		
33 34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44 45		
46		
47		
48		
49 50		
50 51		
52		
53		
54		
55 56		
50 57		
58		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Section/topic	ltem No	Checklist item	Reported on Page Number/Line Number	Reported on Section/Paragraph
TITLE	-			1
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Page 1 / Line 2,3	Title page
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2,3 / Line 28-52	Abstract
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 4,5 / Line 69-103	Introduction / Paragraph 1- 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 5 / Line 103-107	Introduction / Paragraph 4
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	Page 5,6 / Line 110-112	Methods / Paragraph 1
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 6 / Line 118-124	Methods / Paragraph 2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 6 / Line 115,116	Methods / Paragraph 2
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 6 / Line 116-118	Methods / Paragraph 2 Supplemental table 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Page 6 / Line 125-131	Methods / Paragraph 3
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 7 / Line 134,135	Methods / Paragraph 4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 7 / Line 135-140	Methods / Paragraph 4

 BMJ Open

Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Page 7 / Line 142-147	Methods / Paragraph 4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 7 / Line 150	Methods / Paragraph 5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l ²) for each meta-analysis.	Page 8 / Line 156-160	Methods / Paragraph 5
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 8 / Line 171-173	Methods / Paragraph 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Page 8 / Line 161-172	Methods / Paragraph 6,
RESULTS		6	·	
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Page 9 / Line 182-189	Results / Paragraph 1; Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 9-12 / Line 190-224	Results / Paragraph 2-4 Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 12 / Line 226- 232	Results / Paragraph 5; Supplemental table 3
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 12,13 / Line 234-244	Results / Paragraph 6; Figure 2 and 3
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 12 / Line 235-237 Page 15 / Line 273-275	Results / Paragraph 6,8; Figure 2 and 3
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 12,13 / Line 238-239; 242-244	Results / Paragraph 6; Supplemental figure 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Page 12 / Line 239-241; Page 13-15 / Line 245-268	Results / Paragraph 6-8 Table 2, Figure 2
DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 15-18 / Line 278-344	Discussion / Paragraph
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 18,19 / Line 346-366	Discussion / Paragraph
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Page 19 / Line 368-373	Conclusion / Paragraph

FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Page 20 / Line 389,390	Funding
rom: Moher D led 6(7): e1000 or more inform Please leave this sp	, Liberati A 097. doi:10 ation, visit: ace alone as i	Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and PD.1371/journal.pmed1000097 www.prisma-statement.org. t will be supplemented by the editorial office when needed.	I Meta-Analyses: The PR	ISMA Statement. PLoS
		3-3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		Updated on April 13, 20

BMJ Open

The association between chronic obstructive pulmonary disease and periodontal disease: a systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067432.R3
Article Type:	Original research
Date Submitted by the Author:	02-Jun-2023
Complete List of Authors:	Yang, Mei; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine Peng, Ran; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine; 363 Hospital, Department of Pulmonary and Critical Care Medicine Li, Xiaoou; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine Peng, Junjie; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine Liu, Lin; 363 Hospital, Department of Pulmonary and Critical Care Medicine Chen, Lei; Sichuan University West China Hospital, Department of Pulmonary and Critical Care Medicine
Primary Subject Heading :	Respiratory medicine
Secondary Subject Heading:	Public health, Smoking and tobacco, Dentistry and oral medicine
Keywords:	Chronic airways disease < THORACIC MEDICINE, RESPIRATORY MEDICINE (see Thoracic Medicine), ORAL MEDICINE, Emphysema < THORACIC MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
1	
2	
6	
7	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
30	
20	
39	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
-1/ /0	
40 40	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

Title: The association between chronic obstructive pulmonary disease and periodontal disease: a systematic review and meta-analysis Authors' full names: Mei Yang^{1*}, Ran Peng^{1,2*}, Xiaoou Li^{1*}, Junjie Peng¹, Lin Liu^{2#}, Lei Chen^{1#}

Title Page

1

7 Authors' affiliations: ¹Department of Pulmonary and Critical Care Medicine, West

8 China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

²Department of Pulmonary and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan
610041, China

é le

11

12 * Contributed equally.

13

#Correspondence to: Lei Chen (lchens@126.com), Department of Pulmonary and
Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan
610041, China; Lin Liu (lliniu@126.com), Department of Pulmonary and Critical Care
Medicine, 363 Hospital, Chengdu, Sichuan 610041, China

18

21

19 Word count of the abstract: 276

20 Word count of the main text: 3224

1		
2		
3		
4		
5	22	
6 7		
/	23	The association between chronic obstructive nulmonary
8	20	The association between enrolle obstructive pullionary
9 10		
10	24	disease and periodontal disease: a systematic review and
12		
12	25	meta-analysis
14	25	meta-anary 919
15		
16	26	
17		
18	27	ARSTRACT
19	21	
20		
21	28	Objectives Studies have suggested contradictory results on the relationship between
22		
23	29	chronic obstructive pulmonary disease (COPD) and periodontal disease (PD) The aim
24		
25	~~	
26	30	of this study was to determine whether PD increased the risk of COPD and COPD-
27		
28	31	related clinical events.
29		
3U 21	~~	
20	32	Design Systematic review and meta-analysis.
32		
34	33	Data sources PubMed, Ovid EMBASE and Ovid CENTRAL were searched from
35		
36	24	incention to 22 Echrupry 2022
37	34	inception to 22 February 2025.
38		
39	35	Eligibility criteria for studies We included trials and observational studies evaluating
40		
41	36	association of PD with the risk of COPD or COPD-related events (evacerbation and
42	00	ussociation of 1 D with the fisk of COLD of COLD-felated events (exactibation and
43		
44	37	mortality), with statistical adjustment for smoking.
45		
46	38	Data extraction and synthesis Two investigators independently extracted data from
4/	00	Data extraction and synthesis 1 we investigators independently extracted data nom
48 40		
49 50	39	selected studies using a standardized Excel file. Quality of studies was evaluated using
51		
52	40	the Newcastle-Ottawa Scale, Odds ratio (OR) with 95% confident interval (CI) was
53		
54		
55	41	pooled in a random-effect model with inverse variance method.
56		
57	42	Results 22 observational studies with 51704 participants were included Pooled analysis
58	_	
59		
60		

of 18 studies suggested that PD was weakly associated with the risk of COPD (OR 1.20,
95% CI 1.09 to 1.32). However, in stratified and subgroup analyses, with strict
adjustment for smoking, PD no longer related to the risk of COPD (adjusting for
smoking intensity: OR 1.14, 95% CI 0.86 to 1.51; smokers only: OR 1.46, 95% CI 0.92
to 2.31; never smokers only: OR 0.93, 95% CI 0.72 to 1.21). Moreover, PD did not
increase the risk of COPD-related exacerbation or mortality (OR 1.18, 95% CI 0.71 to
1.97) in the pooled result of four studies.

Conclusions This study demonstrates PD confers no risk for COPD and COPD-related
events when strictly adjusted by smoking. Large-scale prospective cohort studies with
control of potential confounding factors are warranted to validate the present findings.

54 STRENGTHS AND LIMITATIONS OF THIS STUDY

This systematic review and meta-analysis only included studies with statistical
 adjustment for smoking, to adequately control the confounding by smoking.

57 2. We defined "periodontal disease" as a wide variety of periodontal abnormalities
58 according to clinical and radiographic assessments, which is not limited to
59 periodontitis.

60 3. The language was restricted to English when conducting study searching, thus some61 literatures might have been missed.

62 4. Clinical heterogeneity and publication bias compromised the evidence strength of63 this study, although subgroup and stratified analyses were performed.

65 INTRODUCTION

66 Chronic obstructive pulmonary disease (COPD) is the third leading cause of death, 67 resulting in enormous economic burden.¹ Commonly, COPD coexists with a variety of 68 disorders, called comorbidities, which play significant roles in the progression and 69 prognosis of COPD.^{2 3} Understanding the COPD-comorbidities relationship has been a 70 momentous prerequisite for optimizing disease prevention and management strategies.² 71 ³

Given ageing and widespread use of inhaled corticosteroids in COPD, periodontal disease (PD) has been a common comorbidity of COPD.⁴ It is a chronic inflammatory condition of tissues surrounding and supporting the teeth, including gingiva, bone and ligament,⁵ with the prevalence estimates over 10% around the world and especially prevalent in elderly individuals.⁶ To date, diagnosis and assessment of PD are mostly based on periodontal measurements including clinical attachment level (CAL), probing pocket depth (PPD) and alveolar bone loss (ABL).⁵ They are primary clinical manifestations of PD, reflecting the extent of periodontal tissue destruction.⁵

Based on the nature of inflammation,^{5 7} mounting evidence has shed light on the association between PD and development of COPD.^{8 9} Currently three points are proposed. First, they share the same risk factors, such as age, gender, smoking and socioeconomic status.^{2 10} Second, they have similar pathogenetic mechanisms. Both diseases are characterized by host susceptibility to environmental factors, immune

overreaction, oxidative stress and production of pro-inflammatory cytokines.^{7 8} Most
importantly, neutrophilic inflammation plays a key role in both diseases.^{8 11} Third, oral
bacteria released from the dental plaque in PD could trigger progression and acute
exacerbation (AE) of COPD.^{12 13}

Meanwhile, epidemiological evidence has indicated that PD increases risk of COPD¹¹ ^{14 15} and COPD-related events.^{13 16} Scannapieco *et al* revealed a 4.5-fold increased risk of COPD in patients with PD, compared with those without.¹⁴ A dose-response relationship was further implied between PD severity and lung function.¹⁵ Among patients with both diseases, COPD-related AE and mortality also significantly linked with periodontal status.¹³ ¹⁶ Periodontal therapy, such as scaling and root planing treatment, may ameliorate lung function and decrease frequency of AE in COPD with chronic periodontitis.^{17 18} However, there were some other studies revealing opposite results, resulting in a long-standing controversy.¹⁹⁻²¹ It is worth noting that, parameters used to determine PD apparently varied across studies, and these studies also failed to adequately control for confounders, especially smoking, the most important confounder for the COPD-PD relationship. Therefore, to provide the latest and most convincing evidence, we systematically reviewed current available literature to investigate whether PD increases the risk of COPD. The secondary objective was to evaluate the association between PD and the risk of COPD-related events. Subgroup and stratified analyses were also conducted to adjust for the confounding by smoking.

2
3
1
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
IÖ
19
20
21
22
23
27
24
25
26
27
28
29
30
21
31
32
33
34
35
36
27
20
38
39
40
41
42
43
-TJ 11
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
57
58
59

60

106 METHODS

This systematic review and meta-analysis was conducted and reported in accordance to
 the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
 guideline.²²

110

111 Search strategy and selection criteria

We searched PubMed, Ovid EMBASE and Ovid Cochrane Central Register of 112 113 Controlled Trials for records evaluating association between COPD and PD, from inception to 22 February 2023. The full search strategy was described in online 114 115 supplemental table 1. The language was restricted to English, for the purpose of rapid 116 review.²³ Studies meeting the following criteria were included: (1) adult participants 117 $(\geq 18 \text{ years})$; (2) original studies with randomized controlled trial (RCT), cohort, case-118 control or cross-sectional study designs; (3) presenting clear diagnostic or assessment 119 criteria for COPD and PD; (4) evaluating association between PD and the risk of COPD, 120 or risk of COPD-related events (AE and mortality), with statistical adjustment for 121 smoking, and providing the adjusted odds ratio (OR), relative risk (RR) or hazard ratio 122 (HR) for the risk of COPD, AE and mortality in relation to PD. Given the inconsistent 123 diagnostic criteria of PD across studies, we predefined PD as a wide variety of periodontal abnormalities according to clinical and radiographic assessments.²⁴ 124

According to the inclusion criteria, two independent investigators (MY and XL)
performed systematical search, screened titles and abstracts of all retrieved studies to

127 exclude duplicate or irrelevant records. For articles requiring further assessment, full-128 text reviews were carried out and references of retrieved articles and relevant reviews 129 were also manually checked to identify additional eligible studies. Disagreements were 130 resolved by discussion between the two reviewers or with the help of the third 131 investigator (RP).

.

133 Data extraction and quality assessment

Two investigators (MY and RP) independently extracted data from selected studies using a standardized Excel (Microsoft Corporation) file. The following information was extracted: author, year of publication, country, study design, number of subjects (COPD) and non-COPD), demographic characteristics of participants, diagnostic criteria for PD and COPD, definition of COPD-related AE and mortality, adjusted OR, RR or HR for the risk of COPD, AE and mortality in relation to PD, as well as adjustment for confounders. The primary outcome was the risk of COPD. Secondary outcome was the risk of COPD-related adverse events, including AE and mortality. Quality of studies was independently evaluated using the Newcastle-Ottawa Scale²⁵ by two investigators (MY and XL). A score of ≥ 6 was considered a low risk while < 6 a high risk of bias. Both case-control and cohort studies had a maximum score of 9. Cross-sectional study was regarded as case-control study when performing quality assessment. Discrepancies regarding data extraction and quality assessment were resolved through discussion and consensus.

148	
149	Data analysis
150	The final pooled estimate was expressed as OR with 95% confident interval (CI).
151	Considering CAL, ABL and PPD have been regarded as the primary parameters for
152	PD, ²⁴²⁶ where more than one adjusted estimate was shown in the paper, we preferentially
153	used the estimate regarding these parameters (CAL > ABL > PPD), or the estimate being
154	better adjusted for tobacco smoking (never smokers > adjusting for smoking intensity
155	[duration and dose] > adjusting for smoking status), or the estimate regarding more
156	severe PD, where available. For case-control and cross-sectional studies, we estimated
157	the OR whereas for cohort studies we estimated the RR or HR. The random-effect model
158	with inverse variance method were applied due to potential heterogeneity resulting from
159	methodological differences. Heterogeneity across studies was identified with the I ²
160	statistic. I ² statistic >50% indicated significant heterogeneity.
161	To explore heterogeneity, subgroup analyses were conducted based on study design
162	(case-control, cross-sectional and cohort studies), geographical location (Asia, North
163	America, Europe), assessment of PD (CAL, ABL and PPD), definition of COPD (Global
164	Initiative for Chronic Obstructive Lung Diseases, GOLD and non-GOLD criteria) and
165	adjustment for smoking intensity (dose and duration of smoking). To better control the
166	confounding effect of smoking, stratified analyses were performed in smokers and never
167	smokers respectively.
168	To test the robustness of study findings, we performed sensitivity analysis on studies

with relatively large sample size (\geq 500 participants), which tended to be more representative of the general population and with smaller bias in the overall estimates in meta-analyses.²⁷ Additionally, influence of a single study on the overall pooled estimate was tested by omitting one study in each turn. Publication bias was visually assessed using a funnel plot and quantitatively evaluated by the Egger's tests. P <0.05 was considered statistically significant. All statistical analyses were performed using Stata version 16 (StataCorp) and Review manager version 5.4 (Cochrane Collaboration).

Patient and public involvement

No patients or other individuals are involved in the design, conduct, reporting or erez ez dissemination of this research.

RESULTS

Study selection and characteristics

A total of 30165 records were identified from the initial database search. 13662 records were removed for duplicates, and 16227 records were excluded after titles and abstracts screening because of irrelevant content and animal studies. The remaining 276 full-text articles were identified for eligibility, of which 254 were excluded for reasons including duplicates (six studies), reviews (183 studies), insufficient information (nine studies) and ineligible designs and outcomes (56 studies). Finally, 22 studies^{14-16 19-21 28-43} were included in the review. The selection process is shown in figure 1.
5 6	190	The cha	racteristics of	included 22	studies were sh	own in table 1 . T	he number of	
7 8 9	191	participant	articipants was 51704 and there were 9973 (18.9%) patients with COPD. The mean age					
10 11	192	of patients	patients with COPD was between 45.1 and 83.1 years while the control subjects was					
12 13 14	193	between 42	2.2 and 80.3 ye	ears. These stu	udies were publis	shed between 1998	and 2021. The	
15 16 17	194	sample size	e ranged from	120 to 13792	2. Nine studies w	ere case-control stu	dies ^{15 19 28 29 32}	
18 19	195	³³ ³⁶ ⁴⁰ ⁴² at	nd 10 studies	were cross-se	ectional studies,	14 20 30 31 34 35 38 39 4	^{1 43} only three	
20 21 22	196	studies wit	th a cohort stu	udy design. ¹⁶	^{21 37} Additionall	ly, 11 studies were	conducted in	
23 24 25	197	Asia, ^{15 16 19}	9 32 34 35 37 38 40-4	² while six stu	udies in the North	h America, ^{14 20 21 28-}	³⁰ four studies	
26 27	198	in Europe ³	^{1 33 36 39} and on	e study in Af	rica. ⁴³			
28 29 30	199							
31	200		Ta	able 1 Charac	teristics of inclu	ded studies		
32								
<u>32</u> 33 3¥ear 35	/ Study		Design	Location	No. COPD /	Age (COPD /	Assessment of	Assessment of
32 33 3¥ear 35 36 37	/ Study		Design	Location	No. COPD / Control subjects	Age (COPD / Control subjects)	Assessment of PD	Assessment of COPD
32 33 3¥ear 35 36 37 38 3₽998 40	Y / Study Hayes <i>et al</i> ²⁸		Design Case-control	Location United States	No. COPD / Control subjects 261/857	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1	Assessment of PD ABL	Assessment of COPD FEV1
32 33 3¥ear 35 36 37 38 39998 40 41 42 998 42	Hayes <i>et al²⁸</i> Scannapieco <i>e</i>	et al ¹⁴	Design Case-control Cross-sectional	Location United States United States	No. COPD / Control subjects 261/857 77/309	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1 NA	Assessment of PD ABL OHI	Assessment of COPD FEV ₁ Self-reported
32 33 3¥ear 35 36 37 38 39998 40 41 42 43 42 43 4 <u>4</u> 001	Hayes <i>et al²⁸</i> Scannapieco <i>e</i> Garcia <i>et al²⁹</i>	et al ¹⁴	Design Case-control Cross-sectional Case-control	Location United States United States United States	No. COPD / Control subjects 261/857 77/309 279/833	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1 NA NA	Assessment of PD ABL OHI ABL, PPD	Assessment of COPD FEV ₁ Self-reported FEV ₁
32 33 3 ¥ear 35 36 37 38 39998 40 41 42 43 42 43 4 <u>4</u> 001 45 46 45 46 4 3 001 48	Hayes <i>et al²⁸</i> Scannapieco <i>e</i> Garcia <i>et al²⁹</i> Scannapieco <i>e</i>	et al ¹⁴ et al ³⁰	Design Case-control Cross-sectional Case-control Cross-sectional	Location United States United States United States United States	No. COPD / Control subjects 261/857 77/309 279/833 810/12,982	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1 NA NA 51.2±17.9/43.9±17.7	Assessment of PD ABL OHI ABL, PPD CAL, GB	Assessment of COPD FEV1 Self-reported FEV1 Self-reported
$\frac{32}{33}$ $3\frac{1}{32}$ $\frac{33}{3}$ $\frac{35}{36}$ $\frac{37}{38}$ $\frac{39998}{40}$ $\frac{41}{1998}$ $\frac{42}{43}$ $\frac{42}{43}$ $\frac{42}{43}$ $\frac{42}{45}$ $\frac{43}{45}$ $\frac{45}{46}$ $\frac{42}{50}$ $\frac{48}{50}$ $\frac{49}{50}$ 51	Hayes <i>et al²⁸</i> Scannapieco <i>e</i> Garcia <i>et al²⁹</i> Scannapieco <i>e</i> Hyman <i>et al²⁰</i>	et al ¹⁴ et al ³⁰	Design Case-control Cross-sectional Case-control Cross-sectional Cross-sectional	Location United States United States United States United States United States	No. COPD / Control subjects 261/857 77/309 279/833 810/12,982 993/6,632	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1 NA NA 51.2±17.9/43.9±17.7 62.3±14.1/47.4±14.2	Assessment of PD ABL OHI ABL, PPD CAL, GB CAL	Assessment of COPD FEV1 Self-reported FEV1 Self-reported GOLD
$\frac{32}{33}$ $3\frac{1}{3}$ $\frac{33}{3}$ $\frac{35}{36}$ $\frac{37}{38}$ $\frac{39998}{40}$ $\frac{41}{42}$ $\frac{42}{998}$ $\frac{42}{43}$ $\frac{42}{9001}$ $\frac{43}{42}$ $\frac{42}{9001}$ $\frac{43}{42}$ $\frac{42}{9004}$ $\frac{50}{51}$ $\frac{52008}{53}$	Hayes <i>et al</i> ²⁸ Scannapieco <i>e</i> Garcia <i>et al</i> ²⁹ Scannapieco <i>e</i> Hyman <i>et al</i> ²⁰ Leuckfeld <i>et a</i>	et al ¹⁴ et al ³⁰ al ³¹	Design Case-control Cross-sectional Cross-sectional Cross-sectional Cross-sectional	Location United States United States United States United States United States Norway	No. COPD / Control subjects 261/857 77/309 279/833 810/12,982 993/6,632 130/50	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1 NA NA 51.2±17.9/43.9±17.7 62.3±14.1/47.4±14.2 54.9±4.9/47.0±9.8	Assessment of PD ABL OHI ABL, PPD CAL, GB CAL ABL	Assessment of COPD FEV1 Self-reported FEV1 Self-reported GOLD
$\frac{32}{33}$ $3\frac{1}{32}$ 35 36 37 38 39998 40 41 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 2004 50 51 52008 53 52009 55	Hayes <i>et al</i> ²⁸ Scannapieco <i>e</i> Garcia <i>et al</i> ²⁹ Scannapieco <i>e</i> Hyman <i>et al</i> ²⁰ Leuckfeld <i>et a</i> Wang <i>et al</i> ¹⁹	et al ¹⁴ et al ³⁰ al ³¹	Design Case-control Cross-sectional Cross-sectional Cross-sectional Cross-sectional Case-control	Location United States United States United States United States Norway China	No. COPD / Control subjects 261/857 77/309 279/833 810/12,982 993/6,632 130/50 306/328	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1 NA NA 51.2±17.9/43.9±17.7 62.3±14.1/47.4±14.2 54.9±4.9/47.0±9.8 63.9±9.8/63.3±9.0	Assessment of PD ABL OHI ABL, PPD CAL, GB CAL ABL CAL, PLI	Assessment of COPD FEV1 Self-reported FEV1 Self-reported GOLD GOLD
32 33 34 car 35 36 37 38 39998 40 41 9998 40 41 42 43 45 45 45 51 52008 53 55 55 55 55 55 55 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 57 12 58 12 57 12 58 12 57 12 58 12	Hayes <i>et al</i> ²⁸ Scannapieco <i>e</i> Garcia <i>et al</i> ²⁹ Scannapieco <i>e</i> Hyman <i>et al</i> ²⁰ Leuckfeld <i>et a</i> Wang <i>et al</i> ¹⁹ Liu <i>et al</i> ⁴²	et al ¹⁴ et al ³⁰	Design Case-control Cross-sectional Cross-sectional Cross-sectional Cross-sectional Case-control Case-control	Location United States United States United States United States United States Norway China China	No. COPD / Control subjects 261/857 77/309 279/833 810/12,982 993/6,632 130/50 306/328 183/209*	Age (COPD / Control subjects) 45.1±9.7/42.2±9.1 NA NA 51.2±17.9/43.9±17.7 62.3±14.1/47.4±14.2 54.9±4.9/47.0±9.8 63.9±9.8/63.3±9.0 64.3±10.1/63.6±9.7	Assessment of PD ABL OHI ABL, PPD CAL, GB CAL ABL CAL, PLI CAL, PLI	Assessment of COPD FEV1 Self-reported FEV1 Self-reported GOLD GOLD GOLD

2 3								
4 5 ₂₀₁₂ 6	Si et al ¹⁵		Case-control	China	581/438	63.9±9.4/62.8±9.5	CAL, ABL, PPD,	GOLD
7 8 9							PLI, BI	
10 2012 11	Zhou <i>et al</i> ³²		Case-control	China	193/181	63.6±10.3/62.1±9.1	CAL, ABL, PPD,	GOLD
12 13 14							PLI, BI	
15_{2013} 16_{17}	Barros et al ²¹		Cohort	United States	399/1,236 [§]	63.9±5.7/66.0±5.1	CAL, PPD	GOLD
1 <u>8</u> 013 19	Ledić <i>et al³³</i>		Case-control	Croatia	93/43	65.8±9.7/62.1±11.9	CAL	GOLD
20 24 ⁰¹⁶ 22	Chung et al ³⁴		Cross-sectional	Korea	697/5,181	64.3±0.2/54.6±0.1	PPD, GB	GOLD
23 2018 24 25	AbdelHalim	et al ⁴³	Cross-sectional	Egypt	134/116*	56.8±10.4/55.3±9.1	CAL, PPD, BI,	GOLD
26 27							PLI, OHI	
28 29 ⁰¹⁸ 30	Harland <i>et al</i>	35	Cross-sectional	Japan	149/1,325	61.3±9.1/54.5±8.7	PPD	GOLD
3 <u>2</u> 018 32	Lopez-de-An	drés <i>et al</i> ³⁶	Case-control	Spain	2,699/2,699	63±14/61±14	Self-reported	Self-reported
33 3 <u>4</u> 019 35	Takeuchi et a	ul ³⁷	Cohort	Japan	22/878	NA	CAL, PPD	GOLD
36 2020 37 38	Jung <i>et al</i> ³⁸		Cross-sectional	Korea	1,134/6,585	62.6±0.4/53.6±0.2	PPD	FEV ₁ / FVC
3 2 020 40	Qian <i>et al</i> ¹⁶		Cohort	China	23 [‡] /NA	83.1±4.8/80.3±3.7	ABL	NR
41 42 ⁰²⁰ 42 43	Winning et a	l ³⁹	Cross-sectional	Sweden	86/740	NA	ABL	GOLD
4 <u>\$4</u> 020 45 46	Zhou <i>et al</i> ⁴⁰		Case-control	China	60/60	63.1±10.1/60.0±9.4	CAL, PLI	GOLD
4 2 021 4 2 021 48	Kataoka <i>et al</i>		Cross-sectional	Japan	464/249	54.1±9.4/NA	PPD	GOLD
49	201	Continuous d	lata are presented as	mean \pm standard c	leviation (SD) unless	otherwise indicated.		
50 51 52	202	*No. COPD s	subjects with frequer	nt exacerbation (\geq	2 exacerbations in the	last year)/Infrequent exac	cerbation (< 2	
53	203	exacerbations	s in the last year).					
54	204	[§] No. COPD s	subjects with events	(hospitalization fo	or exacerbation or CO	PD-related death) in the 5-	-year follow-up	
55	205	visit/COPD s	ubjects without ever	its in the 5-year fo	llow-up visit.			
56 57	206	[‡] No. COPD-r	related mortality in a	follow-up visit m	ore than 5 years.			
57 58	207	ABL, alveola	ar bone loss; BI, ble	eding index; CAL	, clinical attachment	level; FEV ₁ , forced expire	atory volume in 1	
59	208	second; FVC	, forced vital capaci	ty; GB, gingival ł	bleeding; GOLD, Glo	bal Initiative for Chronic	Obstructive Lung	

Disease; NA, not available; OHI, oral health index; PD, periodontal disease; PLI, plaque index; PPD, probing pocket depth. All included articles performed multivariable analyses, in which the risk of COPD, or risk of COPD-related events (AE or mortality), was identified as the dependent variable and PD as the independent variable. Controlling for confounding by smoking included stratification (smokers and never smokers) or covariance adjustment in multivariable models (the degree of control: never smokers > adjusting for smoking intensity [duration and dose] > adjusting for smoking status). The adjustment for confounders of included studies was detailedly presented in online supplemental table 2. 16 articles reported the adjusted ORs and 4 reported adjusted RRs, two studies reporting HRs. Definition of COPD comprised the GOLD criteria,² FEV₁ <65% of predicted volume, having a history of chronic bronchitis and / or emphysema, self-reported and others. Across almost all studies, periodontal examination was conducted by experienced or trained dentists. Periodontal parameters used for diagnosis of PD were CAL, ABL, PPD, gingival bleeding (GB), bleeding index (BI), plaque index (PLI) and oral health index (OHI). The detailed diagnostic criteria applied by included studies were presented in the online supplemental table 3.

228 Assessment of bias

Based on the Newcastle-Ottawa Scale, quality assessment for the 22 studies was shown
in online supplemental table 4. Among them, 18 studies^{15 19-21 28-30 32-42} were rated as
high quality with a total score of ≥6 whereas four studies^{14 16 31 43} as a score of <6,

indicating a high risk of bias. The main reasons for lower scores were selection bias
(representativeness of sample population), especially for control groups and
comparability of cases and control subjects.

Primary outcome

18 studies^{14 15 19 20 28-41} provided data for the risk of COPD in relation to PD. Quantitative analysis demonstrated that after adjusting for smoking status, PD increased the risk of COPD, but only by a ratio of 1.20 (95% CI 1.09 to 1.32, p=0.0002, I²=79%) (figure 2). Further exclusion of any single study did not materially alter the overall pooled OR, with a range from 1.17 (95% CI 1.06-1.28) to 1.28 (95% CI 1.12-1.46). Sensitivity analysis limited to studies with larger sample size $(\geq 500)^{15 \ 19 \ 20 \ 28 \ -30 \ 34 \ -39 \ 41}$ revealed similar results (OR 1.24, 95% CI 1.08 to 1.43, p=0.003, $I^2=82\%$) (online supplemental figure 1). However, significant publication bias was noted by visual inspections of the funnel plot (online supplemental figure 2) and the Egger's test for small study effects (bias coefficient 1.49, 95% CI 0.44 to 2.55, p=0.008).

Subgroup analyses indicated that assessment parameters of PD (p=0.02), study design (p=0.05) and diagnosis of COPD (p=0.05) were the potential main causes of heterogeneity (**table 2**). Moreover, there were several findings in subgroup analyses. First, after further controlling for smoking intensity, PD did not increase the risk of COPD (OR 1.14, 95% CI 0.86 to 1.51, p=0.38, 10 studies^{15 19 20 29-33 35 37}), similar to the subgroup applying a GOLD criterion (OR 1.10, 95% CI 1.00 to 1.22, p=0.06, 12

BMJ Open

253	studies ¹⁵ ¹⁹ ²⁰ ³¹⁻³⁵ ³⁷ ³⁹⁻⁴¹).	Second, amor	ng the parameters	01 01 12, 1 12 2 wi	d PPD, c	only	
254	subgroup using the parame	subgroup using the parameter of ABL showed a significant association between PD and					
255	the risk of COPD (OR 1.	the risk of COPD (OR 1.98, 95% CI 1.32 to 2.97, p=0.001, six studies ^{15 28 29 31 32 39}).					
256	Third, in the three geographical locations (Asia, North America and Europe), only the						
257	subgroup of Europe indicated that PD increased the risk of COPD (OR 2.05, 95% CI						
258	1.07 to 3.95, p=0.03, four	studies ^{31 33 36 3}	³⁹).				
259							
260	Table 2 S	ubgroup analy	vses regarding the	risk of COPD			
Sı	ubgroups	No. Studies	No. Participants	OR value	Р	I ² , %	
			/Cases	(95% CI)	value		
A	djusted for smoking intensity ^a		0,				
	Yes	10	27,246 / 3,556	1.14 (0.86-1.51)	0.38	67	
	No	8	22,158 / 5,478	1.29 (1.13-1.48)	0.0002	75	
A	ssessment of PD						
				1.04 (0.96-1.14)	0.33	75	
	CAL	8	24,600 / 3,058				
	CAL ABL	8 6	24,600 / 3,058 4,629 / 1,530	1.98 (1.32-2.97)	0.001	56	
	CAL ABL PPD	8 6 8	24,600 / 3,058 4,629 / 1,530 19,189 / 3,519	1.98 (1.32-2.97) 1.16 (0.89-1.51)	0.001 0.27	56 63	
G	CAL ABL PPD eographical location	8 6 8	24,600 / 3,058 4,629 / 1,530 19,189 / 3,519	1.98 (1.32-2.97) 1.16 (0.89-1.51)	0.001 0.27	56 63	
G	CAL ABL PPD eographical location Asia	8 6 8 9	24,600 / 3,058 4,629 / 1,530 19,189 / 3,519 18,831 / 3,606	1.98 (1.32-2.97) 1.16 (0.89-1.51) 1.07 (0.99-1.17)	0.001 0.27 0.08	56 63 65	
G	CAL ABL PPD eographical location Asia North America	8 6 8 9 5	24,600 / 3,058 4,629 / 1,530 19,189 / 3,519 18,831 / 3,606 24,033 / 2,420	1.98 (1.32-2.97) 1.16 (0.89-1.51) 1.07 (0.99-1.17) 1.37 (0.93-2.01)	0.001 0.27 0.08 0.11	56 63 65 63	

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
22	
27	
25	
20	
27 20	
20	
29	
3U 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

A	Assessment of COPD						
	GOLD		12	19,879 / 3,774	1.10 (1.00-1.22)	0.06	71
	Non-GOLD		6	29,525 / 5,260	1.35 (1.14-1.61)	0.0007	46
S	tudy design						
	Case-control		8	9,911 / 4,472	1.12 (1.01-1.24)	0.03	86
	Cross-sectional		9	38,593 / 4,540	1.34 (1.08-1.66)	0.007	45
	Cohort		1	878 / 22	3.51 (1.15-10.74)	0.03	-
63 64 65 66	Initiative for Chronic Obstructive Lung Disease; OR, odds ratio; PD, periodontal disease; PPD, probing pocket depth. Bold: subgroups with positive results.						
67	Stratified analy	vses regarding	g smoki	ng status revealed t	hat PD did not inci	rease the r	isk
8	of COPD whethe	r in smokers	(OR 1.4	46, 95% CI 0.92 to	2.31, p=0.11, seve	n studies ¹	5 19
69	^{20 29 31 32 35}) or nev	ver smokers (OR 0.93	3, 95% CI 0.72 to 1	.21, p=0.58, six stu	udies ^{15 19 2}	20 29
70	^{32 35}) (online sup)	plemental fig	gure 3).				
71							
2	Secondary outco	ome					
73	Only four studies	evaluated the	e risk of	COPD-related AE	or mortality. ^{16 21 42}	⁴³ Definit	ion
'4	of AE was acute of	deterioration	in clinic	cal presentations ac	cording to the reco	ommendat	ion
'5	in GOLD guidelin	ne. ^{21 42 43} Pool	ed analy	ysis showed that aft	er adjusting for sm	oking stat	tus,
6	PD did not increa	PD did not increase the risk of COPD-related AE or mortality (OR 1.18, 95% CI 0.71 to					
7	1.97, p=0.52, I ² =3	36%) (figure	3).				

279

DISCUSSION

1

2
2
ر ۲
4
5
6
7
,
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
27
52
33
34
35
26
50
37
38
39
10
40
41
42
43
ΔΔ
45
46
47
48
40
49
50
51
52
52
55
54
55
56
50
5/
58

60

This systematic review and meta-analysis identified 22 observational studies to investigate the association between COPD and PD. The results indicated that, after strictly adjusting for confounding by smoking, PD did not increase the risk of COPD, as well as the risk of COPD-related AE or mortality. Moreover, these findings were consistent across the subgroup and stratified analyses.

285 To the best of our knowledge, this is the first and largest meta-analysis investigating the association of PD with the risk of COPD and its clinical events, with adequately 286 controlling the confounding effect of smoking. Besides, nearly all included articles were 287 adjusted for age, except the study by Scannapieco et al.¹⁴ Prior publications have 288 suggested that PD significantly increased the risk of COPD and COPD-related events. 289 290 However, the majority of studies have non-negligible flaws, such as only performing 291 univariate analyses, not controlling the confounding by smoking, and using parameters with relatively low specificity for determining PD.^{13 24 43} In the present study, to define 292 293 PD as accurately as possible, we preferentially extracted data concerning the parameters 294 of CAL, ABL and PPD rather than PLI, OHI or remaining teeth. CAL, ABL and PPD 295 are clinical measurements reflecting the destruction of periodontal tissues and momentous parameters for diagnosis of PD.^{24 44} Meanwhile, compared with previous 296 297 meta-analyses, we enrolled more studies, applied more rigorous screening criteria and most importantly, revealed opposite results. In the meta-analyses with incomplete 298

adjustment for smoking, OR value for the risk of COPD ranged from 1.28 to 2.08.45-48 However, our findings were similar to studies conducted in never smokers.^{15 19 20 29 32 35} which showed that PD conferred no risk for COPD. Additionally, pooled analyses regarding parameters of CAL, ABL and PPD revealed that PD also did not increase the risk of COPD-related AE or mortality. These findings demonstrate that previously reported correlation between PD and COPD may be results of flawed study design, confounding by smoking and even other factors, such as age and living condition. As a momentous inducer for inflammation-related pathological processes, tobacco is known to correlate with a variety of systemic disorders.⁴⁹ It is also one of the foremost risk factors for both COPD and PD.^{5 10} From the epidemiological perspective, tobacco smoking is a confounder with spuriously inflated effect on the relationship between PD and systemic diseases.⁴⁹ To investigate the true association between PD and COPD, it is of great importance to rigorously control the confounding effect of smoking, which means initiating research in never smokers. However, the majority of former studies failed to do that. After a wide search, only six studies focusing on never smokers were found, which unanimously indicated PD was not related with the risk of COPD. We also observed a decreased intensity of the association between both diseases with the increase of control for smoking. Therefore, it could be too early to make a certain conclusion on the COPD-PD relationship. Although interventional studies revealed that periodontal treatment reduced the risk of AE, a number of problems existed, including small sample size, limited study quality and unclear history of smoking or medication during the

BMJ Open

follow-up.¹⁷¹⁸ For example, compared with control subjects, patients in treatment groups
may reduce smoking intentionally, which could spuriously enhance the positive effect
of periodontal treatment. Consequently, future researches need to take these problems
into account.

It is worth noting that, another possibility that smoking acts as an effect modifier in the COPD-PD relationship should not be ignored. Two observational studies performing stratified analyses concerning smoking status found that the strong correlation of PD with the risk of COPD was restricted to smokers.^{15 20} However, this was not revealed in the present study, thus more investigations in smokers and never smokers respectively are required.

Besides, current evidence has demonstrated several issues to be addressed in future study, comprising inconsistent diagnostic criteria of COPD and PD, the lack of prospective study design and differing adjustments for covariates. These contribute to substantial heterogeneity among studies.^{45 46} The present study indicated the heterogeneity was partly explained by study design, diagnostic criteria of COPD and PD. Significant association concerning PD and risk of COPD was only identified in subgroups lacking well designs, applying non-GOLD criteria or utilizing ABL as the measure of PD. For one thing, this demonstrated that, as sources of bias, observational study design and nonstandard diagnostic method for COPD could induce apparent deviations, confusing the true relationship between COPD and PD. For another, given undetermined diagnostic criteria for PD, discrepancies between ABL and other indexes

cannot fully support the COPD-PD association. Notably, as a radiographic measure,
although ABL has been widely considered to reflect cumulative effects of periodontal
attachment loss over time by chronic inflammation,²⁸ it does not only exist in PD. Nonperiodontal diseases such as liver disorders, cancer and osteoporosis⁵⁰ could also result
in ABL. As mentioned previously,²⁸ the observed correlation between ABL and risk of
COPD may relate to those non-periodontal diseases.

348 Limitations

Several potential limitations should be taken into consideration when interpreting the present results. First, all included studies are observational, which are highly subject to selection bias and confounding by indication. Second, substantial heterogeneity was identified in current study, though we conducted subgroup and stratified analyses to partly explain and reduce it. As stated above, several problems leading to heterogeneity need to be addressed in future researches. Third, the number of studies on risk of COPD-related events was limited, thus the result needs to be carefully understood. Limited number of studies in subgroup and stratified analyses suggested more relevant studies with larger sample size are required. Fourth, although confounding effects of age and smoking were controlled by stratified analysis and statistical adjustment, other potential confounders such as gender, living condition and socioeconomic status¹⁰ could also reduce reliability of the results. Fifth, obvious publication bias was noted in relevant meta-analyses,^{45 46} including the present study. For the purpose of rapid review,²³ we

BMJ Open

only included articles in English. There could exist non-English publications and unpublished evidence, although we searched English-language studies as much as possible. Finally, although smoking status and intensity were considered in subgroup analysis, information regarding tobacco content and chemical composition were not collected. This information is difficult to obtain, especially from self-reported smoking, leaving a residual smoking-related bias. Consequently, it is advisable to explore relationship between COPD and PD in never smokers.

370 CONCLUSION

In summary, this systematic review and meta-analysis suggests that PD is not associated with the risk of COPD and COPD-related events after strict adjustment for smoking, although the positive relationship between COPD and PD was previously reported. Large-scale prospective cohort studies with control of potential confounding factors are warranted to validate the present findings.

377 Abbreviations

ABL: Alveolar bone loss; AE: Acute exacerbation; BI: Bleeding index; CAL: Clinical
attachment level; CI: Confident interval; COPD: Chronic obstructive pulmonary disease;

- 380 GB: Gingival bleeding; GOLD: Global Initiative for Chronic Obstructive Lung Diseases;
- 381 HR: Hazard ratio; OHI: Oral health index; OR: Odds ratio; PD: Periodontal disease; PLI:
- 382 Plaque index; PPD: Probing pocket depth; RR: Relative risk.

383	
384	Contributors LC and LL designed the study. MY and XL screened and selected relevant
385	studies. MY, RP and XL rated the study quality and extracted the data. MY, RP, XL and
386	JP analyzed the data. All authors interpreted the data, and MY, RP, XL, JP drafted the
387	paper. LC and LL critically revised the paper. All authors acknowledged and agreed with
388	the format and content of the paper before submission for publication. LC and LL are
389	the guarantors and responsible for the overall contents of this study.
390	
391	Funding This study was supported in part by grant 2016YFC0901100 from the National
392	Key Research and Development Program of China.
393	
394	Competing interests None declared.
395	
396	Patient and public involvement No patients or other individuals are involved in the
397	design, conduct, reporting or dissemination of this research.
398	
399	Patient consent for publication Not applicable.
400	
401	Ethics approval Not applicable.
402	
403	Data availability statement All data relevant to the study are included in the article or
	21

1 ว			
3			
4			
5	404	upload	ed as supplementary information.
7			
8	405		
9 10			
10	406	ORCI	D iD
12			
13	407	Lei Ch	en https://orcid.org/0000-0003-3476-0035
14 15			
16	408		
17			
18 10	409	REF	ERENCES
20	410	1.	World Health Organization. The top 10 causes of death. 2020. Available:
21	411		https://www.who.int/news-room/fact-sheets/detail/the-ton-10-causes-of-death (accessed 25
22	412		February 2023)
23 24	413	2	Global Initiative for Chronic Obstructive Lung Disease Global strategy for the diagnosis
25	414	4.	management and prevention of chronic obstructive pulmonary disease (2023 report)
26	- 1- 115		Available: https://goldcond.org/2023.gold.report 2/ (accessed 25 February 2023)
27	416	2	Negawa NA, Gibson BG, MaDanald VM, COBD and its comprisidities: Impact
28 29	410	5.	megewo NA, Oloson FG, McDonald VM. COFD and its comorbidities. Impact,
30	417	4	Ten L. Tene V. Den C. et al. Deletienship energy clinical neric dental mienshiple cie
31	410	4.	Tan L, Tang X, Pan C, <i>et al.</i> Relationship among clinical periodontal, microbiologic
32	419		parameters and lung function in participants with chronic obstructive pulmonary disease. J
33 34	420	-	Periodontol 2019;90:134-140.
35	421	5.	Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet
36	422	-	2005;366:1809-1820.
37	423	6.	Kassebaum NJ, Bernabé E, Dahiya M, <i>et al.</i> Global burden of severe periodontitis in 1990-
30 39	424	_	2010: a systematic review and meta-regression. J Dent Res 2014;93:1045-1053.
40	425	7.	Sczepanik FSC, Grossi ML, Casati M, et al. Periodontitis is an inflammatory disease of
41	426		oxidative stress: We should treat it that way. <i>Periodontol 2000</i> 2020;84:45-68.
42 43	427	8.	Usher AK, Stockley RA. The link between chronic periodontitis and COPD: a common
44	428		role for the neutrophil? <i>BMC Med</i> 2013;11:241.
45	429	9.	Dong J, Li W, Wang Q, et al. Relationships Between Oral Microecosystem and
46	430		Respiratory Diseases. Front Mol Biosci 2021;8:718222.
47 48	431	10.	Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontol 2000
49	432		2013;62:59-94.
50	433	11.	Sapey E, Yonel Z, Edgar R, et al. The clinical and inflammatory relationships between
51 52	434		periodontitis and chronic obstructive pulmonary disease. J Clin Periodontol 2020;47:1040-
52 53	435		1052.
54	436	12.	Scannapieco FA. Role of oral bacteria in respiratory infection. J Periodontol 1999;70:793-
55	437		802.
56 57	438	13.	Kelly N, Winning L, Irwin C, et al. Periodontal status and chronic obstructive pulmonary
58	439		disease (COPD) exacerbations: a systematic review. BMC Oral Health 2021;21:425.
59	440	14.	Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral conditions
60			22

3			
4	441		and respiratory disease in a national sample survey population. Ann Periodontol
5 6	442		1998;3:251-256.
7	443	15.	Si Y, Fan H, Song Y, et al. Association between periodontitis and chronic obstructive
8	444		pulmonary disease in a Chinese population. J Periodontol 2012;83:1288-1296.
9	445	16.	Qian Y, Yuan W, Mei N, <i>et al.</i> Periodontitis increases the risk of respiratory disease
10	446		mortality in older patients. Exp Gerontol 2020:133:110878.
12	447	17.	Zhou X. Han J. Liu Z. et al. Effects of periodontal treatment on lung function and
13	448		exacerbation frequency in patients with chronic obstructive pulmonary disease and chronic
14 15	449		periodontitis: a 2-year pilot randomized controlled trial <i>J Clin Periodontol</i> 2014:41:564-
15	450		572
17	451	18	Kucukcoskun M Baser II. Oztekin G <i>et al.</i> Initial periodontal treatment for prevention of
18	152	10.	chronic obstructive nulmonary disease exacerbations. <i>L Pariodontal</i> 2013:84:863-870
19 20	452 153	10	Wang 7. Zhou Y. Zhang I. <i>et al.</i> Periodontal health oral health behaviours and chronic
21	450	1).	abstructive pulmonory disease. <i>I Clin Periodontal</i> 2000:36:750-755
22	454	20	Hyman II. Baid PC. Cigaratta smaking, pariodontal disease: and abrania abstructiva
23	455	20.	nyman JJ, Keld BC. Cigarette smoking, periodonial disease, and chrome obstructive
24 25	450	21	Pumionary disease. J Feriodomoi 2004, 75.9-15.
26	407	21.	Barlos SP, Suruki R, Loewy ZG, <i>et al.</i> A conort study of the impact of tooth loss and
27	400		periodontal disease on respiratory events among COPD subjects: modulatory role of
28	459	22	systemic biomarkers of inflammation. PLoS One 2013;8:e68592.
30	460	22.	Moher D, Shamseer L, Clarke M, <i>et al.</i> Preferred reporting items for systematic review and
31	461	•••	meta-analysis protocols (PRISMA-P) 2015 statement. <i>Syst Rev</i> 2015;4:1.
32	462	23.	Nussbaumer-Streit B, Klerings I, Dobrescu AI, et al. Excluding non-English publications
33 34	463		from evidence-syntheses did not change conclusions: a meta-epidemiological study. J Clin
35	464		<i>Epidemiol</i> 2020;118:42-54.
36	465	24.	Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers
37	466		2017;3:17038.
38 39	467	25.	Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the
40	468		quality of nonrandomised studies in meta-analyses, 2021. Available:
41	469		http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed 25 February
42	470		2023).
43 44	471	26.	Farook FF, Alodwene H, Alharbi R, et al. Reliability assessment between clinical
45	472		attachment loss and alveolar bone level in dental radiographs. Clin Exp Dent Res
46	473		2020;6:596-601.
47 49	474	27.	Lin L. Bias caused by sampling error in meta-analysis with small sample sizes. PLoS One
40	475		2018;13:e0204056.
50	476	28.	Hayes C, Sparrow D, Cohen M, et al. The association between alveolar bone loss and
51	477		pulmonary function: the VA Dental Longitudinal Study. Ann Periodontol 1998;3:257-261.
52 53	478	29.	Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between periodontal
54	479		disease and chronic obstructive pulmonary disease. Ann Periodontol 2001;6:71-77.
55	480	30.	Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and
56 57	481		periodontal disease: analysis of National Health and Nutrition Examination Survey III. J
57 58	482		Periodontol 2001;72:50-56.
59	483	31.	Leuckfeld I, Obregon-Whittle MV, Lund MB, et al. Severe chronic obstructive pulmonary
60		-	, , , , , , , , , , , , , , , , , , ,

BMJ Open

3 4			
4 5	484		disease: association with marginal bone loss in periodontitis. Respir Med 2008;102:488-
6	485		494.
7	486	32.	Zhou X, Han J, Song Y, et al. Serum levels of 25-hydroxyvitamin D, oral health and
8	487		chronic obstructive pulmonary disease. J Clin Periodontol 2012;39:350-356.
ی 10	488	33.	Ledić K, Marinković S, Puhar I, et al. Periodontal disease increases risk for chronic
11	489		obstructive pulmonary disease. Coll Antropol 2013;37:937-942.
12	490	34.	Chung JH, Hwang HJ, Kim SH, et al. Associations Between Periodontitis and Chronic
13 14	491		Obstructive Pulmonary Disease: The 2010 to 2012 Korean National Health and Nutrition
15	492		Examination Survey. J Periodontol 2016;87:864-871.
16	493	35.	Harland J, Furuta M, Takeuchi K, et al. Periodontitis modifies the association between
17	494		smoking and chronic obstructive pulmonary disease in Japanese men. J Oral Sci
18 19	495		2018:60:226-231.
20	496	36.	Lopez-de-Andrés A. Vazquez-Vazquez L. Martinez-Huedo MA. et al. Is COPD associated
21	497		with periodontal disease? A population-based study in Spain Int J Chron Obstruct Pulmon
22	498		Dis 2018:13:3435-3445
23 24	499	37	Takeuchi K. Matsumoto K. Furuta M. <i>et al.</i> Periodontitis Is Associated with Chronic
25	500	57.	Obstructive Pulmonary Disease I Dant Res 2019:08:534-540
26	501	38	Jung FS Lee KH Choi XX Association between oral health status and chronic obstructive
27	507	50.	pulmonary disease in Korean adults Int Dant 12020:70:208 213
28 29	502	20	Winning L. Polyzois I. Sonmortin Porglund L. <i>et al.</i> Periodontitis and sinflow limitation in
30	503	39.	alder Swedish in dividuala. <i>J. Clin. Devis dental</i> 2020;47:715,725
31	504	40	older Swedish individuals. J Clin Periodoniol 2020,47,713-725.
32	505	40.	Zhou X, wang J, Liu W, <i>et al.</i> Periodontal Status and Microbiologic Pathogens in Patients
33 34	506		with Chronic Obstructive Pulmonary Disease and Periodontitis: A Case-Control Study. Int
35	507		J Chron Obstruct Pulmon Dis 2020;15:20/1-20/9.
36	508	41.	Kataoka S, Kimura M, Yamaguchi T, <i>et al.</i> A cross-sectional study of relationships
37	509		between periodontal disease and general health: The Hitachi Oral Healthcare Survey. BMC
30 39	510		<i>Oral Health</i> 2021;21:644.
40	511	42.	Liu Z, Zhang W, Zhang J, et al. Oral hygiene, periodontal health and chronic obstructive
41	512		pulmonary disease exacerbations. J Clin Periodontol 2012;39:45-52.
42 42	513	43.	Abdelhalim H, Aboelnaga H, Aggour R. Chronic obstructive pulmonary disease
43 44	514		exacerbations and periodontitis: a possible association. Egyptian Journal of Bronchology
45	515		2018;12.
46	516	44.	Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: Consensus report of workgroup 2
47 48	517		of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant
48 49	518		Diseases and Conditions. J Clin Periodontol 2018;45 Suppl 20:S162-s170.
50	519	45.	Zeng XT, Tu ML, Liu DY, et al. Periodontal disease and risk of chronic obstructive
51	520		pulmonary disease: a meta-analysis of observational studies. PLoS One 2012;7:e46508.
52 53	521	46.	Gomes-Filho IS, Cruz SSD, Trindade SC, et al. Periodontitis and respiratory diseases: A
55	522		systematic review with meta-analysis. Oral Dis 2020;26:439-446.
55	523	47.	Wu Z, Xiao C, Chen F, et al. Pulmonary disease and periodontal health: a meta-analysis.
56	524		Sleep Breath 2022.
57 58	525	48.	Molina A, Huck O, Herrera D, et al. The association between respiratory diseases and
59	526		periodontitis: A systematic review and meta-analysis. J Clin Periodontol 2023.
60			

Hujoel PP, Drangsholt M, Spiekerman C, et al. Periodontitis-systemic disease associations

in the presence of smoking--causal or coincidental? Periodontol 2000 2002;30:51-60.

Intini G, Katsuragi Y, Kirkwood KL, et al. Alveolar bone loss: mechanisms, potential

therapeutic targets, and interventions. Adv Dent Res 2014;26:38-46.

1 2 2	
3 4	507
5	527
6 7	529
8	020
9 10	530
11 12	531
13 14 15	532
16 17 18	533
19 20 21	534
21 22 23	535
24 25 26	536
20 27 28	537
29 30 31	538
32 33	539
34 35 36	540
37 38	541
39 40 41	542
42 43 44	543
45 46	544
47 48 49	545
50 51	546
52 53 54	547
55 56 57	548
58 59	549
00	

49.

50.

to peer teriew only **Figure legends** Figure 1 PRISMA flow diagram of study selection.

549 Figure 2 Forest plot of the risk of COPD by periodontal disease, subgroup analysis based

r	
2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
10	
11	
12	
13	
1/	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
40	
41	
42	
43	
11	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	
~~	

on adjusted by smoking status and intensity versus by smoking status only. Values more 550

- than one indicate a higher risk in patients with periodontal disease. 551
- Figure 3 Forest plot of the risk of COPD-related events by periodontal disease. Values 552
- 553 more than one indicate a higher risk in patients with periodontal disease.

e a highe.

PRISMA 2009 Flow Diagram

Figure 1 PRISMA flow diagram of study selection.

215x279mm (200 x 200 DPI)

1	
1	
r	
Z	
3	
4	
4	
5	
~	
6	
7	
,	
8	
9	
10	
10	
11	
10	
12	
13	
11	
14	
15	
16	
10	
17	
18	
10	
19	
20	
20	
21	
22	
~~	
23	
24	
2.	
25	
26	
27	
27	
28	
20	
29	
30	
21	
31	
31 32	
31 32 33	•
31 32 33	
31 32 33 34	
31 32 33 34 35	
31 32 33 34 35	
31 32 33 34 35 36	
31 32 33 34 35 36 37	
31 32 33 34 35 36 37 28	
31 32 33 34 35 36 37 38	
31 32 33 34 35 36 37 38 39	
31 32 33 34 35 36 37 38 39 40	
31 32 33 34 35 36 37 38 39 40	
31 32 33 34 35 36 37 38 39 40 41	
31 32 33 34 35 36 37 38 39 40 41 42	
31 32 33 34 35 36 37 38 39 40 41 42	
31 32 33 34 35 36 37 38 39 40 41 42 43	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 5	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 3 54 55 56 57 58	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.1.1 Adjusted for smoking in	ntensity				
2001 Garcia et al	0.174	0.2635	2.9%	1.19 [0.71, 1.99]	
2001 Scannapieco et al	0.3716	0.1795	5.3%	1.45 [1.02, 2.06]	
2004 Hyman et al	-0.5108	0.3537	1.7%	0.60 [0.30, 1.20]	
2008 Leuckfeld et al	2.3026	1.1617	0.2%	10.00 [1.03, 97.46]	
2009 Wang et al	0	0.0051	18.1%	1.00 [0.99, 1.01]	†
2012 Si et al	-1.6607	0.6196	0.6%	0.19 [0.06, 0.64]	
2012 Zhou et al	0.1222	0.2091	4.2%	1.13 [0.75, 1.70]	
2013 Ledić et al	1.1458	0.581	0.7%	3.14 [1.01, 9.82]	
2018 Harland et al	-0.0305	0.3484	1.8%	0.97 [0.49, 1.92]	
2019 Takeuchi et al	1.2556	0.5706	0.7%	3.51 [1.15, 10.74]	
Subtotal (95% CI)			36.2%	1.14 [0.86, 1.51]	
A A O Material Service and Ser					
1.1.2 Not adjusted for smoking	ng intensity				
1.1.2 Not adjusted for smokin 1998 Hayes et al	ng intensity 0.5878	0.1676	5.8%	1.80 [1.30, 2.50]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al	ng intensity 0.5878 1.5041	0.1676	5.8% 0.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female	ng intensity 0.5878 1.5041 0.7747	0.1676 0.7346 0.7195	5.8% 0.4% 0.5%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male	ng intensity 0.5878 1.5041 0.7747 0.207	0.1676 0.7346 0.7195 0.1213	5.8% 0.4% 0.5% 8.6%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906	0.1676 0.7346 0.7195 0.1213 0.0394	5.8% 0.4% 0.5% 8.6% 16.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565	5.8% 0.4% 0.5% 8.6% 16.2% 6.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.2021	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Vinning et al 2020 Zhou et al 2021 Kataoka et al	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.20 [1.42, 1.48]	
1.1.2 Not adjusted for smokin 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI)	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Winning et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Ch	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 hi ² = 31.73, df = 8 ((0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 01); l ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2018 Lopez-de-Andrés et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Ch Test for overall effect: Z = 3.72	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 hi ² = 31.73, df = 8 (i (P = 0.0002)	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 001); I ² = 75	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48]	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al male 2020 Jung et al 2020 Jung et al 2020 Winning et al 2020 Winning et al 2020 Winning et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI)	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 hi ² = 31.73, df = 8 (i (P = 0.0002)	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.4% 2.2% 17.4% 6.3% 63.8% 01); ² = 7! 100.0%	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] 5%	
1.1.2 Not adjusted for smokii 1998 Hayes et al 1998 Scannapieco et al 2016 Chung et al female 2016 Chung et al male 2016 Chung et al 2020 Jung et al 2020 Jung et al 2020 Zhou et al 2020 Zhou et al 2021 Kataoka et al Subtotal (95% CI) Heterogeneity: Tau ² = 0.02; Cf Total (95% CI) Heterogeneity: Tau ² = 0.01; Cf	ng intensity 0.5878 1.5041 0.7747 0.207 0.1906 0.1947 0.8372 0.0488 0.3221 $hi^2 = 31.73, df = 8 (f$ (P = 0.0002)	0.1676 0.7346 0.7195 0.1213 0.0394 0.1565 0.3074 0.0237 0.1578 P = 0.000	5.8% 0.4% 0.5% 8.6% 16.2% 6.2% 6.3% 63.8% 01); l ² = 7; 100.0% 0001); l ² =	1.80 [1.30, 2.50] 4.50 [1.07, 18.99] 2.17 [0.53, 8.89] 1.23 [0.97, 1.56] 1.21 [1.12, 1.31] 1.21 [0.89, 1.65] 2.31 [1.26, 4.22] 1.05 [1.00, 1.10] 1.38 [1.01, 1.88] 1.29 [1.13, 1.48] 5%	

Figure 2 Forest plot of the risk of COPD by periodontal disease, subgroup analysis based on adjusted by smoking status and intensity versus by smoking status only. Values more than one indicate a higher risk in patients with periodontal disease.

536x384mm (118 x 118 DPI)

1		
2		
3		
4		
5		
6	Odds Ratio Odds Ratio	
7	Study or Subgroup log[Odds Ratio] SE Weight IV, Random, 95% Cl IV, Random, 95% Cl	
8	2012 Liu et al -0.2877 0.2923 37.8% 0.75 [0.42, 1.33]	
9	2018 AbdelHalim et al -0.734 2.1326 1.5% 0.48 [0.01, 31.37]	
10	2020 Qian et al 0.9203 0.5475 17.2% 2.51 [0.86, 7.34]	
11	Total (95% CI) 100.0% 1.18 [0.71, 1.97]	
12	Heterogeneity: Tau ² = 0.09; Chi ² = 4.72, df = 3 (P = 0.19); l ² = 36% Text for every leffect 7 = 0.64 (P = 0.52)	
13	Test for overall effect. $Z = 0.04$ (F = 0.32)	
14		
15	Figure 3 Forest plot of the risk of COPD-related events by periodontal disease. Values more than or	ıe
16	indicate a higher risk in patients with periodontal disease.	
17	497v118mm (118 v 118 DPI)	
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
30		
30		
39		
40		
41		
42		
45		
44 45		
45		
40		
4/		
48		
49		
50		
51		
J∠ E2		
55		
54 55		
55		
50 57		
5/		
58		
59	For noor rovious only, http://bmionon.hmi.com/rite/ahout/ruidalines.yhtml	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntml	

4 5

6 7

8

9 10

11

12 13

14

15 16

17

18 19

20

21 22

23

24 25

26

27 28

29

30 31

32

33 34

35

36 37

38

39 40

41

42 43

44

45 46

47

48 49

50

51 52

53

54 55

56

57 58

59

60

Table 1 Search strategy

Database 1: PubMed

(("oral health"[MeSH Terms] OR ("oral"[All Fields] AND "health"[All Fields]) OR "oral health" [All Fields] OR ("periodontal diseases" [MeSH Terms] OR ("periodontal" [All Fields] AND "diseases" [All Fields]) OR "periodontal diseases"[All Fields] OR ("periodontal"[All Fields] AND "disease"[All Fields]) OR "periodontal disease" [All Fields]) OR (("periodontal" [All Fields] OR "periodontally" [All Fields] OR "periodontically" [All Fields] OR "periodontics" [MeSH Terms] OR "periodontics" [All Fields] OR "periodontic" [All Fields] OR "periodontitis" [MeSH Terms] OR "periodontitis" [All Fields] OR "periodontitides" [All Fields]) AND ("health" [MeSH Terms] OR "health" [All Fields] OR "health s"[All Fields] OR "healthful"[All Fields] OR "healthfulness" [All Fields] OR "healths" [All Fields])) OR ("periodontal" [All Fields] OR "periodontally" [All Fields] OR "periodontically" [All Fields] OR "periodontics" [MeSH Terms] OR "periodontics" [All Fields] OR "periodontic" [All Fields] OR "periodontitis" [MeSH Terms] OR "periodontitis" [All Fields] OR "periodontitides"[All Fields]) OR (("ambulatory care facilities"[MeSH Terms] OR ("ambulatory" [All Fields] AND "care" [All Fields] AND "facilities" [All Fields]) OR "ambulatory care facilities" [All Fields] OR "clinic" [All Fields] OR "clinic s" [All Fields] OR "clinical" [All Fields] OR "clinically" [All Fields] OR "clinicals" [All Fields] OR "clinics"[All Fields]) AND ("attach"[All Fields] OR "attachable"[All Fields] OR "attached" [All Fields] OR "attachement" [All Fields] OR "attaches" [All Fields] OR "attaching" [All Fields] OR "attachment" [All Fields] OR "attachments" [All Fields]) AND ("level" [All Fields] OR "levels" [All Fields])) OR ("alveolar bone loss"[MeSH Terms] OR ("alveolar"[All Fields] AND "bone"[All Fields] AND "loss" [All Fields]) OR "alveolar bone loss" [All Fields]) OR (("probe"[All Fields] OR "probe s"[All Fields] OR "probed"[All Fields] OR "probes" [All Fields] OR "probing" [All Fields] OR "probings" [All Fields]) AND ("depth"[All Fields] OR "depths"[All Fields]))) AND ("respiratory tract diseases"[MeSH Terms] OR ("respiratory"[All Fields] AND "tract"[All Fields] AND "diseases" [All Fields]) OR "respiratory tract diseases" [All Fields] OR ("respiratory" [All Fields] AND "disease" [All Fields]) OR "respiratory disease" [All Fields] OR "respiration disorders" [MeSH Terms] OR ("respiration" [All Fields] AND "disorders" [All Fields]) OR "respiration disorders" [All Fields] OR ("respiratory" [All Fields] AND "disease" [All Fields]) OR ("pulmonary disease, chronic obstructive" [MeSH Terms] OR ("pulmonary" [All Fields] AND "disease"[All Fields] AND "chronic"[All Fields] AND "obstructive"[All Fields]) OR "chronic obstructive pulmonary disease" [All Fields] OR ("chronic" [All Fields]

AND "obstructive" [All Fields] AND "pulmonary" [All Fields] AND "disease" [All Fields])) OR (("lung" [MeSH Terms] OR "lung" [All Fields] OR "pulmonary" [All Fields]) AND ("functional" [All Fields] OR "functional s" [All Fields] OR "functionalities" [All Fields] OR "functionality" [All Fields] OR "functionalization" [All Fields] OR "functionalizations" [All Fields] OR "functionalize" [All Fields] OR "functionalized" [All Fields] OR "functionals" [All Fields] OR "functioned" [All Fields] OR "functioning" [All Fields] OR "functionings" [All Fields] OR "functions" [All Fields] OR "functioning" [All Fields] OR "functionings" [All Fields] OR "functions" [All Fields] OR "physiology" [MeSH Subheading] OR "physiology" [All Fields] OR "function" [All Fields] OR "physiology" [MeSH Terms])) OR (("airflow" [All Fields] OR "airflows" [All Fields]) AND ("limit" [All Fields] OR "limitation" [All Fields] OR "limitations" [All Fields] OR "limited" [All Fields] OR "limitation" [All Fields] OR "limitations" [All Fields] OR "limited" [All Fields] OR "limiting" [All Fields] OR "limitations" [All Fields] OR "limited" [All Fields] OR "limiting" [All Fields] OR "limitations" [All Fields] OR "limited" [All Fields] OR "limiting" [All Fields] OR "limits" [All Fields] OR "limited" [All Fields] OR "limiting" [All Fields] OR "limits" [All Fields] ON (english [Filter])

Database 2: Ovid EMBASE

Sequence	Query
1	((Oral health) OR (periodontal disease) OR (periodontal health) OR
	(periodontitis) OR (clinical attachment level) OR (alveolar bone loss)
	OR (probing depth)) AND ((Respiratory disease) OR (chronic
	obstructive pulmonary disease) OR (pulmonary function) OR (airflow
	limitation)) {Including Related Terms}
2	limit 1 to (full text and human and english language)
3	limit 1 to english language

Database 3: Ovid Cochrane Central Register of Controlled Trials

Sequence	Query
1	((Oral health) OR (periodontal disease) OR (periodontal health) OR
	(periodontitis) OR (clinical attachment level) OR (alveolar bone loss) OR
	(probing depth)) AND ((Respiratory disease) OR (chronic obstructive
	pulmonary disease) OR (pulmonary function) OR (airflow limitation))
	{Including Related Terms}
2	limit 1 to english language

Study Author	Covariates in logistic regression multivariable model
Hayes <i>et al</i> ¹	Age, smoking, education, height
Scannapieco <i>et al</i> ²	Smoking
Garcia <i>et al</i> ³	Age, height, alcohol, education (with stratified analysis on smoking
Leuckfeld <i>et al</i> ⁴	Age, female gender, pack years of smoking
Liu <i>et al⁵</i>	Age, gender, BMI and smoking
Wang <i>et al</i> ⁶	Age, gender, BMI (with stratified analysis on smoking)
Si <i>et al</i> ⁷	Age, gender, occupation, educational level (with stratified analysis of
	smoking)
Zhou <i>et al⁸</i>	Age, gender, smoking, BMI, season (with stratified analysis on
	smoking)
Ledić <i>et al⁹</i>	Age, gender, pack years of smoking, BMI
Lopez-de-Andrés et al ¹⁰	Age, gender, smoking, educational level, DM, obesity
Zhou <i>et al</i> ¹¹	Age, gender, smoking, BMI
Kataoka <i>et al</i> ¹²	Age, smoking
Qian <i>et al</i> ¹³	Age, sex, education levels, BMI, smoking, drinking, hypertension, DI
Barros <i>et al</i> ¹⁴	Age, gender, Race, BMI, education, pack years of smoking,
	hypertension
Scannapieco et al ¹⁵	Age, gender, pack years of smoking, Race, education, income, denta
	visits, alcohol, DM
Hyman <i>et al</i> ¹⁶	Age, gender, Race, history of hypertension and heart attack, dental vi
	within 1 year, BMI, family income (with stratified analysis on
	smoking)
Chung <i>et al</i> ¹⁷	Age, smoking, family income, education, alcohol, exercise, BMI, too
	brushing frequency, DM, number of natural teeth
Harland <i>et al</i> ¹⁸	Age, number of present teeth, BMI, alcohol consumption, occupation
	hypertension, DM (with stratified analysis on smoking)
Takeuchi et al ¹⁹	Age, gender, pack years of smoking, occupation, DM, BMI, physica
	activity, alcohol intake, number of present teeth

Jung <i>et al</i> ²⁰	Age, gender, smoking, educational level, household income, alcohol
	consumption, periodontal status, number of missing teeth, oral health
	factors
Winning <i>et al</i> ²¹	Age, gender, smoking, height, BMI, exercise, DM, hypertension, MI,
	education level, living condition
AbdelHalim <i>et al</i> ²²	Age, BMI, low-level of education, pack years of smoking, MRC,
	CAT, hospitalizations, COPD category (C-D), FVC (% predicted),
	FEV1 (% predicted), FEV1 / FVC (% predicted), MMEF (%
	predicted), PEF (% predicted), CRP

BMI, body mass index; CAT, chronic obstructive pulmonary disease assessment test; CRP, C-reactive protein; DM, diabetes mellitus; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; MI, myocardial infarction; MMEF, maximum mid-expiratory flow; MRC, Medical Research Council; PEF, peak expiratory flow.

Bold: the covariate of smoking intensity (duration and dose) or stratified analyses on smoking status.

Study Author	Diagnostic parameter/criteria	Measurement/Calculation
Hayes <i>et al</i> ¹	Worst alveolar bone loss	Worst ABL quintile had mean whole-mouth ABL
	(ABL) quintile vs all others	scores of 20% or greater, i.e., an average of 20%
		more ABL for each mesial and distal site measure
Scannapieco et al ²	Simplified oral hygiene	Calculated by adding together the simplified deb
	index=6	index and the simplified calculus index scores.
Garcia <i>et al³</i>	ABL	Periodontitis measure is mean, whole mouth,
		radiographic alveolar bone loss used as a
		continuous variable, with each unit of ABL
		representing 20% increments of bone loss.
Scannapieco et al ¹⁵	Mean attachment loss (AL)≥	AL was obtained by subtracting the distance from
1	3mm	the free gingival margin (FGM) to the
		cemento-enamel junction (CEJ) of each tooth, fro
		the distance from the FGM to the bottom of the
		sulcus.
Hyman <i>et al¹⁶</i>	Mean AL≥4mm	AL was calculated based on the probe distance in
		millimeters from the FGM to the CEJ and the bas
		of the sulcus.
Leuckfeld <i>et al</i> ⁴	Mean marginal bone level≥	The marginal bone level distance was measured
	4mm	from the CEJ to the alveolar bone crest, at the me
		and distal aspects of approximal tooth sites, and
		rounded off to the nearest 0.1mm.
Wang <i>et al</i> ⁶	Clinical attachment level	Probing depth + CEJ = CAL; probing depth and
6	(CAL)≥4mm	were measured with a Williams periodontal prob
		six sites of all teeth (excluding third molars) and
		recorded in millimetres.
Liu <i>et al⁵</i>	CAL>4mm	Consistent with the study by Wang et al ⁶ .
Si <i>et al</i> ⁷	Probing depth≥5mm and	The two indices were recorded on six
	CAL≥4mm	sites of each tooth.
Zhou <i>et al⁸</i>	CAL	Consistent with the study by Wang <i>et al</i> ⁶ .
Barros <i>et al</i> ¹⁴	≥2 interproximal sites with	Using the consensus definitions published by the
	CAL≥6mm (not on same	joint Center for Disease Control/American
	tooth) and≥1 interproximal	Association of Periodontology working group.
	site with probing depth≥5mm	
Ledić <i>et al⁹</i>	CAL≥4mm at at least 60% of	CAL was determined as the distance from the CE
Louis ci ui		

		was recorded on the nearest milimeter by one
		calibrated examiner on six places per tooth
		(mesiobuccally, buccally, distobuccally,
		mesiolingually, lingually and distolingually).
Chung <i>et al</i> ¹⁷	Community periodontal index	WHO criteria (Oral health surveys: basic methods-
	(CPI) >5.5mm pocket (deep	5th edition).
	periodontal pocket)	
AbdelHalim <i>et al</i> ²²	CAL≥5mm	Calculations of CAL were done by summation of
		probing pocket depth (PPD) and recession value.
		Periodontal examination was performed on all
		existing teeth (excluding the third molar teeth).
Harland <i>et al</i> ¹⁸	CPI score ≥3 (at least one	WHO criteria.
	sextant with a pocket depth ≥4	
	mm)	
Lopez-de-Andrés	Teeth bleeding spontaneously	Questionnaire investigation.
at all0	or while brushing, or/and	
ei ui	teeth moving	
Takeuchi et al ¹⁹	Severe periodontitis (2 or	According to the suggested Centers for Disease
	more interproximal sites with	Control and American Academy of Periodontology
	≥6mm CAL [not on same	case definitions for periodontitis surveillance.
	tooth] and 1 or more	
	interproximal sites with ≥5mm	
	PPD)	
Jung <i>et al</i> ²⁰	CPI=3-4 (periodontal pockets	The central incisor, first and second molars were
	≥4mm)	selected as index teeth, and the highest score
		adopted as the participant's final CPI score.
Qian <i>et al</i> ¹³	Proportion of remaining bone	Measurements of ABL were made from the CEJ to
	height of the teeth (calculated	the tooth apex (total root length) and from the
	from total root length and	marginal bone crest to the tooth apex (total bone
	total bone height)	height).
Winning <i>et al</i> ²¹	A distance between the	The extent of ABL was measured at the mesial and
-	alveolar bone level and CEJ	distal aspects of all teeth excluding third molars.
	based on a threshold of ≥4mm	
	found at ≥30% of teeth.	
Zhou <i>et al</i> ¹¹	CAL≥5mm	Consistent with the study by Wang <i>et al</i> ⁶
Kataoka <i>et al</i> ¹²	PPD ≥4mm	The PPD was measured at the disto-, mid-, and
		mesio-buccal, as well as the disto-, mid-, and
		mesio-lingual buccal surfaces of all the teeth.

1 2									
3									
4 5	T-1-1- 4 () !!4			N	4 C L			
6	Table 4	Luanty asses	sment base	ea on the l	Newcastle-Ot	tawa Scale			
7 8	(A) Coh	ort study							
9		Select	tion				Outcome		fotal
11 Study	Exposed	Nonexposed	Ascertainmen	t Outcom	e	Assessment	Length of A	Adequacy	core
12 13 Author	cohort	cohort	of exposure	of interes	st Comparabili	ty of outcome	follow-up	of	
14							1	follow-up	
15 16 arros <i>et al</i> ¹⁴	*	*	*			*	*	*	6
17 17 18 18	*	*	*	*		*	*	*	7
1Qian <i>et al</i> ¹³		*	*			*	*		4
20		C	4		I				
22	(B) Case	e-control / cr	oss-section	al study					
23 24		Select	ion				Outcome		Total
25	Case	Representati-	Control	Control		Ascertainment	Same method o	f Non-	score
20 27 Study Author	definition	-veness of the	selection	definition	Comparability	of exposure	ascertainment	-response	
28 29		cases					for cases and	rate	
30							controls		
$3_{\text{Hayes}}^{2} et al^{1}$	*		*	*	*	*	*	*	7
3S cannapieco <i>et al</i> ²		*	*	*		*	*		5
3 Garcia <i>et al</i> ³ 35	*		*	*	*	*	*	*	7
$_{38}$ cannapieco <i>et al</i> ^{1.}	5	*	*	*		*	*	*	6
$\frac{37}{4}$ Myman <i>et al</i> ¹⁶	*	*	*	*		*	*	*	7
3beuckfeld <i>et al</i> ⁴	*			*		*	*	*	5
4 Wang <i>et al</i> ⁶ 41	*	*		*	*	*	*	*	7
4 ⁵ ^{iu} et al ⁵	*	*		*	*	*	*	*	7
$43_{i} et al^7$	*	*		*	*	*	*	*	7
$4\frac{2}{5}$ hou <i>et al</i> ⁸	*	*		*	*	*	*	*	7
$4 \underline{6}_{edic} et al^9$	*	*		*	*	*	*	*	7
$48^{\text{hung}} et al^{17}$	*	*	*	*		*	*	*	7
4AbdelHalim <i>et al</i> ²²	*			*		*	*	*	5
5日 5 Harland <i>et al</i> ¹⁸	*	*		*		*	*	*	6
52 opez-de-Andrés		*	*	*	*		*	*	6
55 $5^{a}t^{a}l^{10}$									
$55_{ung} et al^{20}$		*	*	*		*	*	*	6
5 Winning <i>et al</i> ²¹	*	*	*	*		*	*	*	7
$5\mathfrak{B}_{\text{hou }et} al^{11}$	*	*			**	*	*	*	7
60^{59}	*	*	*	*		*	*	*	7

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1998 Hayes et al	0.5878	0.1676	8.9%	1.80 [1.30, 2.50]	
2001 Garcia et al	0.174	0.2635	5.3%	1.19 [0.71, 1.99]	
2001 Scannapieco et al	0.3716	0.1795	8.3%	1.45 [1.02, 2.06]	
2004 Hyman et al	-0.5108	0.3537	3.4%	0.60 [0.30, 1.20]	
2009 Wang et al	0	0.0051	16.6%	1.00 [0.99, 1.01]	• •
2012 Si et al	-1.6607	0.6196	1.3%	0.19 [0.06, 0.64]	
2016 Chung et al female	0.7747	0.7195	1.0%	2.17 [0.53, 8.89]	
2016 Chung et al male	0.207	0.1213	11.4%	1.23 [0.97, 1.56]	
2018 Harland et al	-0.0305	0.3484	3.5%	0.97 [0.49, 1.92]	
2018 Lopez-de-Andrés et al	0.1906	0.0394	15.8%	1.21 [1.12, 1.31]	
2019 Takeuchi et al	1.2556	0.5706	1.5%	3.51 [1.15, 10.74]	
2020 Jung et al	0.1947	0.1565	9.4%	1.21 [0.89, 1.65]	
2020 Winning et al	0.8372	0.3074	4.2%	2.31 [1.26, 4.22]	
2021 Kataoka et al	0.3221	0.1578	9.4%	1.38 [1.01, 1.88]	
Total (95% CI)			100.0%	1.24 [1.08, 1.43]	◆
Heterogeneity: Tau ² = 0.03; Ch	i ² = 70.75, df = 13	(P < 0.00)	0001); l ² =	82%	
Test for overall effect: $7 = 2.96$	(P = 0.003)				0.1 0.2 0.5 1 2 5 10

Figure 1 Sensitivity analysis on studies with larger sample size (N \geq 500). Values more than one indicate a higher risk of COPD in patients with PD.

oeer terier on y

Figure 2 Funnel plot for the risk of COPD, with pseudo 95% confidence limits.

Α				Odds Ratio		Odd	ls Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Ranc	lom, 95% Cl	
2001 Garcia et al	0.4886	0.1563	21.1%	1.63 [1.20, 2.21]			-	
2004 Hyman et al	1.311	0.385	14.3%	3.71 [1.74, 7.89]				
2008 Leuckfeld et al	2.3026	1.1617	3.5%	10.00 [1.03, 97.46]			•	
2009 Wang et al	0	0.0103	23.3%	1.00 [0.98, 1.02]			+	
2012 Si et al	-1.8326	0.8461	5.8%	0.16 [0.03, 0.84]	-		-	
2012 Zhou et al	-0.2107	0.3729	14.6%	0.81 [0.39, 1.68]		0 	•	
2018 Harland et al	0.8198	0.2787	17.5%	2.27 [1.31, 3.92]			-	
Total (95% Cl) Heterogeneity: Tau ² = 1	0.24; Chi² = 38.81, d	df = 6 (P	100.0% < 0.00001	1.46 [0.92, 2.31]); l² = 85%	 0.005	0.1	1 10	200
l est for overall effect: a	Z = 1.61 (P = 0.11)							
В	,			Odds Ratio		Ode	ds Ratio	
B Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% Cl	I	Odo IV, Ran	ds Ratio dom, 95% Cl	
B <u>Study or Subgroup</u> 2001 Garcia et al	log[Odds Ratio] 0.174	<u>SE</u> 0.2635	Weight 15.5%	Odds Ratio <u>IV, Random, 95% Cl</u> 1.19 [0.71, 1.99]	1	Ode IV, Ran	ds Ratio dom, 95% Cl	
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al	log[Odds Ratio] 0.174 -0.5108	SE 0.2635 0.3537	Weight 15.5% 10.4%	Odds Ratio <u>IV, Random, 95% Cl</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20]	I	Odo IV, Ran	ds Ratio dom. 95% Cl	
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al	log[Odds Ratio] 0.174 -0.5108 0	SE 0.2635 0.3537 0.0051	Weight 15.5% 10.4% 39.3%	Odds Ratio <u>IV. Random, 95% Cl</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01]	I	Odo IV, Ran	ds Ratio dom, 95% Cl	
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al	log[Odds Ratio] 0.174 -0.5108 0 -1.6607	SE 0.2635 0.3537 0.0051 0.6196	Weight 15.5% 10.4% 39.3% 4.1%	Odds Ratio <u>IV. Random, 95% Cl</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64]		Odd IV. Ran 	ds Ratio dom, 95% Cl	
B <u>Study or Subgroup</u> 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al	log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222	SE 0.2635 0.3537 0.0051 0.6196 0.2091	Weight 15.5% 10.4% 39.3% 4.1% 20.0%	Odds Ratio IV. Random. 95% Cl 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70]		Odd IV. Ran 	ds Ratio dom, 95% Cl	
B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al	log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222 -0.0305	SE 0.2635 0.3537 0.0051 0.6196 0.2091 0.3484	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7%	Odds Ratio IV. Random, 95% Cl 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92]	<u> </u>	Oda IV. Ran	ds Ratio dom, 95% Cl	
B 2001 Garcia et al 2004 Hyman et al 2009 Wang et al 2012 Si et al 2012 Zhou et al 2018 Harland et al Total (95% CI) Heterogeneity: Tau ² =	log[Odds Ratio] 0.174 -0.5108 0 -1.6607 0.1222 -0.0305 0.05; Chi² = 10.05,	SE 0.2635 0.3537 0.0051 0.6196 0.2091 0.3484 df = 5 (F	Weight 15.5% 10.4% 39.3% 4.1% 20.0% 10.7% 100.0% P = 0.07);	Odds Ratio <u>IV. Random. 95% Cl</u> 1.19 [0.71, 1.99] 0.60 [0.30, 1.20] 1.00 [0.99, 1.01] 0.19 [0.06, 0.64] 1.13 [0.75, 1.70] 0.97 [0.49, 1.92] 0.93 [0.72, 1.21] ¹² = 50%		Odd IV, Ran 	ds Ratio dom, 95% Cl	

Figure 3 Forest plot of the risk of COPD by periodontal disease. A in smokers and B in never smokers. Values more than one indicate a higher risk in patients with periodontal disease.

References

- 1. Hayes C, Sparrow D, Cohen M, *et al.* The association between alveolar bone loss and pulmonary function: the VA Dental Longitudinal Study. *Ann Periodontol* 1998;3:257-261.
- 2. Scannapieco FA, Papandonatos GD, Dunford RG. Associations between oral conditions and respiratory disease in a national sample survey population. *Ann Periodontol* 1998;3:251-256.
- 3. Garcia RI, Nunn ME, Vokonas PS. Epidemiologic associations between periodontal disease and chronic obstructive pulmonary disease. *Ann Periodontol* 2001;6:71-77.
- 4. Leuckfeld I, Obregon-Whittle MV, Lund MB, *et al.* Severe chronic obstructive pulmonary disease: association with marginal bone loss in periodontitis. *Respir Med* 2008;102:488-494.
- 5. Liu Z, Zhang W, Zhang J, *et al.* Oral hygiene, periodontal health and chronic obstructive pulmonary disease exacerbations. *J Clin Periodontol* 2012;39:45-52.
- 6. Wang Z, Zhou X, Zhang J, *et al.* Periodontal health, oral health behaviours, and chronic obstructive pulmonary disease. *J Clin Periodontol* 2009;36:750-755.
- 7. Si Y, Fan H, Song Y, *et al.* Association between periodontitis and chronic obstructive pulmonary disease in a Chinese population. *J Periodontol* 2012;83:1288-1296.
- 8. Zhou X, Han J, Song Y, *et al.* Serum levels of 25-hydroxyvitamin D, oral health and chronic obstructive pulmonary disease. *J Clin Periodontol* 2012;39:350-356.
- 9. Ledić K, Marinković S, Puhar I, *et al.* Periodontal disease increases risk for chronic obstructive pulmonary disease. *Coll Antropol* 2013;37:937-942.
- Lopez-de-Andrés A, Vazquez-Vazquez L, Martinez-Huedo MA, et al. Is COPD associated with periodontal disease? A population-based study in Spain. Int J Chron Obstruct Pulmon Dis 2018;13:3435-3445.
- 11. Zhou X, Wang J, Liu W, et al. Periodontal Status and Microbiologic Pathogens in Patients with Chronic Obstructive Pulmonary Disease and Periodontitis: A Case-Control Study. Int J Chron Obstruct Pulmon Dis 2020;15:2071-2079.
- 12. Kataoka S, Kimura M, Yamaguchi T, *et al.* A cross-sectional study of relationships between periodontal disease and general health: The Hitachi Oral Healthcare Survey. *BMC Oral Health* 2021;21:644.
- 13. Qian Y, Yuan W, Mei N, et al. Periodontitis increases the risk of respiratory

disease mortality in older patients. Exp Gerontol 2020;133:110878.

- Barros SP, Suruki R, Loewy ZG, et al. A cohort study of the impact of tooth loss and periodontal disease on respiratory events among COPD subjects: modulatory role of systemic biomarkers of inflammation. PLoS One 2013;8:e68592.
- 15. Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and periodontal disease: analysis of National Health and Nutrition Examination Survey III. *J Periodontol* 2001;72:50-56.
- 16. Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic obstructive pulmonary disease. *J Periodontol* 2004;75:9-15.
- Chung JH, Hwang HJ, Kim SH, *et al.* Associations Between Periodontitis and Chronic Obstructive Pulmonary Disease: The 2010 to 2012 Korean National Health and Nutrition Examination Survey. *J Periodontol* 2016;87:864-871.
- Harland J, Furuta M, Takeuchi K, *et al.* Periodontitis modifies the association between smoking and chronic obstructive pulmonary disease in Japanese men. *J Oral Sci* 2018;60:226-231.
- 19. Takeuchi K, Matsumoto K, Furuta M, *et al.* Periodontitis Is Associated with Chronic Obstructive Pulmonary Disease. *J Dent Res* 2019;98:534-540.
- 20. Jung ES, Lee KH, Choi YY. Association between oral health status and chronic obstructive pulmonary disease in Korean adults. *Int Dent J* 2020;70:208-213.
- 21. Winning L, Polyzois I, Sanmartin Berglund J, *et al.* Periodontitis and airflow limitation in older Swedish individuals. *J Clin Periodontol* 2020;47:715-725.
- 22. Abdelhalim H, Aboelnaga H, Aggour R. Chronic obstructive pulmonary disease exacerbations and periodontitis: a possible association. *Egyptian Journal of Bronchology* 2018;12.

 PRISMA 2009 Checklist

Section/topic	ltem No	Checklist item	Reported on Page Number/Line Number	Reported on Section/Paragraph
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Page 1 / Line 2,3	Title page
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Page 2,3 / Line 28-52	Abstract
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	Page 3-5 / Line 66-100	Introduction / Paragraph 1- 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Page 5 / Line 100-104	Introduction / Paragraph 4
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	Page 5 / Line 107-109	Methods / Paragraph 1
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Page 6 / Line 116-122	Methods / Paragraph 2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Page 6 / Line 112-114	Methods / Paragraph 2
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Page 6 / Line 114-116	Methods / Paragraph 2 Supplemental table 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Page 6 / Line 125-131	Methods / Paragraph 3
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Page 7 / Line 134,135	Methods / Paragraph 4
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Page 7 / Line 135-140	Methods / Paragraph 4

Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Page 7 / Line 141-147	Methods / Paragraph 4
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Page 7 / Line 150	Methods / Paragraph 5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l ²) for each meta-analysis.	Page 8 / Line 156-160	Methods / Paragraph 5
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Page 8 / Line 172, 173	Methods / Paragraph 7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Page 8 / Line 161-172	Methods / Paragraph 6,7
RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Page 9 / Line 183-189	Results / Paragraph 1; Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Page 9-12 / Line 190-226	Results / Paragraph 2-4; Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Page 12 / Line 229- 234	Results / Paragraph 5; Supplemental table 3
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Page 12 / Line 239; Page 15 / Line 277	Results / Paragraph 6, 9; Figure 2 and 3
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Page 12 / Line 237-239 Page 15 / Line 275-277	Results / Paragraph 6,9; Figure 2 and 3
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Page 13 / Line 244-246	Results / Paragraph 6;
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Page 12 / Line 240-243; Page 13-15 / Line 247-270	Results / Paragraph 6-8 Table 2, Figure 2
DISCUSSION	1		1	1
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Page 15-18 / Line 280-346	Discussion / Paragraph
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Page 18,19 / Line 349-368	Discussion / Paragraph
				~

Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Page 20 / Line 391,392	Funding
From: Moher D,	Liberati A	, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and M	leta-Analyses: The PR	ISMA Statement. PLoS
ed 6(7): e1000	097. doi:1	0.1371/journal.pmed1000097		
For more inform	ation, visit:	www.prisma-statement.org.		
Please leave this spa	ice alone as i	it will be supplemented by the editorial office when needed.		
		O _b		
		3-3		Updated on April 13, 20
		For poor rovious only http://bmionon.hmi.com/cita/about/cuidalines.yhtml		opuuluu on ripin 10,20
		FOL PEELLEVIEW ONLY - HTTP://DINJOPEN.DINJ.COM/SITE/about/guidelines.XNTM		