Inferring Human Immunodeficiency Virus 1 Proviral Integration Dates with Bayesian Inference: Supplementary Materials

Bradley R. Jones and Jeffrey B. Joy

FIGURES

Supplementary Figure 1. Latent sequence integration date distribution of the simulated data set.

Colouring shows the collection date of the latent sequences. Dashed lines show the start and end of active sampling.

Supplementary Figure 2. Maximum clade credibility tree of date estimation analysis on simulated data with unfixed tree topology. Nodes of the phylogeny are placed at their mean date. Black circles indicate active sequences. Coloured circles indicate the mean integration dates (i.e., estimated dates) and coloured bars indicate 95% highest posterior density intervals for the integration dates. Crosses indicate real integration dates. The small squares indicate the two sequences whose real integration dates fell outside the 95% highest posterior density interval. Nodes with at least 70% posterior clade support are marked with a '*'.

Supplementary Figure 3. BEAST2 tip date priors for simulated data. Dashed vertical lines show start and end of active sampling and dotted lines show latent sampling time points. Colour of outline indicates collection date of latent sequences sampled in years after infection. Black outline means the distribution does not depend on latent sequence collection date. Exp1b and Exp2b plots show prior densities with

Supplementary Figure 4. BEAST2 tip date priors for P1. Density values were multiplied by 10,000 (1000 for Exp1b). Colour of outline indicates collection date (black outline means distribution does not depend on collection date). Dashed vertical lines show start and end of active sampling and dotted lines

show latent sampling time points. Exp1b and Exp2b plots show prior densities with means at 25%, 50% and 75% quantiles and have an extended y-axis. Latent prior shows distribution for mean root date.

Supplementary Figure 5. BEAST2 tip date priors for N133M. Density values were multiplied by 1000. Colour of outline indicates collection date (black outline means distribution does not depend on

collection date). Dashed vertical lines show start and end of active sampling and dotted lines show latent sampling time points. Exp1b and Exp2b plots show prior densities with means at 25%, 50% and 75% quantiles and have an extended y-axis. Latent prior shows distribution for mean root date.

Supplementary Figure 6. Histogram of mean estimated integration dates for simulated data. Colour shows collection date. Dashed lines show the start and end of active sampling and dotted lines show latent sampling times. Grey lines show the prior distribution scaled so that the area under the curve equals the number of latent sequences.

Supplementary Figure 7. Histogram of mean estimated integration dates for simulated data stratified by collection date. Colour shows collection date. Dashed lines show the start and end of active

sampling and dotted lines show latent sampling times. Grey lines show the prior distribution scaled so that the area under the curve equals the number of latent sequences.

Supplementary Figure 8. Comparison of marginal likelihood, prior likelihood and root mean squared error of simulated data with an unfixed tree. (*A*) The likelihood of the real dates using a specific date prior versus the marginal likelihood of the BEAST2 run using that date prior. Error bars show twice the range of the standard deviation of the estimate of the marginal likelihood. (*B*) Root mean squared error of the date estimation of a BEAST2 run using a specific prior versus the marginal likelihood using that prior. Error bars show twice the range of the standard deviation of the standard deviation of the estimate of the marginal likelihood using that prior. Error bars show twice the range of the standard deviation of the estimate of the marginal likelihood using that prior. Error bars show twice the range of the standard deviation of the estimate of the marginal likelihood. (*C*) Likelihood of real dates using a specified date prior versus the root mean squared error of the date estimation of the BEAST2 run using that date prior.

Supplementary Figure 9. Histogram of mean estimated integration dates for P1. Colour shows collection date. Dashed lines show the start and end of active sampling and dotted lines show latent sampling times. Grey lines show the prior distribution scaled so that the area under the curve equals the number of latent sequences.

Supplementary Figure 10. Histogram of mean estimated integration dates for empirical data stratified by P1. Colour shows collection date. Dashed lines show the start and end of active sampling

and dotted lines show latent sampling times. Grey lines show the prior distribution scaled so that the area under the curve equals the number of latent sequences.

Supplementary Figure 11. Phylogeny of date estimation analysis with the Exp1a prior on N133M. Nodes of the phylogeny are placed at their mean date. Coloured circles indicate mean integration dates (i.e., estimated dates) and coloured bars indicated their 95% highest posterior density intervals for the integration dates. Black circles denote active sequences. Numbers on edges show the percentage of times that edge was sampled as the root after burn-in. Edges without numbers were not sampled as the root. Edges with at least 70% maximum likelihood bootstrap support are marked with a '*'.

Supplementary Figure 12. Histogram of mean estimated integration dates for N133M. Colour shows collection date. Dashed lines show the start and end of active sampling and dotted lines show latent sampling times. Grey lines show the prior distribution scaled so that the area under the curve equals the number of latent sequences.

Supplementary Figure 13. Histogram of mean estimated integration dates for empirical data stratified by N133M. Colour shows collection date. Dashed lines show the start and end of active

sampling and dotted lines show latent sampling times. Grey lines show the prior distribution scaled so that the area under the curve equals the number of latent sequences.

Supplementary Figure 14. Sammon multidimensional scaling of the methods by the root mean squared deviation of their estimates for simulated data. Root mean squared deviations including EPA were calculated over sequences where the dates were computable. Regions containing each method are circled (EPA: red, LR: orange, LSD: pink, BEAST2: grey). Axes units are years. LR stands for Linear Regression. The red and orange stars correspond to overlapping results of EPA and LR respectively.

Supplementary Figure 15. Sammon multidimensional scaling of the methods by the root mean squared deviation of their estimates for P1. Root mean squared deviations including EPA were calculated over sequences where the dates were computable. Regions containing each method are circled (EPA: red, LR: orange, LSD: pink, BEAST2: grey). Axes units are days. LR stands for Linear Regression.

Supplementary Figure 16. Sammon multidimensional scaling of the methods by the root mean squared deviation of their estimates for N133M. Root mean squared deviations including EPA were calculated over sequences where the dates were computable. Regions containing each method are circled (EPA: red, LR: orange, LSD: pink, BEAST2: grey). Axes units are days. LR stands for Linear Regression.

TABLES

Supplementary Table 1. Substitution model selection. Values show best model according to the given criterion as reported by ModelTest-NG. BIC: Bayesian information criterion, AIC: Akaike information criterion with correction.

Data set	BIC	AIC	AICc
Simulated	012340[F]+G4	012340[F]+G4	012340[F]
P1	010210[F]+I+G4	012310[F]+I+G4	012310[F]+I+G4
N133M	TIM1+I+G4	012234[F]+I+G4	012234[F]+I+G4

Sur	oplementary	7 Table 2. BEAST2	clock and tree	priors consi	dered for r	nodel selection.
Sup	picincintar y		ciock and tice	priors consi	uci cu ioi i	nouci sciection.

Туре	Model	Priors
Clock	Strict clock	Rate: Lognormal with real mean 0.013 sub/site/year
		(Cuevas, et al. 2015) or 1.2E-5 sub/site/day (Zanini, et
		al. 2017) and sigma 5
	Relaxed clock exponential	Mean rate: Lognormal with real mean 0.013
		sub/site/year (Cuevas, et al. 2015) or 1.2E-5 sub/site/day
		(Zanini, et al. 2017) and sigma 5
	Relaxed clock log normal	Mean rate: Lognormal with real mean 0.013
		sub/site/year (Cuevas, et al. 2015) or 1.2E-5 sub/site/day
		(Zanini, et al. 2017) and sigma 5
		Standard Deviation: Gamma with alpha 0.5396 and beta
		0.3819
Tree	Coalescent constant population	Population size: Lognormal with mean 1 and sigma 4
	Coalescent exponential population	Population size: Lognormal with mean 0 and sigma 5
		Growth rate: Laplace with mu 0.001 and scale
		30.701135

Supplementary Table 3. BEAST2 prior selection. Entries show the marginal log likelihood plus standard deviation. Bold and italicized text highlights the best model for each data set. Italicized text highlights models where the difference in the marginal log likelihood from the best model is less than twice the sum of their standard deviations.

Data set	Clock model	Tree model	Marginal log likelihood
Simulated	Strict	Coalescent constant population	-9523.47 ± 12.31
	Strict	Coalescent exponential population	-9508.64 ± 13.79
	Relaxed exponential	Coalescent constant population	-9554.44 ± 13.73
	Relaxed exponential	Coalescent exponential population	-9524.84 ± 13.28
	Relaxed log normal	Coalescent constant population	-9513.48 ± 12.84
	Relaxed log normal	Coalescent exponential population	<i>-9492.74</i> ± <i>9.33</i>
P1	Strict	Coalescent constant population	-3227.48 ± 0.76
	Strict	Coalescent exponential population	-3212.55 ± 0.91
	Relaxed exponential	Coalescent constant population	-3246.41 ± 1.23
	Relaxed exponential	Coalescent exponential population	-3235.87 ± 1.03
	Relaxed log normal	Coalescent constant population	-3225.45 ± 0.55
	Relaxed log normal	Coalescent exponential population	-3209.68 ± 0.53
N133M	Strict	Coalescent constant population	-6992.20 ± 0.40
	Strict	Coalescent exponential population	-6989.72 ± 0.33
	Relaxed exponential	Coalescent constant population	-6997.16 ± 0.76
	Relaxed exponential	Coalescent exponential population	-6995.19 ± 0.59
	Relaxed log normal	Coalescent constant population	-6986.30 ± 0.41
	Relaxed log normal	Coalescent exponential population	-6983.56 ± 0.38

Supplementary Table 4. BEAST2 tip date priors. Name column gives an identifier for the distribution. Prior column shows the distribution. Variable column indicates what variable the distribution is acting on (e.g., date or time before a specific time point). Parameters column describes the values of the parameters for the distribution.

Name	Prior	Variable	Parameters
Unifl	Uniform	Date	Lower bound: earliest active sequence sampling time
			Upper bound: latest active sampling time
Unif2	Uniform	Date	Lower bound: earliest active sequence sampling time
			minus active sampling range
			Upper bound: sampling date
Norm	Normal	Date	Mean: active sampling midpoint
			Sigma: one fourth of the active sampling range
Lnorm1	Log normal	Years/days before	Real mean: active sampling midpoint
	-	latest active	Sigma: chosen to make real standard deviation one
		sampling date	fourth of active sampling range
Lnorm2	Log normal	Years/days before	Real mean: active sampling midpoint
		sampling date	Sigma: chosen to make real standard deviation one
			fourth of active sampling range
Expla	Exponential	Years/days before	Mean: active sampling midpoint
-	_	latest active	
		sampling date	
Exp1b	Exponential	Years/days before	Mean: estimated with an exponential prior whose mean
		latest active	is the active sampling midpoint
		sampling date	
Exp2a	Exponential	Years/days before	Mean: active sampling midpoint
		sampling date	
Exp2b	Exponential	Years/days before	Mean: estimated with an exponential prior whose mean
		sampling date	is the active sampling midpoint
Latent	Latency	Date	Become latent rate: 0.364 year ⁻¹ / 1×10^{-3} day ⁻¹
			Reactivation rate: 0.151 year ⁻¹ / 4.15×10^{-4} day ⁻¹
			Log normal prior on root date with mu: 0 log years
			(simulated), 5.900 log days (P1), 3.829 log days
			(N133M); sigma: 0.347
NoPrior	None	Date	Log normal prior on root date with mu: 0 log years
			(simulated), 5.900 log days (P1), 3.829 log days
			(N133M); sigma: 0.347

Supplementary Table 5. BEAST2 date prior selection (simulated data). Bold text highlights optimal values. Italicized text highlights models where the difference in the marginal log likelihood from the best model is less than twice the sum of their standard deviations. RMSE stands for Root Mean Squared Error and is in units of years. PII stands for Percent real In estimated 95% highest posterior Interval. Mean HPD is the mean width of the 95% highest posterior density interval for the integration dates and is in years.

Prior	Log likelihood	RMSE	Concordance	PII	Mean HPD
NoPrior	_	1.27	0.842	0.939	3.20
Unifl	-11609.20 ± 0.43	0.64	0.933	0.959	1.96
Unif2	-11625.27 ± 0.45	1.17	0.834	0.939	3.33
Normal	$\textbf{-}11619.10 \pm 0.47$	0.82	0.893	0.939	2.52
Lnorm1	-11642.18 ± 1.30	1.25	0.730	0.531	2.07
Lnorm2	$\textbf{-}11623.24 \pm 0.44$	0.86	0.876	0.878	2.26
Expla	-11603.52 ± 0.45	0.62	0.937	0.959	1.88
Explb	-11604.27 ± 0.40	0.65	0.931	0.939	1.85
Exp2a	$\textbf{-}11632.56 \pm 0.66$	1.33	0.800	0.939	3.56
Exp2b	$\textbf{-}11642.30 \pm 0.77$	1.42	0.779	0.919	3.78
Latent	$\textbf{-}11614.48 \pm 0.47$	0.89	0.890	0.959	2.97

Supplementary Table 6. BEAST2 date prior selection (simulated data unfixed). Bold text highlights optimal values. Italicized text highlights models where the difference in the marginal log likelihood from the best model is less than twice the sum of their standard deviations. RMSE stands for Root Mean Squared Error and is in units of years. PII stands for Percent real In estimated 95% highest posterior Interval. Mean HPD is the mean width of the 95% highest posterior density intervals for the integration dates and is in years.

Prior	Log likelihood	RMSE	Concordance	PII	Mean HPD
NoPrior		1.11	0.846	0.939	3.31
Unifl	-11887.38 ± 45.66	0.62	0.937	0.959	1.98
Unif2	-11917.84 ± 46.45	1.15	0.837	0.939	3.41
Normal	-11939.91 ± 78.09	0.78	0.901	0.959	2.57
Lnorml	-11944.96 ± 53.51	1.26	0.724	0.531	2.13
Lnorm2	-11914.91 ± 85.82	0.85	0.878	0.878	2.29
Expla	-11908.85 ± 41.71	0.61	0.938	0.939	1.92
Explb	-11894.53 ± 38.96	0.64	0.931	0.959	1.89
Exp2a	-11919.71 ± 46.53	1.32	0.801	0.939	3.71
Exp2b	-11922.38 ± 46.45	1.45	0.773	0.919	3.92
Latent	-11955.98 ± 36.52	0.87	0.893	0.959	3.03

Supplementary Table 7. BEAST2 date prior selection (P1). Bold text highlights optimal values.

Italicized text highlights models where the difference in the marginal log likelihood from the best model is less than twice the sum of their standard deviations. Mean HPD is the mean width of the 95% highest posterior density intervals for the integration dates and is in days.

Prior	Log likelihood	Mean HPD
NoPrior		1412
Unifl	$\textbf{-3712.47} \pm 0.16$	934
Unif2	$\textbf{-3710.94} \pm 0.17$	1495
Normal	$\textbf{-3712.29} \pm 0.16$	1123
Lnorm1	$\textbf{-3714.47} \pm 0.18$	1141
Lnorm2	$\textbf{-3716.57} \pm 0.18$	1139
Expla	$\textbf{-3709.89} \pm 0.16$	1174
Exp1b	$\textbf{-3711.04} \pm 0.17$	1191
Exp2a	$\textbf{-3716.07} \pm 0.16$	1774
Exp2b	$\textbf{-3716.77} \pm 0.16$	1820
Latent	-3705.12 ± 0.16	1122

Supplementary Table 8. BEAST2 date prior selection (N133M). Bold text highlights optimal values. Italicized text highlights models where the difference in the marginal log likelihood from the best model is less than twice the sum of their standard deviations. Mean HPD is the mean width of the 95% highest posterior density intervals for the integration dates and is in days.

Prior	Log likelihood	Mean HPD
NoPrior		287
Unif1	-9414.53 ± 0.26	220
Unif2	-9410.47 ± 0.25	734
Normal	-9420.39 ± 0.26	260
Lnorm1	-9428.00 ± 0.32	755
Lnorm2	-9428.09 ± 0.28	257
Expla	-9408.34 ± 0.22	765
Exp1b	-9411.53 ± 0.24	895
Exp2a	-9409.44 ± 0.22	1102
Exp2b	-9410.46 ± 0.24	1169
Latent	-9418.91 ± 0.25	276

Supplementary Table 9. Alternate dating methods (simulated data). RMSE stands for Root Mean Squared Error and is in years. Score is the placement probability of the tips for EPA, the difference between the Akaike Information Criterion (AIC) of the null model with a slope of zero and the AIC of the linear model for Linear Regression and the objective function for LSD. Optimal scores are highlighted in bold. Percent Computable shows the percent of latent sequences for which estimates could be computed. ^aEPA RMSE and concordance were calculated over sequences where dates were computable.

Method	Tree	RMSE	Concordance	Score	Percent Computable
EPA	FastTree	1.64 ^a	0.453 ^a	3.20E-3	73.5
EPA	IQ-Tree	1.64 ^a	0.453 ^a	3.14E-3	73.5
EPA	RAxML	1.64 ^a	0.453 ^a	3.15E-3	73.5
Linear Regression	FastTree	2.15	0.500	181.8	100
Linear Regression	IQ-Tree	1.89	0.572	189.2	100
Linear Regression	RAxML	1.89	0.572	189.2	100
LSD	FastTree	1.23	0.802	0.167	100
LSD	IQ-Tree	1.23	0.804	0.136	100
LSD	RAxML	1.17	0.822	0.143	100

Supplementary Table 10. Alternate dating methods (P1). Score is the placement probability of the tips for EPA, the difference between the Akaike Information Criterion (AIC) of the null model with a slope of zero and the AIC of the linear model for Linear Regression and the objective function for LSD. Optimal scores are highlighted in bold. Percent Computable shows the percent of latent sequences for which estimates could be computed.

Method	Tree	Score	Percent Computable
EPA	FastTree	6.29E-5	69.0
EPA	IQ-Tree	4.76E-4	75.9
EPA	RAxML	1.51E-3	89.7
Linear Regression	FastTree	196.2	100
Linear Regression	IQ-Tree	175.7	100
Linear Regression	RAxML	158.4	100
LSD	FastTree	0.036	100
LSD	IQ-Tree	0.102	100
LSD	RAxML	0.132	100

Supplementary Table 11. Alternate dating methods (N133M). Score is the placement probability of the tips for EPA, the difference between the Akaike Information Criterion (AIC) of the null model with a slope of zero and the AIC of the linear model for Linear Regression and the objective function for LSD. Optimal scores are highlighted in bold. Percent Computable shows the percent of latent sequences for which estimates could be computed.

Method	Tree	Score	Percent Computable
EPA	FastTree	9.39E-1	100
EPA	IQ-Tree	5.81E-1	100
EPA	RAxML	2.37E-1	100
Linear Regression	FastTree	216.3	100
Linear Regression	IQ-Tree	231.2	100
Linear Regression	RAxML	238.6	100
LSD	FastTree	0.015	100
LSD	IQ-Tree	0.028	100
LSD	RAxML	0.026	100

Supplementary Table 12. BEAST2 date estimation run parameters. Models not explicated shown for the simulated data are represented by a "—".

Data set	Model	Chain length	Operator scheme	Split?
Simulated	_	200,000,000	Normal	No
	NoPrior (both)	500,000,000	Normal	No
	Latent (both)			
	Norm (unfixed)			
	Lnorm2 (unfixed)			
P1	Unifl	200,000,000	Random walker operator added for 3	No
	Unif2		difficult-to-date sequences	
	Expla	500,000,000	Normal	No
	Exp2a			
	Exp2b			
	Latent			
	Norm	500,000,000	Random walker operator added for 5	No
	Exp1b		difficult-to-date sequences and	
			increased RootExchange weight	
	NoPrior	10,000,000,000	Random walker operator added for 5	$10 \times$
			difficult-to-date sequences and	
			random walker operator added to	
	T 4	7 0,000,000,000	move two sequences at once	
	Lnorml	50,000,000,000	Random walker operator added for 5	$10 \times$
	Lonrm2		difficult-to-date sequences and	
			random walker operator added to	
N1122N	NT D'	500 000 000	move two sequences at once	NT
N133M	NoPrior	500,000,000	Normal	NO
	Lnorm2			
	Expla			
		500 000 000	$\mathbf{D} \leftarrow \mathbf{O}$	NT
	Unifi	500,000,000	DateOp4	NO
	Norma	500 000 000	Det Out	N.
		500,000,000	DateOp5	INO
	UniI2	30,000,000,000		
	Explo Explo			
	Exp2a			
	Exp2b			