Science Advances

Supplementary Materials for

Comparative genomics reveals the hybrid origin of a macaque group

Bao-Lin Zhang et al.

Corresponding author: Dong-Dong Wu, wudongdong@mail.kiz.ac.cn; Guojie Zhang, guojiezhang@zju.edu.cn; Yong-Tang Zheng, zhengyt@mail.kiz.ac.cn

Sci. Adv. **9**, eadd3580 (2023) DOI: 10.1126/sciadv.add3580

This PDF file includes:

Figs. S1 to S27 Tables S1 to S17

Fig. S1. An example showing the syntenic blocks between the stump-tailed macaque vs. Chinese rhesus macaque. Scaffolds larger than 10-kb were shown.

Fig. S2. Genetic diversity for different macaque species. Y-axis represents the ratio of average nucleotide differences between a pair of chromosomes in 50-kb windows. Species are abbreviated using the first letter of the genus name and the first three letters of the species name.

Fig. S3. Coalescent-based phylogeny of macaques inferred from 50 kb genomic windows. Branch lengths are in coalescent units as estimated by ASTRAL. Numbers at nodes refer to bootstrap values of ASTRAL and STAR, respectively.

Fig. S4. Maximum Likelihood (ML) tree inferred using concatenated four-fold degenerate sites (4d) sites. We identified a total of 11,353 one-to-one orthologous genes and 4d sites were extracted and used to infer an ML phylogenetic tree by RAxML. Numbers beside nodes indicate bootstrap values.

Fig. S5. The number and frequency of the six most common topologies amongst all 50-kb window trees (n=46,003 windows).

Fig. S6. DensiTree plot for 20-kb window trees. Topologies with mean bootstrap values below 80 have been removed, so that a total of 92,132 trees were retained in the results. The dark red, light green and purple colors represent the first, second and third most common topologies, respectively, whilst gray represents other topologies.

Fig. S7. Heterogeneity of the phylogenetic signals using 20-kb window sequences. (A) The distribution of the top three most common topologies by reference to the Chinese rhesus macaque (rheMacS) genome. White interval regions denote missing data. (B) The top three most common trees recovered by maximum likelihood analysis and the frequency of consecutive 20-kb windows with that topology. Values below the tree refer to the percentage of windows with that topology. The outgroup *Papio hamadryas* is not shown.

Fig. S8. DensiTree plot for 100-kb window trees. Topologies with mean bootstrap values below 80 have been removed, so that a total of 23,097 trees were retained in the results. The dark red, light green and purple colors represent the first, second and third most common topologies, respectively, whilst gray represents other topologies.

Fig. S9. Heterogeneity of phylogenetic signals using 100-kb window sequences. (A) The distribution of the three most common topologies by reference to the Chinese rhesus macaque (rheMacS) genome. White interval regions showing missing data. The outgroup *Papio hamadryas* is not shown. (B) The top three most common trees recovered by maximum likelihood analysis and the frequency of consecutive 100-kb windows with that topology. Values below the tree refer to the percentage of windows with that topology. The outgroup *Papio hamadryas* is not shown.

Fig. S10. Proportion of the six most common topologies (T1-T6) recovered from autosomes and the X-chromosome for 20-kb, 50-kb and 100-kb window sizes, respectively.

Fig. S11. DensiTree plot for the major lineage relationships in the low 1% recombination regions. The dark red color supports the sister relationship between the *fascicularis* group and the *sinica* group (tree1, 33.7 % of total), whereas the light green supports the sister relationship between the *fascicularis* group and the *silenus* group (tree2, 39.8% of total).

Fig. S12. DiscoVista results estimate the frequency of all three possible topologies around the internal branches. (A). The unrooted ASTRAL tree at species group level. Numbers on the tree refer to the branch number. The rectangle numbers refer to branches of interest in panel B. (B). Frequency of all three possible topologies around the interested internal branches. Each internal branch has four neighboring branches and could be used to represent all three possible topologies separated by "|". The frequency of the main topology (consistent with the ASTRAL tree) is shown by a red bar, whereas the other two alternative topologies are depicted by blue bars. The dash line indicates the 1/3 threshold expected at random. The conflict relationships between the *fascicularis* group (b) and their two parental lineages, *sinica* (a), *silenus* (c), are also shown above the bar.

Fig. S13. Proportion of the six most common topologies (T1-T6) stratified by the recombination rate (cM/Mb, x axis) for 20-kb, 50-kb and 100-kb window sizes, respectively.

Fig. S14. DensiTree plot for all species in the low 1% recombination regions. The dark red, light green and purple colors represent the first, second and third most common topologies, respectively, whilst gray represents other topologies.

Fig. S15. DensiTree plot for topologies in the X chromosome. The dark red, light green and purple colors represent the first, second and third most common topologies, respectively, whilst gray represents other topologies.

Fig. S16. Proportion of genome ancestry of two parental lineage (*sinica* group and *silenus* group) in three hybrid species. Mmul: *M. mulatta*; Mfas: *M. fascicularis* Mfus: *M. fuscata*.

Fig. S17. Phylogenetic network inferred from PhyloNet. (A) reticulation=1; (B) reticulation=2. When more than 2 reticulation scenarios were applied, PhyloNet provided inconsistent inferences for the parental lineages involved in the reticulated evolutionary history due to excessively large search space under higher reticulation values. The blue line indicates reticulation and red numerical values indicate inheritance probabilities.

Fig. S18. Mitochondrial genome tree inferred by RAxML. Numbers beside nodes indicate bootstrap values. The labels with accession numbers refer to previously released mitochondrial genome sequences, whereas labels without an accession number refer to samples described in this study.

Fig. S19. Heatmap showing statistical support for introgression between pairs of species groups based on (A) species group level tree referring to fig. S5A, and (B) fig. S5B, respectively. Cells in the heatmap indicate the pairwise Z-score values between the branch b identified on the expanded tree on the Y axis (relative to its sister branch) and the taxa P3 identified on the X-axis (see Supplementary table S10-S11 for details of Z-score values). Cells having a Z-score >3 are highlighted with a blue rectangle. sin: sinica group; sil: silenus group; fas: fascicularis group; syl: sylvanus group.

Fig. S20. Heatmap showing statistical support for introgression between pairs of species inferred from Dsuit package, assuming (A) fig. S5A and (B) fig. S5B as reference tree, respectively. Cells in the heatmap indicate the pairwise Z-score values between the branch b identified on the expanded tree on the Y axis (relative to its sister branch) and the species P3 identified on the X-axis (see Supplementary table S12 and S13 for details of Z-score values). Cells having a Z-score >3 are highlighted with a blue rectangle.

Fig. S21. The estimated divergence time for autosomal window sequences supporting fig. 5A (left) and fig. 5B (right), respectively. Numbers at nodes refer to the average age (Ma) \pm 1 standard deviation (SD). Blue triangles indicate fossil-based calibration points.

Fig. S22. The estimated divergence times for X-chromosome window sequences supporting fig. 5A (left) and fig. 5B (right), respectively. Numbers at nodes refer to the average age (Ma) \pm 1 standard deviation (SD). Blue triangles indicate fossil record-based calibration points

Fig. S23. The *sinica*-derived non-synonymous mutations occurring in the *fascicularis* group and their positions in relation to the functional domain regions predicted by NCBI's Conserved Domain Database.

Fig. S24. The *silenus*-derived non-synonymous mutations occurring in the *fascicularis* group and their positions in relation to the functional domain regions predicted by NCBI's Conserved Domain Database.

Fig. S25. The genomic structure and alternative splicing isoforms of the *TRIM5* gene and *TRIM5-CypA* fusion genes. The retrotranspositional insertion of a cyclophilin A2 (*CypA2*) gene into the 3' UTR region of the *TRIM5* locus was found in both pig-tailed macaques (*M. leonina* and *M. nemestrina*) and lion-tailed macaques (*M. silenus*), whereas other macaques (*M. mulatta* for example) lack this gene structure.

Fig. S26. Protein sequence alignment of *TRIMCyp* between the lion-tailed macaque (*M. silenus*) and the northern pig-tailed macaque (*M. leonina*). RING, B-Box, coiled coil, and cyclophilin A2 (*CypA2*) domains are shown.

			KING			
.		20	30 	40	50 	6U
ASGIL	LNVKEEVTC	PICLELLTE	PLSLHCGHSF	QACITANHKK	SMLYKEGER	SCPVCRISYQ
••••	••••••••	•••••	•••••	••••••	••••••	• • • • • • • • • • •
	80	90	100	B-Box	120	130
		· · · · · · · · <u>·</u>				<u> </u>
RHVAN	IVEKLREVK	LSPEEGQKV	OHCARHGEKLI	LFCQEDSKVI	CWLCERSQE	HRGHHTFLME
•••••		•••••	• • • • • • • • • • • • • • • • • • • •			•••••
	150	160	coile	d coil	190	200
ARTÖ .L	ALEMLROKO	QEAEKLEAD.	IREEKASWKI	21DHDKTNVLA	DFEQUREIL	DREESNELQN
••••						
	220	230	240	250	260	270
		<u></u>				
)TEKSE	TKSETKMVQ	QTQYVRELL	SDLEHRLQGSI	MELLQGVDGI	IKRIENMTL	KPKTFHKNQ
••••						
	290	300	310	320	330	340
		· <u>· · · · · · ·</u>				
DLKGM.	LDMFRELTD	WINNE VEE	WSOCAKWCR	TS VG*RV*	CRMDTVCC*	GTLFQSLTNF:
••••				. 15.16 KV	GIGIDIVCC	
	360	370	38 B3 (2 390	400	410
O*FTA	LI*GILFOI	WROSEFLC*	LCLYSILCI	TIS*LTDVRR	CWGKEKSHY	HOLPCGLSLL
~	~	2				~
	430	440	450	460	470	480
TTPFAP	FTVPI.SVTT	CPDRVGVFV	YEACTVSFF	TTNHGETTYK	FSOCSESKP	VFPYLNPRKC
TPFAP	FIVPLSVII GL.F*DL*F	CPDRVGVFV SFQYIHNLP	DYEACTVSFF1 LLITSEQVSS(NITNHGFLIYK Q.SLKSLSRFL	FSQCSFSKP SYHK*SYII:	VFPYLNPRKC SPN*PVNFST
ITPFAP	FIVPLSVII GL.F*DL*F	CPDRVGVFV SFQYIHNLP	DYEACTVSFF1	NITNHGFLIYK 2.SLKSLSRFL	FSQCSFSKP SYHK*SYII	VFPYLNPRKC SPN*PVNFST
TPFAP	500	SFQYIHNLP:	520	S30	FSQCSFSKP SYHK*SYII: 540	550
ITPFAP	FIVPLSVII GL.F*DL*F 500 	SFQYIHNLP	520	S30	540	SPN*PVNFST 550
ITPFAP ILCSLL SPSS*	FIVPLSVII GL.F*DL*F 500 AVIAEDKRQ	SFQYIHNLP 510 	520 520 YQSPGTLFQSI	SIKSLSRFL 530 	SYHK*SYII 540 GSQSITSGK	SPN*PVLNPRKC SPN*PVNFST 550
TPFAP ILCSLL SPSS*	FIVPLSVII GL.F*DL*F 500 AVIAEDKRQ	SFQYIHNLP: 510 VSSRNPQIV	DYEACTVSFFI LLITSEQVSS 520 II YQSPGTLFQSI	SIKSLSRFL	SYHK*SYII 540 GSQSITSGK	VFPYLNPRKC SPN*PVNFST 550 II HYWEVDVSKK
TPFAP LCSLL SPSS*	FIVPLSVII GL.F*DL*F 500 	CPDRVGVFVI SFQYIHNLP: 510 	S20 S20 YQSPGTLFQS1 590	S30 	540 SYHK *SYII: 540 GSQSITSGK 610	VFPYLNPRKC SPN*PVNFST 550 II HYWEVDVSKK 620
TPFAP LCSLL SPSS* NNI.H	FIVPLSVII GL.F*DL*F 500 AVIAEDKRQ 570 	CPDRVGVFVI 'SFQYIHNLP: 510 VSSRNPQIV 580 .	DYEACTVSFF1 LLITSEQVSS(520 	530 530 LTNFNYCTGVL 600 	540 540 6500 610 610	550 550 550 550 550 550 550 550 50 50 50
ITPFAP ILCSLL SPSS* 2NNI.H	FIVPLSVII GL.F*DL*F 500 	CPDRVGVFVI 'SFQYIHNLP: 510 VSSRNPQIV 580 NENYQPKYG	DYEACTVSFF1 LLITSEQVSS(520 YQSPGTLFQS1 590 	S30 	540 540 610 510 510 520 540 540 540 540 540 540 540 540 540 54	VFPYLNPRKC SPN*PVNFST 550 HYWEVDVSKK 620 LSVIICPDRV
HTPFAP ILCSLL SPSS* PNNI.H	FIVPLSVII GL.F*DL*F 500 	CPDRVGVFV 'SFQYIHNLP: 510 	DYEACTVSFF1 LLITSEQVSS(520 	530 	540 540 540 540 540 540 540 540	VFPYLNPRKC SPN*PVNFST 550 II HYWEVDVSKK 620 II LSVIICPDRV
ITPFAP ICSLL SPSS*	FIVPLSVII GL.F*DL*F 500 	CPDRVGVFV SFQYIHNLP: 510 	DYEACTVSFF1 LLITSEQVSS(520 YQSPGTLFQS1 590 YWVIGLQEGV1 660	530 	540 540 540 540 540 540 540 540	VFPYLNPRKC SPN*PVNFST 550 II HYWEVDVSKK 620 II LSVIICPDRV

Fig. S27. Protein sequence alignment of *TRIM5a* between the lion-tailed macaque (*M. silenus*) and the rhesus macaque (*M. mulatta*). RING, B-Box, coiled coil, and B30.2 domains are shown.

Table S1. Macaque sample and sequencing information. In the "IUCN category" column, acronyms are as follows: "LC" for least concern, "NT" for near threatened, "VU" for vulnerable, "EN" for endangered, and "CR" for critically endangered. The sequencing platform and amount of data generated for each sample are also listed.

Species name	English name	IUCN	Sex	Sample provider	Sample	Sequencing platform and amount
		category			type	of data generated
Macaca fuscata	Japanese Macaque	LC	Male	Chengdu Zoo, China	Blood	Nanopore: 151G; MGISEQ: 178G
Macaca silenus	Lion-tailed Macaque	EN	Male	Guangzhou Zoo, China	Blood	Nanopore: 115G; MGISEQ: 166G
Macaca thibetana	Tibetan Macaque	NT	Female	Guangzhou Zoo, China	Blood	Nanopore: 147G; MGISEQ: 154G
Macaca assamensis	Assamese Macaque	NT	Male	Kunming Institute of Zoology, China	Blood	Nanopore: 177G; MGISEQ: 164G
Macaca arctoides	Stump-tailed Macaque	VU	Male	Kunming Institute of Zoology, China	Blood	Nanopore: 125G; MGISEQ: 152G
Macaca fascicularis	Long-tailed Macaque	VU	Male	Kunming Institute of Zoology, China	Blood	Nanopore: 153G; MGISEQ: 171G
Macaca leonina	Northern Pig-tailed Macaque	VU	Male	Kunming Institute of Zoology, China	Blood	Nanopore: 140G; MGISEQ: 163G
Macaca nigra	Crested Macaque	CR	Female	Dublin Zoo, Ireland	DNA	10x genomics: 211G
Macaca tonkeana	Tonkean Macaque	VU	Female	Silabe primate research center, France	DNA	StLFR:270G
Macaca tonkeana2	Tonkean Macaque	VU	Male	German Primate Center, German	DNA	NovaSeq 6000: 94G
Macaca sylvanus	Barbary Macaque	EN	Female	Barcelona Zoo, Spain	DNA	StLFR:274G
Macaca sylvanus2	Barbary Macaque	EN	Male	German Primate Center, German	DNA	NovaSeq 6000: 96G

Table S2. Genome statistics for the ten newly sequenced macaque genomes. The corresponding assembly strategy and number of annotated genes are also given.

Species name	Contig N50 (bp)	Scaffold N50 (bp)	Assembled Genome Size (bp)	Software	Gene Number
Macaca assamensis	27,348,716	27,348,716	2,759,375,986	NextDenovo + wtdbg	20960
Macaca silenus	25,691,658	25,691,658	2,778,791,713	NextDenovo + wtdbg	20689
Macaca arctoides	30,155,229	30,155,229	2,753,320,893	NextDenovo + wtdbg	20821
Macaca thibetana	33,225,245	33,225,245	2,775,160,973	NextDenovo + wtdbg	20838
Macaca fascicularis	21,239,021	21,239,021	2,770,900,045	NextDenovo + wtdbg	20502
Macaca fuscata	26,406,092	26,406,092	2,748,481,177	NextDenovo + wtdbg	20992
Macaca leonina	17,711,378	17,711,378	2,808,882,299	NextDenovo + wtdbg	20662
Macaca nigra	76,310	26,144,792	2,973,416,866	Supernova	21811
Macaca tonkeana	50,863	21,105,068	3,004,470,813	Supernova	21194
Macaca sylvanus	58,539	22,820,170	2,992,556,657	Supernova	21533

Species name	Ratio (%)
Macaca assamensis	94.2
Macaca silenus	94.4
Macaca arctoides	94.4
Macaca thibetana	93.7
Macaca fascicularis	93.7
Macaca fuscata	94.5
Macaca leonina	94.0
Macaca nigra	93.2
Macaca tonkeana	93.1
Macaca sylvanus	93.3

Table S3. Genome completeness assessed by BUSCO (version 2.0), referring to the mammalia_odb9 BUSCO set.

Species name	DNA ratio	LINE ratio	SINE ratio	LTR ratio	Unknown ratio
Macaca assamensis	2.70	22.41	13.56	7.83	0.20
Macaca silenus	3.00	22.08	13.67	7.53	0.40
Macaca arctoides	3.19	22.05	13.71	7.73	0.48
Macaca thibetana	2.75	19.71	13.97	7.30	0.19
Macaca fascicularis	2.69	20.51	13.17	7.73	0.45
Macaca fuscata	2.87	21.18	13.47	7.82	0.51
Macaca leonina	2.81	19.13	13.44	8.20	0.15
Macaca nigra	1.43	14.89	10.02	5.34	0.02
Macaca tonkeana	1.44	14.46	9.77	5.38	0.03
Macaca sylvanus	1.43	14.48	9.84	5.19	0.02

Table S4. Repeat content of the assembled macaque genomes.

Species name	Mapping ratio
Macaca fascicularis	93.6703
Macaca silenus	93.3064
Macaca leonina	93.6334
Macaca assamensis	93.2924
Macaca nemestrina	91.6092
Macaca nigra	93.0378
Macaca sylvanus	91.9538
Macaca tonkeana	92.3328
Macaca fuscata	93.6078
Macaca thibetana	92.6400
Macaca arctoides	93.2079
Papio hamadryas	90.1235

Table S5. Proportion of aligned base-pairs by reference to the Chinese rhesus macaque (*M. mulatta*) assembly.

Table S6. HyDe results of all combinations of species groups with Z-score >3. The statistic Gamma equals 0.5 means 50:50 hybrid, whilst values close to 0 or 1 indicate a low level of asymmetrical admixture by introgression. GammaP1 and GammaP2 denote the inheritance probabilities from parental species P1 and P2, respectively.

P1	Hybrid	P2	Z-score	P-value	GammaP1	GammaP2
sinica	fascicularis	silenus	175.1070	~0.0	0.6447	0.3553
fascicularis	sinica	sylvanus	69.2458	~0.0	0.9643	0.0357
silenus	sinica	sylvanus	62.7978	~0.0	0.9551	0.0449
fascicularis	silenus	sylvanus	3.7485	0.0001	0.9978	0.0022

Table S7. HyDe results showing the combination of Z-score >3 and Gamma values ranged from 0.05 to 0.95. Extremely low level admixture signatures (gamma<0.05 and gamma>0.95) were not considered. GammaP1 and GammaP2 denote the inheritance probabilities from parental species P1 and P2, respectively.

	ernance probat	nines from par		$\frac{1}{2}$	10 PZ, respec	cuvery.
P1	Hybrid	P2	Z-score	P-value	GammaP1	GammaP2
M. fascicularis	M. arctoides	M. thibetana	98.70	~0.0	0.05	0.95
M. fascicularis	M. arctoides	M. assamensis	103.95	~0.0	0.05	0.95
M. mulatta	M. arctoides	M. thibetana	120.55	~0.0	0.06	0.94
M. mulatta	M. arctoides	M. assamensis	131.39	~0.0	0.07	0.93
M. fuscata	M. arctoides	M. thibetana	142.91	~0.0	0.08	0.92
M. fuscata	M. arctoides	M. assamensis	158.21	~0.0	0.09	0.91
M. sylvanus	M. assamensis	M. leonina	70.73	~0.0	0.05	0.95
M. sylvanus	M. assamensis	M. silenus	73.31	~0.0	0.05	0.95
M. arctoides	M. fascicularis	M. silenus	194.90	~0.0	0.65	0.35
M. tonkeana	M. fascicularis	M. assamensis	194.94	~0.0	0.41	0.59
M. arctoides	M. fascicularis	M. nigra	194.98	~0.0	0.67	0.33
M. arctoides	M. fascicularis	M. tonkeana	195.07	~0.0	0.67	0.33
M. tonkeana	M. fascicularis	M. thibetana	195.09	~0.0	0.41	0.59
M. nigra	M. fascicularis	M. thibetana	195.82	~0.0	0.40	0.60
M. nigra	M. fascicularis	M. assamensis	196.00	~0.0	0.41	0.59
M. nemestrina	M. fascicularis	M. assamensis	197.10	~0.0	0.47	0.53
M. arctoides	M. fascicularis	M. leonina	197.98	~0.0	0.65	0.35
M. nemestrina	M. fascicularis	M. thibetana	199.84	~0.0	0.47	0.53
M. silenus	M. fascicularis	M. thibetana	200.44	~0.0	0.43	0.57
M. leonina	M. fascicularis	M. assamensis	200.88	~0.0	0.44	0.56
M. leonina	M. fascicularis	M. thibetana	201.06	~0.0	0.44	0.56
M. silenus	M. fascicularis	M. assamensis	201.66	~0.0	0.43	0.57
M. arctoides	M. fascicularis	M. nemestrina	208.12	~0.0	0.62	0.38
M. arctoides	M. fuscata	M. silenus	162.00	~0.0	0.74	0.26
M. arctoides	M. fuscata	M. leonina	162.74	~0.0	0.74	0.26
M. arctoides	M. fuscata	M. tonkeana	163.58	~0.0	0.75	0.25
M. arctoides	M. fuscata	M. nigra	165.58	~0.0	0.75	0.25
M. nemestrina	M. fuscata	M. assamensis	168.73	~0.0	0.40	0.60
M. arctoides	M. fuscata	M. nemestrina	169.32	~0.0	0.73	0.27
M. tonkeana	M. fuscata	M. assamensis	170.51	~0.0	0.36	0.64
M. tonkeana	M. fuscata	M. thibetana	171.06	~0.0	0.35	0.65
M. nemestrina	M. fuscata	M. thibetana	172.06	~0.0	0.39	0.61
M. nigra	M. fuscata	M. assamensis	173.01	~0.0	0.37	0.63
M. nigra	M. fuscata	M. thibetana	173.25	~0.0	0.35	0.65
M. leonina	M. fuscata	M. assamensis	174.65	~0.0	0.39	0.61
M. leonina	M. fuscata	M. thibetana	175.05	~0.0	0.38	0.62
M. silenus	M. fuscata	M. thibetana	176.09	~0.0	0.37	0.63
M. silenus	M. fuscata	M. assamensis	176.82	~0.0	0.39	0.61
M fuscata	M mulatta	M fascicularis	77 23	~0.0	0.90	0.10
M arctoides	M mulatta	M silenus	128 33	~0.0	0.75	0.25
M arctoides	M mulatta	M leonina	134.02	~0.0	0.74	0.26
M arctoides	M mulatta	M tonkeana	142.84	~0.0	0.74	0.26
M. arctoides	M. mulatta	M. nigra	146 78	~0.0	0.73	0.27
M. silenus	M. mulatta	M. thihetana	146.82	~0.0	0.36	0.64
	_· _ · · · · · · · · · · · · · · · · ·		0.02		J. J. J	··· ·

M. silenus	M. mulatta	M. assamensis	149.54	~0.0	0.37	0.63
M. leonina	M. mulatta	M. thibetana	149.85	~0.0	0.37	0.63
M. leonina	M. mulatta	M. assamensis	151.17	~0.0	0.39	0.61
M. tonkeana	M. mulatta	M. thibetana	151.60	~0.0	0.36	0.64
M. tonkeana	M. mulatta	M. assamensis	152.50	~0.0	0.37	0.63
M. nigra	M. mulatta	M. thibetana	155.17	~0.0	0.36	0.64
M. nigra	M. mulatta	M. assamensis	156.36	~0.0	0.38	0.62
M. nemestrina	M. mulatta	M. assamensis	157.06	~0.0	0.43	0.57
M. arctoides	M. mulatta	M. nemestrina	158.29	~0.0	0.70	0.30
M. nemestrina	M. mulatta	M. thibetana	159.43	~0.0	0.42	0.58
M. sylvanus	M. thibetana	M. leonina	69.38	~0.0	0.05	0.95
M. sylvanus	M. thibetana	M. silenus	72.02	~0.0	0.05	0.95

55A as the rel	ierence tree. P. h	sed as the ou	igroup.		
P1	P2	P3	Dstatistic	Z-score	p-value
M. assamensis	M. fascicularis	M. nigra	0.3739	15.4092	~0.0
M. assamensis	M. fascicularis	M. nemestrina	0.3918	14.5011	~0.0
M. arctoides	M. fascicularis	M. nemestrina	0.3279	14.3206	~0.0
M. assamensis	M. fascicularis	M. leonina	0.3694	12.9050	~0.0
M. assamensis	M. fascicularis	M. silenus	0.3591	12.6795	~0.0
M. assamensis	M. fascicularis	M. tonkeana	0.3408	12.6466	~0.0
M. thibetana	M. fascicularis	M. nemestrina	0.3823	11.7037	~0.0
M. arctoides	M. fascicularis	M. silenus	0.3095	10.8919	~0.0
M. thibetana	M. fascicularis	M. nigra	0.3361	10.5031	~0.0
M. arctoides	M. fascicularis	M. nigra	0.2797	10.1705	~0.0
M. thibetana	M. fascicularis	M. leonina	0.3473	10.1403	~0.0
M. thibetana	M. fascicularis	M. silenus	0.3390	9.4884	~0.0
M. arctoides	M. fascicularis	M. leonina	0.3002	9.3423	~0.0
M. assamensis	M. fuscata	M. nigra	0.3510	9.2571	~0.0
M. arctoides	M. fascicularis	M. tonkeana	0.2802	9.1394	~0.0
M. thibetana	M. fascicularis	M. tonkeana	0.3163	9.0768	~0.0
M. assamensis	M. fuscata	M. nemestrina	0.3459	8.2697	~0.0
M. assamensis	M. mulatta	M. nemestrina	0.3010	7.7672	~0.0
M. arctoides	M. fuscata	M. nemestrina	0.2816	7.7213	~0.0
M. assamensis	M. mulatta	M. nigra	0.2708	7.6451	~0.0
M. assamensis	M. fuscata	M. tonkeana	0.3234	7.6256	~0.0
M. arctoides	M. mulatta	M. nemestrina	0.2410	7.5331	~0.0
M. thibetana	M. mulatta	M. nemestrina	0.2926	7.4817	~0.0
M. thibetana	M. fuscata	M. nemestrina	0.3368	7.3266	~0.0
M. arctoides	M. fuscata	M. tonkeana	0.2677	7.1757	~0.0
M. assamensis	M. fuscata	M. leonina	0.3276	7.0628	~0.0
M. assamensis	M. fuscata	M. silenus	0.3150	6.7004	~0.0
M. arctoides	M. fuscata	M. silenus	0.2658	6.1848	~0.0
M. thibetana	M. fuscata	M. leonina	0.2993	6.0794	~0.0
M. assamensis	M. arctoides	M. fuscata	0.2095	5.9479	~0.0
M. arctoides	M. fuscata	M. leonina	0.2546	5.7599	~0.0
M. thibetana	M. fuscata	M. silenus	0.2891	5.6943	~0.0
M. thibetana	M. fuscata	M. nigra	0.3108	5.6345	~0.0
M. assamensis	M. mulatta	M. tonkeana	0.2501	5.5892	~0.0
M. thibetana	M. fuscata	M. tonkeana	0.2997	5.5499	~0.0
M. assamensis	M. mulatta	M. leonina	0.2475	5.5134	~0.0
M. arctoides	M. fuscata	M. nigra	0.2497	5.4793	~0.0
M. assamensis	M. mulatta	M. silenus	0.2422	5.2978	~0.0
M. arctoides	M. mulatta	M. silenus	0.1943	5.1615	~0.0
M. assamensis	M. arctoides	M. mulatta	0.1965	5.0952	~0.0
M. thibetana	M. mulatta	M. nigra	0.2315	4.9413	~0.0
M. arctoides	M. mulatta	M. tonkeana	0.1940	4.9214	~0.0
M. assamensis	M. arctoides	M. fascicularis	0.1822	4.8565	~0.0
M. thibetana	M. mulatta	M. silenus	0.2218	4.7476	~0.0
M. thibetana	M. mulatta	M. leonina	0.2253	4.6815	~ 0.0

Table S8. D-statistic results showing the combination of Z-score >3 as an indication of a possible signal of introgression between P2 and P3 assuming fig. S5A as the reference tree. *P. hamadryas* was used as the outgroup.

M. arctoides	M. mulatta	M. nigra	0.1751	4.6477	~0.0
M. mulatta	M. fascicularis	M. nigra	0.1973	4.6210	~0.0
M. thibetana	M. mulatta	M. tonkeana	0.2254	4.3947	~0.0
M. arctoides	M. mulatta	M. leonina	0.1758	4.2984	~0.0
M. mulatta	M. fascicularis	M. silenus	0.2174	4.1549	~0.0
M. mulatta	M. fascicularis	M. leonina	0.2209	4.1322	~0.0
M. tonkeana	M. nemestrina	M. fascicularis	0.1854	4.1142	~0.0
M. fuscata	M. mulatta	M. fascicularis	0.1336	4.0828	~0.0
M. nigra	M. silenus	M. fascicularis	0.1798	3.8909	~0.0
M. nigra	M. nemestrina	M. mulatta	0.1915	3.7307	0.0001
M. tonkeana	M. silenus	M. fascicularis	0.2105	3.6502	0.0001
M. nigra	M. nemestrina	M. fascicularis	0.1542	3.5679	0.0002
M. thibetana	M. arctoides	M. fuscata	0.1673	3.5294	0.0002
M. mulatta	M. fascicularis	M. nemestrina	0.1548	3.4904	0.0002
M. leonina	M. silenus	M. assamensis	0.2291	3.3970	0.0003
M. nigra	M. nemestrina	M. fuscata	0.1464	3.3917	0.0003
M. thibetana	M. arctoides	M. fascicularis	0.1330	3.3062	0.0005
M. mulatta	M. fuscata	M. leonina	0.1571	3.2693	0.0005
M. nigra	M. silenus	M. assamensis	0.1787	3.1959	0.0007
M. mulatta	M. assamensis	M. sylvanus	0.1126	3.1323	0.0009
M. nemestrina	M. silenus	M. tonkeana	0.0768	3.1270	0.0009
M. nigra	M. leonina	M. fascicularis	0.1286	3.0884	0.0010
M. assamensis	M. arctoides	M. nigra	0.1767	3.0818	0.0010
M. assamensis	M. thibetana	M. arctoides	0.0725	3.0230	0.0013

SSB as the rel	ierence tree. P. h	seu as the ou	igroup.		
P1	P2	P3	Dstatistic	Z-score	p-value
M. assamensis	M. fascicularis	M. silenus	0.3185	11.0505	~0.0
M. thibetana	M. fascicularis	M. nemestrina	0.3173	10.9595	~0.0
M. assamensis	M. fascicularis	M. nigra	0.2481	10.7635	~0.0
M. thibetana	M. fascicularis	M. leonina	0.3237	10.5930	~0.0
M. assamensis	M. fascicularis	M. leonina	0.3065	10.5099	~0.0
M. arctoides	M. fascicularis	M. nemestrina	0.3188	10.4124	~0.0
M. assamensis	M. fascicularis	M. nemestrina	0.3054	10.2569	~0.0
M. thibetana	M. fascicularis	M. nigra	0.2613	10.1511	~0.0
M. thibetana	M. fascicularis	M. tonkeana	0.2549	10.0383	~0.0
M. thibetana	M. fascicularis	M. silenus	0.3336	9.7071	~0.0
M. assamensis	M. fascicularis	M. tonkeana	0.2507	8.9743	~0.0
M. thibetana	M. fuscata	M. leonina	0.2449	8.9695	~0.0
M. assamensis	M. fuscata	M. leonina	0.2229	8.4416	~0.0
M. assamensis	M. fuscata	M. silenus	0.2426	8.3239	~0.0
M. thibetana	M. fuscata	M. silenus	0.2592	8.1415	~0.0
M. thibetana	M. fuscata	M. nemestrina	0.2372	7.7463	~0.0
M. arctoides	M. fascicularis	M. leonina	0.3102	7.7277	~0.0
M. arctoides	M. fascicularis	M. silenus	0.3053	7.6233	~0.0
M. arctoides	M. fascicularis	M. nigra	0.2581	7.5484	~0.0
M. arctoides	M. fascicularis	M. tonkeana	0.2636	7.5263	~0.0
M. assamensis	M. fuscata	M. nemestrina	0.2225	7.3796	~0.0
M. thibetana	M. mulatta	M. nemestrina	0.2389	7.2829	~0.0
M. arctoides	M. mulatta	M. nemestrina	0.2430	7.2656	~0.0
M. assamensis	M. mulatta	M. silenus	0.2178	7.0392	~0.0
M. thibetana	M. mulatta	M. silenus	0.2316	6.8688	~0.0
M. thibetana	M. mulatta	M. leonina	0.2132	6.8588	~0.0
M. assamensis	M. mulatta	M. nemestrina	0.2259	6.8335	~0.0
M. arctoides	M. fuscata	M. nemestrina	0.2382	6.7963	~0.0
M. assamensis	M. mulatta	M. leonina	0.1950	6.7638	~0.0
M. thibetana	M. mulatta	M. nigra	0.1777	6.6106	~0.0
M. arctoides	M. mulatta	M. silenus	0.2134	6.5214	~0.0
M. thibetana	M. fuscata	M. nigra	0.2069	6.3694	~0.0
M. thibetana	M. fuscata	M. tonkeana	0.2075	6.3327	~0.0
M. arctoides	M. fuscata	M. leonina	0.2319	6.2162	~0.0
M. arctoides	M. fuscata	M. silenus	0.2329	6.1236	~0.0
M. assamensis	M. fuscata	M. nigra	0.1912	6.0300	~0.0
M. arctoides	M. mulatta	M. leonina	0.2055	5.9915	~0.0
M. assamensis	M. mulatta	M. nigra	0.1651	5.9464	~0.0
M. assamensis	M. fuscata	M. tonkeana	0.2014	5.8718	~0.0
M. thibetana	M. mulatta	M. tonkeana	0.1821	5.8375	~0.0
M. assamensis	M. mulatta	M. tonkeana	0.1767	5.3759	~0.0
M. assamensis	M. arctoides	M. mulatta	0.1569	5.2906	~0.0
M. arctoides	M. fuscata	M. nigra	0.2040	5.1788	~0.0
M. arctoides	M. fuscata	M. tonkeana	0.2174	5.0406	~0.0
M. arctoides	M. mulatta	M. tonkeana	0.1930	5.0222	~0.0

Table S9. D-statistic results showing the combination of Z-score >3 as an indication of a possible signal of introgression between P2 and P3 assuming fig. S5B as the reference tree. *P. hamadryas* was used as the outgroup.

M. arctoides	M. mulatta	M. nigra	0.1781	4.9600	~ 0.0
M. assamensis	M. arctoides	M. fuscata	0.1380	4.8609	~0.0
M. nigra	M. leonina	M. fascicularis	0.2074	4.1347	~0.0
M. tonkeana	M. nemestrina	M. fascicularis	0.2084	4.0973	~0.0
M. fuscata	M. fascicularis	M. nemestrina	0.1313	4.0774	~0.0
M. nigra	M. nemestrina	M. fascicularis	0.2113	3.9581	~0.0
M. tonkeana	M. nemestrina	M. mulatta	0.1867	3.7155	0.0001
M. assamensis	M. arctoides	M. fascicularis	0.0964	3.6852	0.0001
M. tonkeana	M. leonina	M. fascicularis	0.1998	3.6707	0.0001
M. nigra	M. silenus	M. fascicularis	0.1943	3.6254	0.0001
M. mulatta	M. fascicularis	M. leonina	0.1748	3.6000	0.0002
M. nigra	M. nemestrina	M. mulatta	0.2037	3.5420	0.0002
M. mulatta	M. arctoides	M. sylvanus	0.1494	3.5010	0.0002
M. thibetana	M. arctoides	M. mulatta	0.1324	3.4363	0.0003
M. nemestrina	M. leonina	M. nigra	0.0913	3.4208	0.0003
M. mulatta	M. fascicularis	M. nigra	0.1290	3.2752	0.0005
M. mulatta	M. assamensis	M. sylvanus	0.1396	3.2480	0.0006
M. nemestrina	M. leonina	M. tonkeana	0.0842	3.2249	0.0006
M. fuscata	M. fascicularis	M. leonina	0.1288	3.1908	0.0007
M. mulatta	M. thibetana	M. sylvanus	0.1417	3.1517	0.0008
M. mulatta	M. fascicularis	M. silenus	0.1536	3.0738	0.0011
M. tonkeana	M. silenus	M. fascicularis	0.1907	3.0722	0.0011
M. nigra	M. silenus	M. mulatta	0.1489	3.0621	0.0011

Table S10. Z-score values between pairs of species groups inferred from the Dsuit package assuming fig. S5A as the reference tree. Cells with Z-score values >3 are given in bold. sin: *sinica* group; sil: *silenus* group; fas: *fascicularis* group; syl: *sylvanus* group.

branch_descendants	Sin	fas	sil	syl	
sil,sin,fas	Nan	nan	nan	nan	
sin,fas	Nan	nan	nan	0.00	
sin	Nan	nan	0.00	3.08	
fas	Nan	nan	10.95	0.00	
sil	Nan	nan	nan	0.65	
syl	Nan	nan	nan	nan	

Table S11. Z-score values between pairs of species groups inferred from the Dsuit package assuming fig. S5B as the reference tree. The cell with a Z-score value >3 is given in bold. sin: *sinica* group; sil: *silenus* group; fas: *fascicularis* group; syl: *sylvanus* group.

branch_descendants	sin	fas	sil	syl	
sin,fas,sil	nan	nan	nan	nan	
sin	nan	nan	nan	2.78	
fas,sil	nan	nan	nan	0.00	
fas	20.64	nan	nan	0.00	
sil	0.00	nan	nan	1.31	
syl	nan	nan	nan	nan	

Table S12. Z-score values between pairs of species inferred from the Dsuit package assuming fig. S5A as the reference tree. Cells with Z-score values >3 are given in bold. Species are abbreviated using the first letter of the genus name and the first three letters of the species name.

_branch_descendants	Msyl	Mfas	Mfus	Mmul	Marc	Mthi	Mass	Mnem	Mleo	Msil	Mnig	Mton
Msyl	nan											
M fas, Mmul, M fus, Marc, M thi, M ass, Mnig, M ton, M nem, M sil, M leo	nan											
Mfas,Mmul,Mfus,Marc,Mthi,Mass	0.00	nan										
Mfas,Mmul,Mfus	0.00	nan	nan	nan	nan	nan	nan	7.53	4.68	5.16	4.94	4.92
Mfas	1.23	nan	nan	nan	0.15	0.43	0.65	3.00	3.00	2.99	3.01	1.86
Mmul,Mfus	0.00	nan	nan	nan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mmul	0.00	4.08	nan	nan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mfus	2.67	0.00	nan	nan	1.66	1.11	1.66	1.38	3.27	2.47	2.32	2.29
Marc,Mthi,Mass	1.02	nan	nan	nan	nan	nan	nan	0.00	0.00	0.00	0.00	0.00
Marc	0.00	4.08	4.74	4.03	nan	nan	nan	1.85	1.67	1.22	2.34	1.36
Mthi,Mass	0.17	0.00	0.00	0.00	nan	nan	nan	0.00	0.00	0.00	0.00	0.00
Mthi	0.00	1.70	1.55	2.13	3.02	nan	nan	0.34	0.88	0.67	1.27	0.93
Mass	0.24	0.00	0.00	0.00	0.00	nan	nan	0.00	0.00	0.00	0.00	0.00
Mnig,Mton,Mnem,Msil,Mleo	0.00	nan										
Mnem,Msil,Mleo	0.00	3.01	2.21	1.44	0.70	0.39	0.91	nan	nan	nan	nan	nan
Mnem	0.20	0.40	0.41	1.30	0.00	0.00	0.05	nan	nan	nan	0.00	0.00
Msil	1.10	1.91	1.42	1.98	1.52	2.62	3.40	1.92	nan	nan	1.13	1.18
Mleo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	nan	nan	0.00	0.00
Msil,Mleo	0.00	0.00	0.00	0.00	0.12	0.50	0.00	nan	nan	nan	0.66	1.46
Mnig,Mton	0.35	0.00	0.00	0.00	0.00	0.00	0.00	nan	nan	nan	nan	nan
Mnig	0.47	0.81	0.00	0.00	0.49	0.00	0.00	0.00	0.00	0.00	nan	nan
Mton	0.00	0.00	1.18	1.63	0.00	0.49	0.80	0.41	1.07	1.32	nan	nan

Table S13. Z-score values between pairs of species inferred from the Dsuit package assuming fig. S5B as the reference tree. Cells with Z-scores values >3 are given in bold. Species are abbreviated using the first letter of the genus name and the first three letters of the species name.

branch_descendants	Msyl	Mnem	Mleo	Msil	Mnig	Mton	Mfas	Mfus	Mmul	Marc	Mthi	Mass
Msyl	nan	nan	nan									
Marc, Mthi, Mass, Mfas, Mfus, Mmul, Mnig, Mton, Mnem, Mleo, Msil	nan	nan	nan									
Mfas,Mfus,Mmul,Mnig,Mton,Mnem,Mleo,Msil	0.00	nan	nan	nan								
Mnig,Mton,Mnem,Mleo,Msil	0.43	nan	0.00	0.00	0.00							
Mnem,Mleo,Msil	0.18	nan	nan	nan	nan	nan	3.35	2.40	2.66	0.97	0.36	0.49
Mnem	0.00	nan	nan	nan	0.00	0.00	0.34	0.06	1.60	0.00	0.61	0.38
Mleo,Msil	0.18	nan	nan	nan	2.27	1.18	0.00	0.00	0.00	0.08	0.00	0.00
Mleo	0.00	0.78	nan	nan	1.18	2.59	0.21	0.00	0.00	0.00	0.63	0.83
Msil	1.28	0.00	nan	nan	0.00	0.00	0.00	0.33	0.58	0.00	0.00	0.00
Mnig,Mton	0.00	nan	nan	nan	nan	nan	0.00	0.00	0.00	0.00	0.00	0.00
Mnig	0.44	0.42	0.58	1.24	nan	nan	0.06	0.00	0.00	0.31	0.00	0.17
Mton	0.00	0.00	0.00	0.00	nan	nan	0.00	0.42	0.53	0.00	0.25	0.00
Mfas,Mfus,Mmul	0.00	nan	13.08	12.39	11.14							
Mfas	0.64	3.49	3.40	2.85	2.75	2.22	nan	nan	nan	0.24	1.29	1.95
Mfus,Mmul	0.00	0.00	0.00	0.00	0.00	0.00	nan	nan	nan	0.00	0.00	0.00
Mfus	0.45	0.00	1.13	0.73	1.06	0.98	0.00	nan	nan	1.02	2.02	1.85
Mmul	0.00	0.46	0.00	0.00	0.00	0.00	2.67	nan	nan	0.00	0.00	0.00
Marc,Mthi,Mass	2.20	nan	nan	nan								
Marc	0.15	0.06	0.23	0.50	0.10	0.00	3.06	3.86	4.36	nan	nan	nan
Mthi,Mass	0.00	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00	nan	nan	nan
Mthi	0.08	0.00	0.00	0.00	0.00	0.00	0.34	0.84	0.81	0.45	nan	nan
Mass	0.00	0.79	0.79	0.64	0.65	0.33	0.00	0.00	0.00	0.00	nan	nan

Table S14. PSGs identified in the comparison fascicularis-sinica versus silenus groups with P-value <0.01(after Yates' correction), a top</th>2.5% number of fixed non-synonymous mutations and fixed 1 kb upstream differences. The phylogenetic analysis supported the sisterrelationship between the fascicularis and sinica groups. Genes were sorted by the sum of the fixed number of non-synonymous mutations(FixNonSyn) and fixed 1-kb upstream mutations (Fix1kup).

Chromosome	Num FixNonSyn+Fix1kup	Num FixNonSyn	Num Fix1kup	P-value	Gene Symbol	Full Name
Chr9	10	0	10	2.20E-16	MKX	Homeobox protein Mohawk
Chr11	9	3	6	2.20E-16	TAS2R64	Taste receptor type 2 member 64
ChrY	8	4	4	2.20E-16	MXRA5	Matrix-remodeling-associated protein 5
Chr13	8	6	2	2.20E-16	ASPRV1	Retroviral-like aspartic protease 1
Chr3	8	6	2	1.53E-14	NACAD	NAC-alpha domain-containing protein 1
Chr2	7	0	7	1.13E-11	WDR48	WD repeat-containing protein 48
Chr16	7	1	6	5.21E-13	OR4D2	Olfactory receptor 4D2
Chr15	7	1	6	1.26E-12	KDM4C	Lysine-specific demethylase 4C
Chr8	7	4	3	2.20E-16	MTUS1	Microtubule-associated tumor suppressor 1 homolog
Chr12	7	6	1	3.82E-11	ZDBF2	DBF4-type zinc finger-containing protein 2
Chr14	7	6	1	0.000431	PHRF1	PHD and RING finger domain-containing protein 1
Chr12	7	7	0	3.42E-08	TTN	Titin
Chr12	7	7	0	0.003575	FSIP2	Fibrous sheath-interacting protein 2
Chr10	6	0	6	2.40E-10	GPCPD1	Glycerophosphocholine phosphodiesterase GPCPD1
Chr1	6	0	6	2.01E-08	ANKRD65	Ankyrin repeat domain-containing protein 65
Chr14	6	1	5	9.94E-14	KIF18A	Kinesin-like protein KIF18A
Chr7	6	1	5	3.34E-12	MLH3	DNA mismatch repair protein Mlh3
Chr11	6	2	4	2.20E-16	IFT81	Intraflagellar transport protein 81 homolog
Chr12	6	2	4	6.61E-15	TRAF3IP1	TRAF3-interacting protein 1
Chr14	6	2	4	1.26E-12	LYVE1	Lymphatic vessel endothelial hyaluronic acid receptor 1
Chr12	6	3	3	2.20E-16	WIPF1	WAS/WASL-interacting protein family member 1
Chr1	6	3	3	1.06E-15	DNAJB6	DnaJ homolog subfamily B member 6
Chr10	6	3	3	2.64E-11	SUSD2	Sushi domain-containing protein 2

Chr16	6	5	1	7.42E-14	KIF2B	Kinesin-like protein KIF2B
Chr7	6	5	1	1.58E-07	KNL1	Kinetochore scaffold 1
Chr12	5	0	5	4.65E-14	PGAP1	GPI inositol-deacylase
Chr6	5	0	5	1.50E-11	PLPP1	Phospholipid phosphatase 1
Chr4	5	0	5	7.87E-11	EGFL8	Epidermal growth factor-like protein 8
Chr6	5	0	5	1.49E-09	RAB24	Ras-related protein Rab-24
Chr14	5	0	5	3.99E-08	TMEM126B	Complex I assembly factor TMEM126B, mitochondrial
Chr4	5	0	5	9.78E-08	TGas006m08.1	Histone H4
Chr9	5	0	5	9.78E-08	MORN4	MORN repeat-containing protein 4
Chr12	5	0	5	9.78E-08	GPR35	G-protein coupled receptor 35
Chr19	5	1	4	1.49E-09	DMRTC2	Doublesex- and mab-3-related transcription factor C2
Chr14	5	1	4	1.49E-09	BTG4	Protein BTG4
Chr19	5	1	4	3.99E-08	MUM1	PWWP domain-containing protein MUM1
Chr4	5	1	4	2.64E-07	PRDM13	PR domain zinc finger protein 13
Chr8	5	1	4	5.24E-06	TRPA1	Transient receptor potential cation channel subfamily A member 1
Chr7	5	2	3	7.87E-11	NGDN	Neuroguidin
Chr8	5	2	3	8.40E-11	LRRC24	Leucine-rich repeat-containing protein 24
Chr6	5	2	3	1.49E-09	APBB3	Amyloid beta A4 precursor protein-binding family B member 3
Chr19	5	2	3	4.99E-09	ZNF256	Zinc finger protein 256
Chr7	5	2	3	1.44E-05	Ino80	DNA helicase INO80
Chr15	5	3	2	3.80E-08	DENND1A	DENN domain-containing protein 1A
ChrX	5	3	2	0.000189	ARMCX4	Armadillo repeat-containing X-linked protein 4
Chr10	5	3	2	0.002678	ZSWIM3	Zinc finger SWIM domain-containing protein 3
Chr16	5	4	1	6.83E-16	GEMIN4	Gem-associated protein 4
Chr10	5	4	1	0.002248	TRIOBP	TRIO and F-actin-binding protein
Chr3	4	0	4	2.20E-16	ZYX	Zyxin
Chr12	4	0	4	2.81E-13	DYNC112	Cytoplasmic dynein 1 intermediate chain 2
Chr12	4	0	4	1.42E-12	AGPS	Alkyldihydroxyacetonephosphate synthase, peroxisomal

ChrX	4	0	4	4.84E-09	MAGT1	Magnesium transporter protein 1
Chr8	4	0	4	9.78E-08	CA8	Carbonic anhydrase-related protein
Chr7	4	0	4	2.22E-07	FLVCR2	Feline leukemia virus subgroup C receptor-related protein 2
Chr5	4	0	4	3.23E-07	HNRNPD	Heterogeneous nuclear ribonucleoprotein D0
Chr8	4	0	4	9.40E-07	Naca	Nascent polypeptide-associated complex subunit alpha
Chr2	4	0	4	1.25E-06	ZNF620	Zinc finger protein 620
Chr16	4	0	4	1.78E-06	PIGS	GPI transamidase component PIG-S
Chr1	4	0	4	5.36E-06	SLC30A10	Zinc transporter 10
Chr19	4	0	4	1.13E-05	SAE1	SUMO-activating enzyme subunit 1
Chr4	4	0	4	5.28E-05	HIST1H2AJ	Histone H2A type 1-J
Chr18	4	0	4	0.000115	Kctd1	BTB/POZ domain-containing protein KCTD1
Chr6	4	0	4	0.000115	SKIV2L2	Superkiller viralicidic activity 2-like 2
Chr10	4	0	4	0.000182	C20orf204	Chromosome 20 open reading frame 204
Chr3	4	0	4	0.000412	EIF3B	Eukaryotic translation initiation factor 3 subunit B
Chr7	4	0	4	0.000412	CRIP1	Cysteine-rich protein 1
Chr1	4	0	4	0.000477	ECE1	Endothelin-converting enzyme 1
Chr4	4	0	4	0.00083	OSTM1	Osteopetrosis-associated transmembrane protein 1
Chr2	4	0	4	0.001136	CRBN	Protein cereblon
Chr1	4	0	4	0.001522	PFKFB2	6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2
Chr7	4	1	3	2.81E-13	ZC2HC1C	Zinc finger C2HC domain-containing protein 1C
ChrY	4	1	3	1.42E-12	USP9Y	Probable ubiquitin carboxyl-terminal hydrolase FAF-Y
Chr5	4	1	3	4.16E-09	Cpeb2	Cytoplasmic polyadenylation element-binding protein 2
Chr11	4	1	3	4.84E-09	VPS29	Vacuolar protein sorting-associated protein 29
Chr3	4	1	3	4.08E-08	PVRIG	Transmembrane protein PVRIG
Chr8	4	1	3	3.22E-06	CEBPD	CCAAT/enhancer-binding protein delta
Chr5	4	1	3	5.36E-06	PEF1	Peflin
Chr13	4	1	3	5.57E-06	TGOLN2	Trans-Golgi network integral membrane protein 2
Chr2	4	1	3	4.01E-05	POCIA	POC1 centriolar protein homolog A

Chr2	4	1	3	0.000108	EIF4B	Eukaryotic translation initiation factor 4B
Chr2	4	1	3	0.000115	LRRIQ4	Leucine-rich repeat and IQ domain-containing protein 4
Chr4	4	1	3	0.000115	TJAP1	Tight junction-associated protein 1
Chr19	4	1	3	0.000412	ABHD17A	Protein ABHD17A
Chr7	4	1	3	0.000592	SLTM	SAFB-like transcription modulator
Chr16	4	1	3	0.002591	MKS1	Meckel syndrome type 1 protein
Chr12	4	1	3	0.003299	UGTIAI	UDP-glucuronosyltransferase 1-1
Chr14	4	2	2	3.02E-11	TIGD3	Tigger transposable element-derived protein 3
Chr7	4	2	2	1.49E-09	Irf2bpl	Interferon regulatory factor 2-binding protein-like
Chr5	4	2	2	1.73E-09	LIAS	Lipoyl synthase, mitochondrial
Chr2	4	2	2	1.73E-09	CEP63	Centrosomal protein of 63 kDa
Chr6	4	2	2	2.20E-08	HMGXB3	HMG domain-containing protein 3
Chr3	4	2	2	7.91E-08	IFNAR2	Interferon alpha/beta receptor 2
Chr4	4	2	2	9.25E-07	ZKSCAN4	Zinc finger protein with KRAB and SCAN domains 4
Chr20	4	2	2	6.19E-05	SRCAP	Helicase SRCAP
Chr8	4	2	2	0.000149	RECQL4	ATP-dependent DNA helicase Q4
Chr3	4	2	2	0.000151	RPL3	60S ribosomal protein L3
Chr11	4	2	2	0.000278	FAM186B	Protein FAM186B
Chr7	4	2	2	0.000366	CATSPERB	Cation channel sperm-associated protein subunit beta
Chr1	4	2	2	0.00083	SYNC	Syncoilin
Chr4	4	2	2	0.00083	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
Chr2	4	2	2	0.002591	Tnik	Traf2 and NCK-interacting protein kinase
Chr14	4	2	2	0.004142	FANCF	Fanconi anemia group F protein
Chr7	4	3	1	8.93E-09	ADAM21	Disintegrin and metalloproteinase domain-containing protein 21
Chr14	4	3	1	5.36E-06	UBE4A	Ubiquitin conjugation factor E4 A
Chr2	4	3	1	1.13E-05	Krt8	Keratin, type II cytoskeletal 8
Chr11	4	3	1	0.000182	SLC9A7	Sodium/hydrogen exchanger 7
Chr6	4	3	1	0.000278	KIF4B	Chromosome-associated kinesin KIF4B

Chr4	4	3	1	0.002003	CCDC170	Coiled-coil domain-containing protein 170
Chr10	4	3	1	0.002591	MAVS	Mitochondrial antiviral-signaling protein
Chr7	4	4	0	9.94E-14	BDKRB1	B1 bradykinin receptor
Chr12	4	4	0	3.80E-08	RBM44	RNA-binding protein 44
ChrX	4	4	0	1.47E-07	CXorf49	Uncharacterized protein CXorf49
Chr4	4	4	0	9.29E-06	PLG	Plasminogen
Chr12	4	4	0	0.000614	UGT1A9	UDP-glucuronosyltransferase 1-9
Chr6	4	4	0	0.003299	SLCO6A1	Solute carrier organic anion transporter family member 6A1
Chr10	4	4	0	0.009938	LAMA5	Laminin subunit alpha-5
Chr8	3	0	3	2.20E-16	JPH1	Junctophilin-1
Chr3	3	0	3	2.20E-16	GET4	Golgi to ER traffic protein 4 homolog
ChrY	3	0	3	6.23E-15	RPS4Y1	40S ribosomal protein S4, Y isoform 1
Chr7	3	0	3	1.50E-11	GALNT16	Polypeptide N-acetylgalactosaminyltransferase 16
Chr14	3	0	3	9.71E-08	LRRC10B	Leucine-rich repeat-containing protein 10B
Chr1	3	0	3	3.23E-07	POU3F1	POU domain, class 3, transcription factor 1
Chr16	3	0	3	9.25E-07	GHDC	GH3 domain-containing protein
Chr4	3	0	3	1.55E-06	Nfya	Nuclear transcription factor Y subunit alpha
Chr17	3	0	3	1.55E-06	Mab2111	Putative nucleotidyltransferase MAB21L1
ChrX	3	0	3	1.55E-06	SUV39H1	Histone-lysine N-methyltransferase SUV39H1
Chr7	3	0	3	5.36E-06	AP3S2	AP-3 complex subunit sigma-2
Chr9	3	0	3	6.59E-06	Atad1	ATPase family AAA domain-containing protein 1
Chr16	3	0	3	6.59E-06	НОХВ6	Homeobox protein Hox-B6
Chr4	3	0	3	2.16E-05	RNF5	E3 ubiquitin-protein ligase RNF5
Chr4	3	0	3	2.19E-05	ELOVL4	Elongation of very long chain fatty acids protein 4
Chr5	3	0	3	5.80E-05	ARSJ	Arylsulfatase J
Chr20	3	0	3	6.95E-05	C16orf90	Uncharacterized protein C16orf90
Chr18	3	0	3	6.95E-05	DCC	Netrin receptor DCC
Chr4	3	0	3	6.95E-05	RARS2	Probable argininetRNA ligase, mitochondrial

Chr4	3	0	3	6.95E-05 7	TRAPPC3L	Trafficking protein particle complex subunit 3-like protein
Chr8	3	0	3	0.000277 <i>I</i>	PPP1R42	Protein phosphatase 1 regulatory subunit 42
Chr4	3	0	3	0.000278	SCAF8	Protein SCAF8
Chr2	3	0	3	0.000519 \$	SS18L2	SS18-like protein 2
Chr11	3	0	3	0.000519 <i>N</i>	Myl6	Myosin light polypeptide 6
Chr16	3	0	3	0.00083	FADS6	Fatty acid desaturase 6
ChrX	3	0	3	0.000899 <i>H</i>	RAB5A	Ras-related protein Rab-5A
Chr1	3	0	3	0.000899 1	DCLRE1B	5' exonuclease Apollo
Chr2	3	0	3	0.000899 <i>I</i>	RASSF1	Ras association domain-containing protein 1
Chr6	3	0	3	0.000899 <i>I</i>	PPP2CA	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform
Chr14	3	0	3	0.001462	SLC25A22	Mitochondrial glutamate carrier 1
Chr7	3	0	3	0.002256	SUSD6	Sushi domain-containing protein 6
Chr16	3	0	3	0.003299 <i>I</i>	HID1	Protein HID1
Chr5	3	0	3	0.003299	PCDH10	Protocadherin-10
Chr1	3	0	3	0.003328 A	AP4B1	AP-4 complex subunit beta-1
Chr14	3	0	3	0.003328	GATD1	Glutamine amidotransferase-like class 1 domain-containing protein 1
Chr7	3	0	3	0.006491 <i>N</i>	MIPOL1	Mirror-image polydactyly gene 1 protein
Chr2	3	0	3	0.006491 \$	SLC25A20	Mitochondrial carnitine/acylcarnitine carrier protein
Chr5	3	0	3	0.008669 <i>H</i>	RPL9	60S ribosomal protein L9
Chr7	3	0	3	0.008669	FURIN	Furin
Chr11	3	0	3	0.008669 <i>I</i>	KLRC4	NKG2-F type II integral membrane protein
Chr9	3	0	3	0.008669	SLC16A9	Monocarboxylate transporter 9
Chr10	3	0	3	0.008669 <i>I</i>	RSPH14	Radial spoke head 14 homolog
Chr19	3	0	3	0.008669	YJEFN3	YjeF N-terminal domain-containing protein 3
Chr1	3	1	2	6.42E-14 S	SUCO	SUN domain-containing ossification factor
Chr4	3	1	2	9.25E-07 (GPANK1	G patch domain and ankyrin repeat-containing protein 1
Chr11	3	1	2	9.40E-07 <i>N</i>	VR4A1	Nuclear receptor subfamily 4 group A member 1
Chr14	3	1	2	2.34E-06 C	OR5112	Olfactory receptor 51I2

Chr10	3	1	2	3.07E-06	INPP5J	Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A
Chr19	3	1	2	5.57E-06	VAVI	Proto-oncogene vav
Chr6	3	1	2	2.16E-05	CENPK	Centromere protein K
Chr1	3	1	2	2.19E-05	TDRD10	Tudor domain-containing protein 10
Chr1	3	1	2	2.34E-05	JAK1	Tyrosine-protein kinase JAK1
Chr13	3	1	2	0.000182	MTIF2	Translation initiation factor IF-2, mitochondrial
ChrX	3	1	2	0.000277	CLDN2	Claudin-2
Chr4	3	1	2	0.000278	ZNF322	Zinc finger protein 322
Chr4	3	1	2	0.000519	HIST1H1B	Histone H1.5
ChrX	3	1	2	0.000519	SIAH1	E3 ubiquitin-protein ligase SIAH1
Chr12	3	1	2	0.000592	ALPI	Intestinal-type alkaline phosphatase
Chr19	3	1	2	0.000592	EMC10	ER membrane protein complex subunit 10
Chr10	3	1	2	0.001136	SEC14L4	SEC14-like protein 4
Chr4	3	1	2	0.001136	TBC1D32	Protein broad-minded
Chr8	3	1	2	0.001462	TMEM68	Transmembrane protein 68
Chr1	3	1	2	0.001842	INTS11	Integrator complex subunit 11
Chr6	3	1	2	0.002256	CSF2	Granulocyte-macrophage colony-stimulating factor
Chr8	3	1	2	0.003328	SPAG1	Sperm-associated antigen 1
Chr16	3	1	2	0.003328	GGNBP2	Gametogenetin-binding protein 2
Chr9	3	1	2	0.003328	EBLN1	Endogenous Bornavirus-like nucleoprotein 1
Chr19	3	1	2	0.004443	ERCC2	TFIIH basal transcription factor complex helicase XPD subunit
Chr17	3	1	2	0.004724	ZIC5	Zinc finger protein ZIC 5
Chr19	3	1	2	0.006491	ZNF844	Zinc finger protein 844
Chr14	3	1	2	0.008669	FOXRED1	FAD-dependent oxidoreductase domain-containing protein 1
Chr19	3	1	2	0.008669	SYT5	Synaptotagmin-5
Chr3	3	1	2	0.008669	SLC25A13	Calcium-binding mitochondrial carrier protein Aralar2
Chr9	3	2	1	3.84E-10	JMJD1C	Probable JmjC domain-containing histone demethylation protein 2C
ChrY	3	2	1	6.59E-06	<i>RBMY1F</i>	RNA-binding motif protein, Y chromosome, family 1 member F/J

Chr11	3	2	1	1.13E-05	NEUROD4	Neurogenic differentiation factor 4
Chr19	3	2	1	1.44E-05	SBNO2	Protein strawberry notch homolog 2
Chr10	3	2	1	0.000135	WFDC2	WAP four-disulfide core domain protein 2
Chr9	3	2	1	0.000182	USP54	Inactive ubiquitin carboxyl-terminal hydrolase 54
Chr11	3	2	1	0.000278	CSRNP2	Cysteine/serine-rich nuclear protein 2
Chr4	3	2	1	0.001136	PRSS16	Thymus-specific serine protease
Chr20	3	2	1	0.001136	RNF40	E3 ubiquitin-protein ligase BRE1B
Chr20	3	2	1	0.001462	SPATA33	Spermatogenesis-associated protein 33
Chr14	3	2	1	0.002256	ZFPL1	Zinc finger protein-like 1
Chr10	3	2	1	0.002475	CABIN1	Calcineurin-binding protein cabin-1
Chr17	3	2	1	0.003328	EFNB2	Ephrin-B2
Chr11	3	2	1	0.004142	B3GNT4	N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 4
Chr9	3	2	1	0.006491	VSIR	V-type immunoglobulin domain-containing suppressor of T-cell activation
Chr11	3	2	1	0.008669	C3AR1	C3a anaphylatoxin chemotactic receptor
Chr17	3	2	1	0.009463	AKAP11	A-kinase anchor protein 11
Chr10	3	3	0	1.07E-13	SBF1	Myotubularin-related protein 5
Chr7	3	3	0	2.64E-07	ADAM20	Disintegrin and metalloproteinase domain-containing protein 20
Chr14	3	3	0	2.26E-05	DNHD1	Dynein heavy chain domain-containing protein 1
Chr14	3	3	0	7.64E-05	DNHD1	Dynein heavy chain domain-containing protein 1
Chr10	3	3	0	0.000151	FASTKD5	FAST kinase domain-containing protein 5, mitochondrial
Chr1	3	3	0	0.000412	THBS3	Thrombospondin-3
Chr2	3	3	0	0.000614	VILL	Villin-like protein
Chr3	3	3	0	0.002678	CYP3A7	Cytochrome P450 3A7
Chr19	3	3	0	0.004443	CD22	B-cell receptor CD22
Chr9	3	3	0	0.004724	PTCHD3	Patched domain-containing protein 3

Table S15. Gene ontology enrichment analyses based on the 216 PSGs identified in the comparison *fascicularis-sinica* versus *silenus* group. The top 40 most significant categories (P-value <0.05) from the over-representation analysis are reported. The categories related to reproductive functions are highlighted in red.

GeneSet ID	Description	Enrichment	P-value	Database	No. of	Genes
		Ratio			genes	
GO:0048232	Male gamete generation	3.034933822	8.02E-05	Biological_Process	16	WDR48;KIF18A;MLH3;IFT81;KNL1;DMRTC2;USP9Y;PO C1A;CATSPERB;FANCF;SIAH1;GGNBP2;RBMY1F;WFD C2;SBF1;PTCHD3
GO:0019953	Sexual reproduction	2.507521542	1.42E-04	Biological_Process	20	WDR48;KIF18A;MLH3;IFT81;KNL1;PLPP1;DMRTC2;US P9Y;POC1A;CATSPERB;FANCF;ADAM21;SIAH1;SPAG1; GGNBP2;RBMY1F;WFDC2;SBF1;ADAM20;PTCHD3
HP:0012447	Abnormal myelination	3.720040183	1.95E-04	Human_Ontology	11	PGAP1;TMEM126B;GEMIN4;SLC30A10;LIAS;JPH1;ELO VL4;SLC25A22;ERCC2;FOXRED1;SBF1
GO:0051567	Histone H3-K9 methylation	12.8510479	2.51E-04	Biological_Process	4	KDM4C;DMRTC2;SUV39H1;HIST1H1B
GO:0060831	Smoothened signaling pathway involved in dorsal/ventral neural tube patterning	22.03036784	3.04E-04	Biological_Process	3	TRAF3IP1;MKS1;TBC1D32
GO:0007276	Gamete generation	2.58924817	3.19E-04	Biological_Process	17	WDR48;KIF18A;MLH3;IFT81;KNL1;PLPP1;DMRTC2;US P9Y;POC1A;CATSPERB;FANCF;SIAH1;GGNBP2;RBMY1 F;WFDC2;SBF1;PTCHD3
HP:0100326	Immunologic hypersensitivity	6.493161046	3.29E-04	Human_Ontology	6	GPR35;SRCAP;ELOVL4;KLRC4;ERCC2;JMJD1C
GO:0036124	Histone H3-K9 trimethylation	18.14265586	5.56E-04	Biological_Process	3	KDM4C;DMRTC2;SUV39H1
GO:0007283	Spermatogenesis	2.746788865	6.15E-04	Biological_Process	14	WDR48;IFT81;KNL1;DMRTC2;USP9Y;POC1A;CATSPER B;FANCF;SIAH1;GGNBP2;RBMY1F;WFDC2;SBF1;PTCH D3
HP:0100022	Abnormality of movement	1.892593511	7.43E-04	Human_Ontology	28	TTN;MLH3;DNAJB6;KNL1;TMEM126B;GEMIN4;CA8;FL VCR2;SLC30A10;CRBN;POC1A;MKS1;UGT1A1;LIAS;CE P63;FANCF;PLG;JPH1;ELOVL4;DCC;RARS2;SLC25A22; AP4B1:KLRC4:ERCC2:FOXRED1:JMJD1C:SBF1
HP:0002921	Abnormality of the cerebrospinal fluid	3.150117592	7.93E-04	Human_Ontology	11	TMEM126B;FLVCR2;OSTM1;MKS1;RECQL4;FANCF;PL G;RARS2;ERCC2;FOXRED1;JMJD1C
HP:0100513	Vitamin E deficiency	41.12335329	9.23E-04	Human_Ontology	2	GPR35;SLC30A10
GO:0061647	Histone H3-K9 modification	9.138522954	9.43E-04	Biological_Process	4	KDM4C;DMRTC2;SUV39H1;HIST1H1B
HP:0003819	Death in childhood	14.01932499	0.001215	Human_Ontology	3	RARS2;SLC25A22;ERCC2
HP:0100514	Abnormality of vitamin E metabolism	34.26946108	0.001375	Human_Ontology	2	GPR35;SLC30A10

GO:1902525	Regulation of protein	34.26946108	0.001375	Biological_Process	2	WDR48;PEF1
GO:0016255	Attachment of GPI anchor to protein	34.26946108	0.001375	Biological_Process	2	PGAP1;PIGS
GO:0051552	Flavone metabolic process	34.26946108	0.001375	Biological_Process	2	UGT1A1;UGT1A9
GO:0051570	Regulation of histone H3-K9 methylation	13.40978912	0.001387	Biological_Process	3	KDM4C;DMRTC2;HIST1H1B
GO:0044703	Multi-organism reproductive process	2.085362743	0.001468	Biological_Process	20	WDR48;KIF18A;MLH3;IFT81;KNL1;PLPP1;DMRTC2;US P9Y;POC1A;CATSPERB;FANCF;ADAM21;SIAH1;SPAG1; GGNBP2;RBMY1F;WFDC2;SBF1;ADAM20;PTCHD3
GO:0021904	Dorsal/ventral neural tube patterning	12.8510479	0.001574	Biological_Process	3	TRAF3IP1;MKS1;TBC1D32
HP:0012759	Neurodevelopmental abnormality	1.696338323	0.001582	Human_Ontology	33	TTN;MLH3;TRAF3IP1;WIPF1;KNL1;PGAP1;TMEM126B; GEMIN4;MAGT1;CA8;FLVCR2;ECE1;CRBN;POC1A;MK S1;UGT1A1;LIAS;CEP63;SRCAP;RECQL4;FANCF;PLG;E LOVL4;DCC;RARS2;SLC25A22;AP4B1;SLC25A20;KLRC4 ;ERCC2;FOXRED1;JMJD1C;SBF1
HP:0000240	Abnormality of skull size	2.045937975	0.001839	Human_Ontology	20	IFT81;KNL1;PGAP1;TMEM126B;SLC30A10;POC1A;MKS 1;LIAS;CEP63;FANCF;PLG;ELOVL4;RARS2;SLC25A22;A P4B1:SLC25A20:ERCC2;FOXRED1:JMJD1C:SBF1
GO:0036123	Histone H3-K9 dimethylation	29.37382378	0.001913	Biological_Process	2	DMRTC2;SUV39H1
HP:0001263	Global developmental delay	1.887145103	0.002385	Human_Ontology	23	TRAF3IP1;KNL1;PGAP1;TMEM126B;GEMIN4;FLVCR2; CRBN;POC1A;MKS1;LIAS;CEP63;SRCAP;FANCF;PLG;E LOVL4;DCC;RARS2;SLC25A22;AP4B1;SLC25A20;ERCC2 :FOXRED1:JMJD1C
GO:0048609	Multicellular organismal reproductive process	2.149744791	0.002449	Biological_Process	17	WDR48;KIF18A;MLH3;IFT81;KNL1;PLPP1;DMRTC2;US P9Y;POC1A;CATSPERB;FANCF;SIAH1;GGNBP2;RBMY1 F;WFDC2;SBF1;PTCHD3
HP:0002672	Gastrointestinal carcinoma	11.01518392	0.002476	Human_Ontology	3	MLH3;GPR35;DCC
HP:0006749	Malignant gastrointestinal tract tumors	11.01518392	0.002476	Human_Ontology	3	MLH3;GPR35;DCC
HP:0012758	Neurodevelopmental delay	1.793971788	0.002486	Human_Ontology	26	TTN;TRAF3IP1;KNL1;PGAP1;TMEM126B;GEMIN4;MAG T1;FLVCR2;CRBN;POC1A;MKS1;UGT1A1;LIAS;CEP63;S RCAP;FANCF;PLG;ELOVL4;DCC;RARS2;SLC25A22;AP4 B1;SLC25A20;ERCC2;FOXRED1;JMJD1C
GO:1901620	Regulation of smoothened signaling pathway involved in dorsal/ventral neural tube patterning	25.70209581	0.002534	Biological_Process	2	TRAF3IP1;MKS1
GO:0070778	L-aspartate transmembrane transport	25.70209581	0.002534	Biological_Process	2	SLC25A22;SLC25A13

HP:0031826	Abnormal reflex	2.067654635	0.002785	Human_Ontology	18	TTN;MLH3;KNL1;TMEM126B;CA8;CEP63;FANCF;PLG; JPH1;ELOVL4;DCC;RARS2;SLC25A22;AP4B1;KLRC4;ER CC2·FOXRED1·SBF1
HP:0007364	Aplasia/Hypoplasia of the cerebrum	2.013772455	0.002855	Human_Ontology	19	KNL1;PGAP1;FLVCR2;SLC30A10;POC1A;MKS1;LIAS;C EP63;RECQL4;FANCF;ELOVL4;DCC;RARS2;SLC25A22; AP4B1:SLC25A20:ERCC2:JMJD1C:SBF1
GO:0042733	Embryonic digit morphogenesis	6.741533327	0.002928	Biological_Process	4	TRAF3IP1;ECE1;MKS1;TBC1D32
HP:0002242	Abnormal intestine morphology	2.421211924	0.002932	Human_Ontology	13	MLH3;WIPF1;GPR35;ECE1;MKS1;SRCAP;RECQL4;FAN CF;PLG;DCC;KLRC4;ERCC2;JMJD1C
GO:0032504	Multicellular organism reproduction	2.110800139	0.002955	Biological_Process	17	WDR48;KIF18A;MLH3;IFT81;KNL1;PLPP1;DMRTC2;US P9Y;POC1A;CATSPERB;FANCF;SIAH1;GGNBP2;RBMY1 F;WFDC2;SBF1;PTCHD3
HP:0011446	Abnormality of higher mental function	1.884820359	0.003019	Human_Ontology	22	TTN;MLH3;DNAJB6;PGAP1;TMEM126B;GEMIN4;CA8;S LC30A10;MKS1;UGT1A1;SRCAP;ELOVL4;DCC;RARS2;S LC25A22;AP4B1;SLC25A20;KLRC4;ERCC2;FOXRED1;SL C25A13;JMJD1C
HP:0100021	Cerebral palsy	10.28083832	0.003026	Human_Ontology	3	CA8;UGT1A1;DCC
GO:0015810	Aspartate transmembrane transport	22.84630739	0.003237	Biological_Process	2	SLC25A22;SLC25A13
GO:0052696	Flavonoid glucuronidation	22.84630739	0.003237	Biological_Process	2	UGTIAI;UGTIA9

Table S16. PSGs identified in the comparison *fascicularis-silenus* versus *sinica* groups with *P*-value <0.01(after Yates' correction), a top 2.5% number of fixed non-synonymous mutations and fixed 1 kb upstream differences. The phylogenetic analysis supports the sister relationship between the *fascicularis* and *silenus* groups. Genes were sorted by the sum of the fixed number of non-synonymous mutations (FixNonSyn) and fixed 1-kb upstream mutations (Fix1kup).

Chromosome	Num FixNonSyn+Fix1kup	Num FixNonSyn	Num Fix1kup	P-value	Gene Symbol	Full Name
Chr1	14	11	3	2.20E-16	SYDE2	Rho GTPase-activating protein SYDE2
Chr19	13	12	1	2.81E-12	WDR87	WD repeat-containing protein 87
Chr4	13	6	7	2.20E-16	ZNF318	Zinc finger protein 318
Chr1	12	2	10	2.20E-16	PRG4	Proteoglycan 4
Chr13	10	9	1	1.81E-07	C2orf16	Uncharacterized protein C2orf16
Chr7	10	1	9	2.20E-16	NEK9	Serine/threonine-protein kinase Nek9
Chr14	10	0	10	2.20E-16	TEX12	Testis-expressed protein 12
Chr18	10	0	10	2.20E-16	CABYR	Calcium-binding tyrosine phosphorylation-regulated protein isoform c
Chr10	9	9	0	2.20E-16	CHD6	Chromodomain-helicase-DNA-binding protein 6
Chr10	9	0	9	2.82E-15	GSTT1	Glutathione S-transferase theta-1
Chr1	8	8	0	0.000614	AHCTF1	Protein ELYS
Chr13	8	7	1	1.62E-07	RAD51AP2	RAD51-associated protein 2
Chr3	8	3	5	6.40E-14	Upk3b	Uroplakin-3b
Chr15	8	1	7	1.03E-05	EML2	Echinoderm microtubule-associated protein-like 2
Chr1	8	0	8	2.20E-16	ZC3H12A	Endoribonuclease ZC3H12A
Chr7	8	0	8	1.21E-14	EMC4	ER membrane protein complex subunit 4
Chr12	8	0	8	3.98E-13	COL5A2	Collagen alpha-2(V) chain
Chr20	8	0	8	8.19E-11	VPS35	Vacuolar protein sorting-associated protein 35
Chr19	7	7	0	2.20E-16	ZNF274	Neurotrophin receptor-interacting factor homolog
Chr16	7	5	2	0.0018	GPR179	Probable G-protein coupled receptor 179

Chr15	7	4	3	5.02E-14	PIGO	GPI ethanolamine phosphate transferase 3
Chr7	7	4	3	2.34E-12	MGA	MAX gene-associated protein
Chr9	7	4	3	3.92E-08	EIF4B	Eukaryotic translation initiation factor 4B
Chr14	7	4	3	3.61E-07	PITPNM1	Membrane-associated phosphatidylinositol transfer protein 1
Chr15	7	3	4	3.95E-13	C9orf131	Uncharacterized protein C9orf131
Chr12	7	2	5	2.20E-16	MFSD6	Major facilitator superfamily domain-containing protein 6
Chr14	7	2	5	2.20E-16	PIDD1	p53-induced death domain-containing protein 1
Chr9	7	2	5	2.82E-15	ZFYVE27	Protrudin
Chr7	7	2	5	4.82E-08	HERC1	Probable E3 ubiquitin-protein ligase HERC1
Chr5	7	2	5	9.19E-08	SHROOM3	Protein Shroom3
Chr7	7	1	6	1.21E-15	TOGARAM1	TOG array regulator of axonemal microtubules protein 1
Chr3	7	1	6	7.37E-08	AIRE	Autoimmune regulator
Chr16	7	0	7	2.20E-16	PSMD12	26S proteasome non-ATPase regulatory subunit 12
Chr2	7	0	7	2.39E-14	GHSR	Growth hormone secretagogue receptor type 1
Chr7	7	0	7	2.02E-12	USP3	Ubiquitin carboxyl-terminal hydrolase 3
Chr10	7	0	7	3.80E-11	PROKR2	Prokineticin receptor 2
Chr10	7	0	7	1.54E-09	PAK5	Serine/threonine-protein kinase PAK 5
Chr7	7	0	7	2.20E-08	NEIL1	Endonuclease 8-like 1
Chr6	6	6	0	0.002642	PCDHA3	Protocadherin alpha-3
Chr7	6	3	3	1.63E-13	RPGRIP1	X-linked retinitis pigmentosa GTPase regulator-interacting protein 1
Chr3	6	2	4	3.98E-14	LHFPL3	Lipoma HMGIC fusion partner-like 3 protein
Chr17	6	2	4	2.38E-09	SUPT20H	Transcription factor SPT20 homolog
Chr8	6	2	4	3.13E-06	Eppk1	Epiplakin
Chr3	6	2	4	0.005234	SDK1	Protein sidekick-1
Chr3	6	1	5	3.92E-08	EPHA1	Ephrin type-A receptor 1
Chr2	6	1	5	2.20E-07	LPP	Lipoma-preferred partner
Chr6	6	1	5	0.000181	GEMIN5	Gem-associated protein 5
Chr19	6	0	6	8.19E-11	LMNB2	Lamin-B2

Chr10	6	0	6	1.31E-10	OVOL2	Transcription factor Ovo-like 2
Chr10	6	0	6	8.97E-10	ERGIC3	Endoplasmic reticulum-Golgi intermediate compartment protein 3
Chr6	6	0	6	1.34E-08	TCF7	Transcription factor 7
Chr19	6	0	6	5.98E-08	IZUMO4	Izumo sperm-egg fusion protein 4
Chr9	6	0	6	3.96E-07	TMEM72	Transmembrane protein 72
Chr5	6	0	6	1.16E-06	PDHA2	Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial
Chr14	6	0	6	3.05E-05	TKFC	Triokinase/FMN cyclase
Chr6	5	5	0	2.20E-08	PRLR	Prolactin receptor
Chr6	5	5	0	6.60E-05	PCDHA13	Protocadherin alpha-13
Chr7	5	5	0	0.000817	AKAP13	A-kinase anchor protein 13
ChrX	5	4	1	4.05E-06	GVQW1	Protein GVQW1
Chr2	5	4	1	0.002376	BSN	Protein bassoon
Chr13	5	3	2	4.68E-06	RANBP2	E3 SUMO-protein ligase RanBP2
Chr16	5	3	2	4.21E-05	AATF	Protein AATF
Chr7	5	3	2	6.95E-05	C8orf44	Putative uncharacterized protein C8orf44
Chr7	5	2	3	2.20E-16	DDHD1	Phospholipase DDHD1
Chr7	5	2	3	3.11E-10	TRIP4	Activating signal cointegrator 1
Chr18	5	2	3	8.97E-10	CABYR	Calcium-binding tyrosine phosphorylation-regulated protein
Chr7	5	2	3	3.01E-08	TP53BP1	TP53-binding protein 1
Chr20	5	2	3	2.17E-05	PRSS53	Serine protease 53
Chr9	5	2	3	4.21E-05	C10orf142	Uncharacterized protein C10orf142
Chr15	5	2	3	0.004178	GBGT1	Globoside alpha-1,3-N-acetylgalactosaminyltransferase 1
Chr12	5	2	3	0.005788	TIGD1	Tigger transposable element-derived protein 1
Chr11	5	1	4	1.49E-13	FMNL3	Formin-like protein 3
Chr16	5	1	4	4.30E-08	SP6	Transcription factor Sp6
Chr8	5	1	4	5.98E-08	TM2D2	TM2 domain-containing protein 2
Chr5	5	1	4	1.14E-07	LARP7	La-related protein 7
Chr20	5	1	4	9.04E-07	SRRM2	Serine/arginine repetitive matrix protein 2

Chr20	5	1	4	1.89E-06	ADAT1	tRNA-specific adenosine deaminase 1
Chr14	5	1	4	2.21E-06	HARBII	Putative nuclease HARBI1
Chr1	5	1	4	4.05E-06	TTC13	Tetratricopeptide repeat protein 13
Chr19	5	1	4	6.95E-05	RASGRP4	RAS guanyl-releasing protein 4
Chr1	5	1	4	0.000101	MPL	Thrombopoietin receptor
Chr3	5	1	4	0.000351	EPHB4	Ephrin type-B receptor 4
Chr10	5	1	4	0.003512	BCR	Breakpoint cluster region protein
Chr15	5	0	5	2.20E-16	VCP	Transitional endoplasmic reticulum ATPase
Chr14	5	0	5	7.67E-16	RCN1	Reticulocalbin-1
Chr7	5	0	5	3.20E-15	LTB4R2	Leukotriene B4 receptor 2
Chr19	5	0	5	4.65E-15	TIMM13	Mitochondrial import inner membrane translocase subunit Tim13
Chr14	5	0	5	5.77E-13	CRTAM	Cytotoxic and regulatory T-cell molecule
Chr7	5	0	5	7.18E-12	SIN3A	Paired amphipathic helix protein Sin3a
ChrX	5	0	5	6.16E-11	VGLLI	Transcription cofactor vestigial-like protein 1
Chr14	5	0	5	1.34E-09	STX5	Syntaxin-5
Chr6	5	0	5	1.34E-09	FBLL1	rRNA/tRNA 2'-O-methyltransferase fibrillarin-like protein 1
Chr2	5	0	5	2.38E-09	IP6K2	Inositol hexakisphosphate kinase 2
Chr1	5	0	5	4.84E-09	TSACC	TSSK6-activating co-chaperone protein
Chr6	5	0	5	2.91E-08	MRPL22	39S ribosomal protein L22, mitochondrial
Chr1	5	0	5	1.10E-07	LRRC40	Leucine-rich repeat-containing protein 40
Chr10	5	0	5	6.89E-07	SF3A1	Splicing factor 3A subunit 1
Chr1	5	0	5	1.15E-06	ZNF326	DBIRD complex subunit ZNF326
Chr1	5	0	5	1.15E-06	ARVI	Protein ARV1
Chr19	5	0	5	4.05E-06	TGFB1	Transforming growth factor beta-1
Chr7	5	0	5	7.10E-06	CPSF2	Cleavage and polyadenylation specificity factor subunit 2
Chr1	5	0	5	8.99E-06	AHDC1	AT-hook DNA-binding motif-containing protein 1
Chr20	5	0	5	1.20E-05	TXNL4B	Thioredoxin-like protein 4B
Chr12	5	0	5	3.05E-05	SMARCAL1	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1

Chr10	5	0	5	3.06E-05	SPATA2	Spermatogenesis-associated protein 2
Chr19	5	0	5	0.0002	FSTL3	Follistatin-related protein 3
Chr20	5	0	5	0.000367	ORC6	Origin recognition complex subunit 6
Chr16	5	0	5	0.000485	COIL	Coilin
Chr1	5	0	5	0.000633	ADGRL4	Adhesion G protein-coupled receptor L4
Chr2	4	4	0	5.68E-07	CFAP44	Cilia- and flagella-associated protein 44
ChrX	4	4	0	0.0002	FRMPD4	FERM and PDZ domain-containing protein 4
Chr19	4	4	0	0.000273	ICAM1	Intercellular adhesion molecule 1
Chr1	4	4	0	0.000327	CFAP74	Cilia- and flagella-associated protein 74
Chr15	4	4	0	0.00163	DENND4C	DENN domain-containing protein 4C
Chr8	4	4	0	0.001988	KCNU1	Potassium channel subfamily U member 1
Chr20	4	4	0	0.009006	PRMT7	Protein arginine N-methyltransferase 7
Chr13	4	3	1	5.98E-08	ODC1	Ornithine decarboxylase
Chr13	4	3	1	2.45E-07	PUM2	Pumilio homolog 2
ChrX	4	3	1	1.89E-06	FRMPD3	FERM and PDZ domain-containing protein 3
Chr18	4	3	1	1.52E-05	OSBPL1A	Oxysterol-binding protein-related protein 1
Chr5	4	3	1	0.000143	PTPN11	Tyrosine-protein phosphatase non-receptor type 11
Chr4	4	3	1	0.000315	DTNBP1	Dysbindin
ChrX	4	3	1	0.000436	SHROOM2	Protein Shroom2
Chr13	4	3	1	0.001327	PRR30	Proline-rich protein 30
Chr8	4	3	1	0.001349	WDR97	WD repeat-containing protein 97
ChrX	4	3	1	0.004934	FAM47C	Putative protein FAM47C
Chr16	4	2	2	1.63E-13	AKAP1	A-kinase anchor protein 1, mitochondrial
ChrX	4	2	2	3.11E-10	P2RY10	Putative P2Y purinoceptor 10
Chr13	4	2	2	1.16E-06	MSH6	DNA mismatch repair protein Msh6
Chr2	4	2	2	2.17E-05	PLXNB1	Plexin-B1
Chr19	4	2	2	7.48E-05	ZNF570	Zinc finger protein 570
Chr16	4	2	2	0.0002	GGA3	ADP-ribosylation factor-binding protein GGA3

Chr12	4	2	2	0.001035	SCLY	Selenocysteine lyase
Chr18	4	2	2	0.003063	CCDC178	Coiled-coil domain-containing protein 178
Chr5	4	2	2	0.004918	RELL1	RELT-like protein 1
Chr10	4	2	2	0.004934	GGT1	Gamma-glutamyltranspeptidase 1
Chr2	4	1	3	2.20E-16	GSK3B	Glycogen synthase kinase-3 beta
Chr15	4	1	3	6.82E-15	FAM214B	Protein FAM214B
ChrY	4	1	3	1.89E-11	TSPY10	Testis-specific Y-encoded protein 10
Chr14	4	1	3	1.34E-09	OTUB1	Ubiquitin thioesterase OTUB1
Chr10	4	1	3	2.38E-09	CSDC2	Cold shock domain-containing protein C2
Chr1	4	1	3	4.30E-08	MRPL55	39S ribosomal protein L55, mitochondrial
Chr1	4	1	3	4.30E-08	HFE2	Hemojuvelin
Chr14	4	1	3	1.17E-07	TTC9C	Tetratricopeptide repeat protein 9C
Chr16	4	1	3	1.87E-07	MED24	Mediator of RNA polymerase II transcription subunit 24
Chr11	4	1	3	2.08E-06	Phlda1	Pleckstrin homology-like domain family A member 1
Chr14	4	1	3	2.21E-06	FADS1	Fatty acid desaturase 1
Chr1	4	1	3	2.21E-06	LRIF1	Ligand-dependent nuclear receptor-interacting factor 1
Chr20	4	1	3	1.05E-05	ATXN1L	Ataxin-1-like
ChrX	4	1	3	2.23E-05	CXorf23	Uncharacterized protein CXorf23
Chr10	4	1	3	0.000143	GAS2L1	GAS2-like protein 1
Chr2	4	1	3	0.0002	DAG1	Dystroglycan
Chr20	4	1	3	0.000203	CCDC113	Coiled-coil domain-containing protein 113
Chr2	4	1	3	0.000273	VTCN1	V-set domain-containing T-cell activation inhibitor 1
Chr13	4	1	3	0.000315	ATRAID	All-trans retinoic acid-induced differentiation factor
Chr16	4	1	3	0.000315	NDUFS5	NADH dehydrogenase [ubiquinone] iron-sulfur protein 5
Chr19	4	1	3	0.000367	KCNK6	Potassium channel subfamily K member 6
Chr16	4	1	3	0.000471	IFI35	Interferon-induced 35 kDa protein
Chr14	4	1	3	0.000485	TUT1	Speckle targeted PIP5K1A-regulated poly(A) polymerase
Chr16	4	1	3	0.000801	MTMR4	Myotubularin-related protein 4

Chr6	4	1	3	0.004918	WDR70	WD repeat-containing protein 70
Chr20	4	1	3	0.004918	MLST8	Target of rapamycin complex subunit LST8
Chr9	4	1	3	0.009066	NEBL	Nebulette
Chr15	4	0	4	2.20E-16	TEKT4	Tektin-4
Chr3	4	0	4	3.16E-10	Tra2a	Transformer-2 protein homolog alpha
Chr1	4	0	4	6.28E-09	WDTC1	WD and tetratricopeptide repeats protein 1
Chr7	4	0	4	4.30E-08	CIB1	Calcium and integrin-binding protein 1
Chr16	4	0	4	2.58E-07	MRPL45	39S ribosomal protein L45, mitochondrial
Chr19	4	0	4	7.67E-07	ZNF569	Zinc finger protein 569
Chr1	4	0	4	7.67E-07	PIGC	Phosphatidylinositol N-acetylglucosaminyltransferase subunit C
Chr2	4	0	4	4.05E-06	NCKIPSD	NCK-interacting protein with SH3 domain
Chr16	4	0	4	4.71E-06	SLC16A11	Monocarboxylate transporter 11
ChrY	4	0	4	5.04E-06	CDY2A	Testis-specific chromodomain protein Y 2
Chr11	4	0	4	5.04E-06	FAM60A	Protein FAM60A
Chr8	4	0	4	1.20E-05	SPIDR	DNA repair-scaffolding protein
Chr15	4	0	4	1.20E-05	UBQLN1	Ubiquilin-1
Chr19	4	0	4	1.20E-05	MATK	Megakaryocyte-associated tyrosine-protein kinase
Chr9	4	0	4	1.94E-05	DEPP	Protein DEPP
Chr16	4	0	4	4.21E-05	HCRT	Orexin
Chr17	4	0	4	4.21E-05	EXOSC8	Exosome complex component RRP43
Chr18	4	0	4	0.000101	MPPE1	Metallophosphoesterase 1
Chr19	4	0	4	0.000126	ZNF570	Zinc finger protein 570
Chr5	4	0	4	0.000143	GATB	Glutamyl-tRNA(Gln) amidotransferase subunit B, mitochondrial
Chr13	4	0	4	0.000315	MTHFD2	Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial
Chr3	4	0	4	0.000471	BAZ1B	Tyrosine-protein kinase BAZ1B
Chr20	4	0	4	0.000471	C16orf70	UPF0183 protein C16orf70
Chr2	4	0	4	0.000471	MRPL47	39S ribosomal protein L47, mitochondrial
Chr16	4	0	4	0.000682	KCTD2	BTB/POZ domain-containing protein KCTD2

Chr1	4	0	4	0.000682	TCTEX1D4	Tctex1 domain-containing protein 4
Chr14	4	0	4	0.000963	MRPL49	39S ribosomal protein L49, mitochondrial
Chr10	4	0	4	0.002361	PI4KA	Phosphatidylinositol 4-kinase alpha
Chr7	4	0	4	0.002361	ADSSL1	Adenylosuccinate synthetase isozyme 1
Chr3	4	0	4	0.003063	SLC25A40	Solute carrier family 25 member 40
Chr7	4	0	4	0.00391	SSTR1	Somatostatin receptor type 1
Chr8	4	0	4	0.004918	Sorbs3	Vinexin

Table S17. Gene ontology enrichment analyses based on the 195 PSGs identified in the comparison *fascicularis-silenus* versus *sinica* group. The top 40 most significant categories (P-value <0.05) from the over-representation analysis are reported. The categories related to reproductive functions are highlighted in bold.

GeneSet ID	Description	Enrichmen t Ratio	P-value	Database	No. of genes	Genes
GO:0006661	Phosphatidylinositol biosynthetic process	5.280865	3.76E-04	Biological_Process	7	PIGO;PITPNM1;PTPN11;MTMR4;PIGC;MPPE1;PI4KA
HP:0003307	Hyperlordosis	5.039257	4.99E-04	Human_Ontology	7	HERC1;BCR;VCP;TGFB1;SMARCAL1;DAG1;BAZ1B
HP:0100785	Insomnia	18.35729	5.42E-04	Human_Ontology	3	SIN3A;HCRT;BAZ1B
GO:1902074	Response to salt	17.39112	6.40E-04	Biological_Process	3	ZC3H12A;GHSR;TGFB1
GO:0007010	Cytoskeleton organization	2.033423	6.77E-04	Biological_Process	24	EML2;SHROOM3;TOGARAM1;GHSR;PAK5;EPHA1;AKA P13;FMNL3;BCR;VCP;TGFB1;CFAP44;FRMPD4;ICAM1 ;CFAP74;DTNBP1;SHROOM2;PLXNB1;GSK3B;DAG1;M LST8;NEBL;CIB1;NCKIPSD
GO:0030220	Platelet formation	16.52156	7.47E-04	Biological_Process	3	MPL;PTPN11;CIB1
HP:0005506	Chronic myelogenous leukemia	44.0575	8.05E-04	Human_Ontology	2	MPL;BCR
GO:0002513	Tolerance induction to self antigen	44.0575	8.05E-04	Biological_Process	2	AIRE;TGFB1
GO:0036344	Platelet morphogenesis	15.73482	8.66E-04	Biological_Process	3	MPL;PTPN11;CIB1
HP:0001760	Abnormality of the foot	2.219227	9.31E-04	Human_Ontology	19	PRG4;NEK9;COL5A2;PIGO;ZFYVE27;HERC1;PROKR2; RPGRIP1;DDHD1;TRIP4;BCR;VCP;SIN3A;TGFB1;ORC6 ;PRMT7;DAG1;BAZ1B;PI4KA
GO:0001954	Positive regulation of cell-matrix adhesion	8.8115	0.0010889 63	Biological_Process	4	EPHA1;GSK3B;DAG1;CIB1
HP:0004859	Amegakaryocytic thrombocytopenia	36.71458	0.0011996 9	Human_Ontology	2	MPL;PTPN11
GO:0090325	Regulation of locomotion involved in locomotory behavior	36.71458	0.0011996 9	Biological_Process	2	VPS35;GHSR
GO:0046488	Phosphatidylinositol metabolic process	3.765598	0.0013570 66	Biological_Process	8	PIGO;PITPNM1;IP6K2;PTPN11;MTMR4;PIGC;MPPE1;P I4KA
HP:0002814	Abnormality of the lower limb	2.03253	0.0015091 34	Human_Ontology	21	PRG4;NEK9;COL5A2;PIGO;ZFYVE27;HERC1;PROKR2; RPGRIP1;DDHD1;TRIP4;BCR;VCP;SIN3A;TGFB1;SMAR CAL1;ORC6;PRMT7;DAG1;BAZ1B;P14KA;ADSSL1
HP:0000134	Female hypogonadism	12.70889	0.0016379 76	Human_Ontology	3	AIRE;PROKR2;PRLR
GO:0045830	Positive regulation of isotype switching	12.70889	0.0016379 76	Biological_Process	3	TP53BP1;TGFB1;MSH6

GO:0097327	Response to antineoplastic agent	5.85871	0.0016607 32	Biological_Process	5	ZC3H12A;GHSR;TGFB1;ICAM1;SPIDR
GO:1903003	Positive regulation of protein deubiquitination	31.46964	0.0016695 54	Biological_Process	2	ZC3H12A;VCP
GO:0022603	Regulation of anatomical structure morphogenesis	2.103247	0.0017350 37	Biological_Process	19	ZC3H12A;COL5A2;VPS35;ZFYVE27;SHROOM3;GHSR;E PHA1;AKAP13;DDHD1;FMNL3;SP6;MPL;BCR;TGFB1;I CAM1;PLXNB1;GSK3B;DAG1;CIB1
GO:1990778	protein localization to cell periphery	3.293335	0.0017457 39	Biological_Process	9	VPS35;ZFYVE27;GHSR;TGFB1;DENND4C;GGA3;DAG1; CIB1;C16orf70
HP:0010674	Abnormality of the curvature of the vertebral column	2.268082	0.0019111 51	Human_Ontology	16	NEK9;COL5A2;HERC1;LMNB2;DDHD1;TRIP4;LARP7;M PL;BCR;VCP;SIN3A;TGFB1;SMARCAL1;PTPN11;DAG1; BAZ1B
HP:0005922	Abnormal hand morphology	3.553024	0.0019559 95	Human_Ontology	8	NEK9;PIGO;HERC1;PSMD12;LMNB2;BCR;SIN3A;PI4KA
HP:0000137	Abnormality of the ovary	3.933705	0.0021090 84	Human_Ontology	7	AIRE;PROKR2;PRLR;PTPN11;MSH6;SPIDR;BAZ1B
GO:0002562	Somatic diversification of immune receptors via germline recombination within a single locus	7.342917	0.0021495 83	Biological_Process	4	TCF7;TP53BP1;TGFB1;MSH6
GO:0016444	Somatic cell DNA recombination	7.342917	0.0021495 83	Biological_Process	4	TCF7;TP53BP1;TGFB1;MSH6
HP:0011729	Abnormality of joint mobility	2.169691	0.0022061 23	Human_Ontology	17	PRG4;NEK9;COL5A2;HERC1;PROKR2;TRIP4;BCR;VCP; SIN3A;TGFB1;ORC6;PTPN11;MSH6;DAG1;EXOSC8;BAZ 1B;PI4KA
HP:0005558	Chronic leukemia	27.53594	0.0022128 13	Human_Ontology	2	MPL;BCR
GO:0060312	Regulation of blood vessel remodeling	27.53594	0.0022128 13	Biological_Process	2	BCR;TGFB1
GO:1904468	Negative regulation of tumor necrosis factor secretion	27.53594	0.0022128 13	Biological_Process	2	ZC3H12A;GHSR
GO:0035418	Protein localization to synapse	7.222541	0.0022843 77	Biological_Process	4	VPS35;GHSR;BSN;DAG1
HP:0040068	Abnormality of limb bone	2.002614	0.0023323 68	Human_Ontology	20	PRG4;NEK9;COL5A2;PIGO;HERC1;PSMD12;RPGRIP1; LMNB2;BCR;VCP;SIN3A;TGFB1;SMARCAL1;ORC6;PRM T7;PTPN11;DAG1;SPIDR;BAZ1B;PI4KA
HP:0040064	Abnormality of limbs	1.822365	0.0024134 79	Human_Ontology	25	PRG4;NEK9;COL5A2;PIGO;ZFYVE27;HERC1;PSMD12; PROKR2;RPGRIP1;LMNB2;DDHD1;TRIP4;BCR;VCP;SI N3A;TGFB1;SMARCAL1;ORC6;PRMT7;PTPN11;DAG1;S

PIDR;BAZ1B;PI4KA;ADSSL1

HP:0012379	Abnormal enzyme/coenzyme activity	5.24494	0.0026979 99	Human_Ontology	5	PIGO;BCR;VCP;TGFB1;DAG1
GO:0033554	Cellular response to stress	1.710856	0.0027292 26	Biological_Process	29	TEX12;CHD6;ZC3H12A;PIDD1;USP3;PAK5;NEIL1;AAT F;TP53BP1;MPL;VCP;SIN3A;SMARCAL1;ICAM1;PTPN1 1;DTNBP1;MSH6;RELL1;GSK3B;OTUB1;FADS1;GAS2L1 ;DAG1;WDR70;MLST8;CIB1;SPIDR;UBQLN1;BAZ1B
GO:0006506	GPI anchor biosynthetic process	10.65907	0.0027393 93	Biological_Process	3	PIGO;PIGC;MPPE1
GO:0006974	Cellular response to DNA damage stimulus	2.186476	0.0027545 46	Biological_Process	16	TEX12;ZC3H12A;PIDD1;USP3;NEIL1;AATF;TP53BP1;V CP;SMARCAL1;PTPN11;MSH6;OTUB1;WDR70;CIB1;SP1 DR;BAZ1B
GO:0098696	Regulation of neurotransmitter receptor localization to postsynaptic specialization membrane	24.47639	0.0028281 11	Biological_Process	2	GHSR;DAG1
GO:0033689	Negative regulation of osteoblast proliferation	24.47639	0.0028281 11	Biological_Process	2	PLXNB1;ATRAID
GO:1990314	Cellular response to insulin-like growth factor stimulus	24.47639	0.0028281 11	Biological_Process	2	GHSR;TGFB1