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Figure S1. Cycle closure of different alchemical protocols in the ligand cycle in the TYK2 system. The cycle
closure was calculated by summing up the ∆∆G values of the three edges of the TYK2 ligand cycle and the absolute
values of the cycle closure for five different SepTop protocols and one standard RBFE protocol are shown as bars.
The cycle closure was lowest for the two protocols that used ϵ-HREX to enhance sampling, either in combination
with restraints on rotatable bonds or without, suggesting that for this system the ϵ-HREX protocols led to good
convergence.

Figure S2. 2D structures of four MALT1 ligands. Transformations here involve a chiral inversion (top) as well as
the closing of a ring going from isopropyl to cyclopropyl (bottom).
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Figure S3. Cycle closure for all ligand cycles in the MALT1 system. The majority of ligand cycles have a cycle
closure below 0.5 kcal/mol. Six ligand cycles have a cycle closure greater than 1 kcal/mol, indicating sampling
problems.

Figure S4. Correlation between SepTop and NES Orion results for the MALT1 system. Shown are ∆∆G values
for all edges. For most edges, both methods gave similar results, however, there are some outliers where the two
methods do not agree with one another.

S3



Figure S5. Comparing SepTop and NES Orion results in the MALT1 system.

Figure S6. Nonequilibrium work values for the transformation between Pfizer-01-05 and Pfizer-01-07 in the MALT1
system. Forward work values are shown in red and work values from the reverse direction in blue. The distributions
of forward and reverse work values do not overlap well for this transformation.

S4



(a) (b)

Figure S7. Correlation between calculated and experimental relative binding free energies for transformations in
the BACE1 system. Shown are results from transformations run within the three ligand scaffold series (a) and across
different scaffolds (b). ∆∆G values from transformations between ligands within the same scaffold (RMSE=1.02)
correlate better with experiment than transformations between ligands of different scaffolds (RMSE=1.78).

(a) BACE amide biayl

Figure S8. Correlation between calculated and experimental relative binding free energies for transformations
between the amide series and the biaryl series in the BACE1 system. For all five transformations the free energy
change was calculated to be more unfavorable as to compared to experiment.
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Table S1. Relative binding free energies in the ERα system using different input structures. All values are given in
kcal/mol. Predictions differed by over 3 kcal/mol depending on the input structure used in the calculations with the
most significant difference being in Edge 2d-2e where different input structures led to a difference of 3.7 kcal/mol.

Edge 2d - 2e Edge 2d - 3b Edge 2e - 3b

SepTop
(input Spruce) 0.0± 0.3 0.4± 0.3 0.3± 0.3

SepTop
(input Aux) −1.8± 0.2 0.9± 0.5 3.0± 0.4

SepTop
(input ATM) −3.7± 0.3 −3.5± 0.2 0.3± 0.2

ATM1 −2.3± 0.4 −0.4± 0.5 2.1± 0.4

Aux2 1.3± 0.4 2.9± 0.5
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Table S2. Ligand structures and experimental binding affinities3 for the TYK2 system.
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Table S3. Ligand structures and experimental binding affinities4 for the ERα system.
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Table S4. Ligand structures and experimental binding affinities for the MALT1 system.
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Table S5. Ligand structures and experimental binding affinities5–9 for the biaryl ligands in the BACE1 system.
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Table S6. Ligand structures and experimental binding affinities10 for the spirocyclic ligands in the BACE1 system.
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Table S7. Ligand structures and experimental binding affinities11–13 for the amide ligands in the BACE1 system.
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