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Objective: Quantitatively evaluate the quality of data underlying real-world evidence 

(RWE) in heart failure (HF).

Design: Retrospective comparison of accuracy in identifying HF patients and 

phenotypic information was made using traditional (i.e., structured query language 

applied to structured EHR data) and advanced (i.e., AI applied to unstructured EHR 

data) RWE approaches. The performance of each approach was measured by the 

harmonic mean of precision and recall (F1 score) using manual annotation of medical 

records as a reference standard.

Setting: EHR data from a large academic healthcare system in North America between 

2015 and 2019, with an expected catchment of approximately 500,000 patients. 

Population: 4288 encounters for 1155 patients aged 18 to 85 years, with 472 patients 

identified as having HF. 

Outcome measures: HF and associated concepts, such as comorbidities, left 

ventricular ejection fraction, and selected medications. 

Results: The average F1 scores across 19 HF-specific concepts were 49.0% and 

94.1% for the traditional and advanced approaches, respectively (P<0.001 for all 

concepts with available data). The absolute difference in F1 score between approaches 

was 45.1% (98.1% relative increase in F1 score using the advanced approach). The 

advanced approach achieved superior F1 scores for HF presence, phenotype, and 

associated comorbidities. Some phenotypes, such as HFpEF, revealed dramatic 

differences in extraction accuracy based on technology applied, with a 4.9% F1 score 

when using natural language processing (NLP) alone and a 91.0% F1 score when using 

NLP plus AI-based inference.
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Conclusions: A traditional RWE generation approach resulted in low data quality in HF 

patients. While an advanced approach demonstrated high accuracy, the results varied 

dramatically based on extraction techniques. For future studies, advanced approaches 

and accuracy measurement may be required to ensure data are fit-for-purpose. 

Strengths and limitations of this study 

 Using RWE for HF patients requires demonstrating that the data source and 

technologies result in accurate data. 

 Natural language processing alone lacked context from the longitudinal record, 

limiting phenotype identification and study validity. 

 Findings suggest that advanced methods can enable high-validity RWE for heart 

failure patients. 

 The use of data from a single healthcare system may limit generalizability to 

other populations.
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INTRODUCTION

Heart failure (HF) is a major public health problem with significant associated morbidity, 

mortality, and cost.1,2 Despite the availability of novel drugs and devices, morbidity and 

mortality in HF rivals many malignancies, with a 5-year survival rate as low as 50%.3-8 

Randomized controlled trials (RCTs) have traditionally been used to assess the safety 

and efficacy of new therapies and represent a cornerstone for regulatory approval. 

However, RCTs are frequently conducted in highly selected populations, typically 

younger, healthier, and less diverse than patients treated in clinical practice. 

Furthermore, such trials often include patients with an established HF diagnosis, 

receiving guideline-directed medical therapy at tertiary centers, and may not represent 

the broader HF population. In contrast, registry data usually offers additional insights 

into more inclusive populations. Even with this, there is potential bias based on inclusion 

and exclusion criteria. Because HF is a clinically heterogeneous syndrome with 

numerous etiologies and phenotypes, studying this population can be particularly 

difficult. 

Real-world evidence (RWE) has held promise as a potential means to assess 

therapeutic benefit outside of clinical trials, with sufficient power to characterize 

therapeutic impact in HF subgroups. Accordingly, RWE can complement RCTs, 

extending the findings to patient populations that may have been excluded from or 

insufficiently enrolled in pivotal trials. To accelerate these and similar precision medicine 

goals, the 21st Century Cures Act was passed in 2016, which required the United 

States Food and Drug Administration (FDA) to develop guidance supporting the use of 
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RWE in new drug indications and post-marketing surveillance.9 In addition, payors have 

increasingly utilized RWE to inform reimbursement decisions and are increasingly 

demanding credible evidence.10 

Not surprisingly, the quality of RWE hinges on how well real-world data are collected, 

processed11, and used to inform study questions. Such is the case in HF, where 

accurate identification of patients in administrative and other structured data sets is an 

ongoing focus.12-14 Artificial intelligence (AI) applied to unstructured data represents a 

novel method of analyzing the electronic health record (EHR). Because of the 

importance of data reliability in RWE and the potential to use unstructured data to 

achieve data enrichment15, we sought to better understand differences in accuracy 

between traditional RWE methods and advanced AI approaches for a range of HF-

specific data elements.

METHODS

Varied data sources and applied technologies were used to assess data reliability in 

patients with risk factors for HF. Leveraging manual chart abstraction as the reference 

standard, comparisons were made between the two methods. The first method used 

structured EHR data (e.g., diagnosis codes and problem lists) and standard query 

techniques, defined as the 'traditional approach'. The second used unstructured EHR 

data (e.g., narratives from primary care and specialty notes) and AI techniques, 

described as the 'advanced approach' (Figure 1). The primary objective was 

measurement of the accuracy of identified HF-specific elements using traditional and 

advanced approaches. We hypothesized that the advanced approach would better 
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identify key HF-specific elements than the traditional approach. Data were deidentified 

before study initiation, and the study was determined not to be human subjects 

research. Both natural language processing (NLP) and machine-learned inference 

technologies used in the advanced approach were provided by Verantos, Inc. (Menlo 

Park, CA, USA). The core of AI is a deterministic NLP layer. This layer is built on top of 

the GATE NLP architecture.16 The architecture is used to construct a flexible pipeline for 

processing incoming text against English language syntactical rules augmented with a 

lexicon based on a clinical vocabulary. The AI-based inference was applied during data 

processing. Millions of machine-learned and manually curated associations enable 

disambiguation and identification of clinically relevant concepts. As an example of AI-

based inference, a patient with HF on the problem list and a narrative encounter 

describing “EF 60%” would not be interpreted by NLP as having HF with preserved 

ejection fraction (HFpEF) since the text does not have sufficient information to identify 

this condition. On the other hand, AI-based inference would infer HFpEF based on 

disparate information in the record. 
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EHR Data Source and Processing

EHR data from primary care encounters between 2011 and 2018 were deidentified and 

securely transferred to a cloud-based server for analysis. The data set consisted of both 

structured data (e.g., medical conditions, procedures performed, medications, and 

problem lists) and unstructured data (e.g., narrative notes from primary care providers 

and specialists, telephone visits, and other narrative text) (Figure 1). 

As the study aimed to test the accuracy of different RWE approaches and not treatment 

effectiveness, the cohort was enriched for patients with suspected HF based on 

comorbidities and medications. Specifically, the following filters were applied: records 

containing both narrative and structured components; narrative length 1,000 characters 

or more; and at least one of the following problems or medications in structured or 

unstructured data: myocardial infarction, congestive heart failure, or carvedilol.

A prespecified set of clinical concepts pertinent to patients with HF was extracted using 

traditional and advanced techniques (Table 1). Problem lists were mapped to 

Systematized Nomenclature of Medicine (SNOMED) ontology, and unadjudicated 

claims were mapped to ICD-10 codes. Standard sets of individual codes were used to 

represent each concept. With the advanced approach, inference incorporating pattern 

recognition was utilized to identify potentially missing or ignored concepts within the text 

(e.g., HF being likely in patients with dyspnea and pitting edema on a diuretic). 

Specifically, no narrative coding took place before the AI algorithm was used; instead, it 

was applied directly to the narrative text and then mapped by the algorithm to the 

SNOMED ontology. Next, manual chart abstraction using the same SNOMED code set 

Page 8 of 30

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Page 8 of 23

was used as a reference to assess the accuracy of the coding by the AI algorithm. 

Engineers were blinded to validation data and its corresponding chart abstraction.

Study End Points and Statistical Analysis

The primary endpoint was the F1 score for traditional and advanced approaches. The F1 

score is an accuracy measure that combines recall and precision; more specifically, it is 

the weighted harmonic mean of these two measures. Secondary endpoints were recall 

(i.e., the proportion of patients correctly identified as having the condition, akin to 

sensitivity) and precision (i.e., the proportion of patients with HF and its subtypes 

correctly identified divided by the total number of patients identified in each cohort akin 

to positive predictive value)17,18 for the traditional and advanced approaches. The 

reference standard used to evaluate accuracy of the traditional and advanced 

approaches was manual chart abstraction. For each encounter, two independent clinical 

annotators labeled each concept and all metadata for that concept. Annotators were 

blinded to each other's annotations, and inter-rater agreement was measured by 

Cohen's kappa score. Further description of the reference standard methodology is 

provided in the Supplemental Material. Results were summarized using descriptive 

statistics, and percentages were calculated for categorical variables. Differences in F1 

scores between traditional and advanced approaches were analyzed using the chi-

square test; associated P-values were reported.

RESULTS
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A total of 4288 encounters for 1155 patients were examined, of which 472 patients with 

HF were identified. Of these, 382 had HF with reduced ejection fraction (HFrEF), 35 had 

HF with mildly reduced ejection fraction (HFmrEF), and 55 had HF with preserved 

ejection fraction (HFpEF). The reference standard Cohen's kappa score was 0.95, 

suggesting high validity.

Supplementary Table 1 reports the F1 score, recall, and precision results achieved with 

both approaches. Figure 2 graphically presents F1 scores for HF diagnoses and Figure 

3 includes F1 scores for symptoms, medications, and comorbid conditions. Overall, 

accuracy was significantly greater for the advanced approach (AI applied to 

unstructured EHR data) than for the traditional approach (structured query language 

applied to structured EHR data) (Supplementary Table 1; Figure 2; Figure 3), with an 

absolute difference of 45.1%. 

With the traditional approach, recall for any HF diagnosis was 46.9% (i.e., 53.1% of 

patients with HF were missed entirely) and precision was 95.4%, resulting in an F1 

score of 62.9% (P<0.001). In contrast, with the advanced approach, recall for any HF 

diagnosis was 96.0% and precision was 94.7%, resulting in an F1-score of 95.3% 

(P<0.001 when F1 scores for the two approaches were compared) (Supplementary 

Table 1; Figure 2). Among HF phenotypes, recall with the advanced approach was 

highest with HFrEF, followed by HFpEF and HFmrEF; precision was 100% for all 

phenotypes. With the traditional approach, F1 scores could not be calculated for HFrEF, 

HFmrEF, and HFpEF because only less granular HF codes were used (Supplementary 

Table 1).
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Accuracy in identifying left ventricular ejection fraction (LVEF) was similarly high with 

the advanced approach, with an F1 score of 96.7%. Data could not be extracted for 

LVEF with the traditional approach because no such codes were available within the 

EHR, nor did a mechanism to encode LVEF within the problem list or unadjudicated 

claims exist (Supplementary Table 1; Figure 2).

Accurate identification of HF symptoms was greater with the advanced approach 

(P<0.001) (Supplementary Table 1; Figure 3A). Whereas identification of commonly 

prescribed HF medications was high with both approaches (Supplementary Table 1; 

Figure 3B), identification of cardiovascular comorbidities was higher in all cases with the 

advanced approach (P<0.001) (Supplementary Table 1; Figure 3C).

Data concept extraction with the advanced approach greatly depended upon the 

technology used. For example, NLP, which ends at the sentence boundary, was only 

able to identify HFpEF with an F1 score of 4.9% because "HFpEF" or "heart failure with 

preserved ejection fraction" was rarely written. Conversely, inference, which can find 

related items from the longitudinal record, was able to identify both "HF" and "normal 

ejection fraction" as separate annotations for HFpEF with an F1-score of 91.0% 

(Supplementary Table 1; Figure 2).

DISCUSSION

The utilization of RWE has grown substantially in recent years, driven in part by its 

perceived value by clinicians, regulators, and payors. As RWE is increasingly used to 

refine care standards through clinical, regulatory, and reimbursement pathways, its 
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accuracy has come under increased scrutiny. This is particularly important for complex 

medical conditions, such as HF. Accordingly, we used chart abstraction to quantitatively 

evaluate traditional and advanced approaches to define HF-specific data elements. This 

allowed us to rigorously evaluate whether commonly used techniques are sufficiently 

accurate for observational studies, comparative effectiveness research, and post-

approval safety studies. 

In this study, we demonstrated that: 1) the use of an advanced, AI-based approach 

consistently identified HF phenotypes (i.e., HFrEF, HFmrEF, and HFpEF) more 

accurately than a traditional approach; 2) common HF symptoms and comorbid 

conditions were consistently and accurately identified using an advanced approach; and 

3) medications for HF were accurately identified using both advanced and traditional 

approaches. While studies have previously leveraged an AI-based approach to identify 

patients with HF,19-22 our study highlights the discrepancy between traditional EHR 

query methods and an AI-based approach standardized against a manual reference. 

Given that the accuracy of the data set and appropriateness of the applied technology 

are not tested in many RWE studies, there is a high potential for error.23,24 The current 

findings highlight this while also reinforcing the impact that specific AI technologies 

(e.g., NLP vs. NLP plus inference) can have on phenotype generation and study 

validity.

Accurate phenotyping is paramount in any RWE study that includes HF patients. With 

varying etiologies and multiple phenotypes, HF is a clinically diverse syndrome, with 

outcomes that may vary between subgroups. In addition, HF patients may have different 
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trajectories, highlighting some of the limitations of using structured data. For example, 

LVEF may fluctuate throughout a patient's disease course, with some patients 

experiencing recovery of their LVEF with the use of guideline-directed medical therapy.  

Accordingly, accurate phenotyping of HF patients usually requires the incorporation of 

data that crosses clinical encounters. In addition, although symptoms are an essential 

reflection of clinical status, they are poorly captured in structured data. Suboptimal 

recognition of comorbidities like valvular heart disease can also impact disease 

trajectory and risk for future cardiovascular events. 

Our findings represent an important advance for RWE studies that include HF patients. 

Notably, the only way to ascertain comparative accuracy between data sources and 

technologies in a domain is to test it. Accuracy consists of both recall and precision, and 

in the case of many health conditions, recall can fall below 50% when one relies solely 

upon the problem list.25,26

In the current study, we were able to focus on both precision and recall through use of 

the F1 score. Despite availability of SNOMED codes for HFrEF and HFpEF, along with a 

similar code for HFmrEF, such codes were rarely included. Documentation of a HF code 

using structured data was only found 46.9% of the time when there was clear evidence 

of HF in the chart. We postulate that the low accuracy of structured data for disease 

subtypes at least partially relates to how the data is likely to be used. A physician may 

look within notes to understand HF subtype. Information entered into problem lists and 

claims may be more to provide a high-level understanding of disease burden. Granular 

billing codes may be a low priority for physicians if claims are reimbursed with the non-
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granular HF code. Furthermore, because addition of diagnoses to the problem list is not 

a requirement, the problem list may not be specific or updated. This contrasts with 

clinical notes, where detailed documentation is usually performed to communicate a 

care plan and is a medical-legal requirement.

When low-accuracy and non-granular data are utilized, there are several potential 

consequences. Missingness can result in selection bias, particularly if sicker patients 

have more frequent encounters, higher rates of specialty care, and more complete 

documentation. Depending on the study question, use of structured data alone to 

identify certain subgroups may be inadvisable, since these data have a low recall for 

specific clinical concepts such as ST-elevation myocardial infarction and HFrEF.27 Even 

advanced approaches (e.g., NLP) may result in poor accuracy, as illustrated in this 

study, where HFpEF required AI-based inference for proper identification. Collectively, 

this highlights that not all data sources and technologies are the same; therefore, 

accuracy testing may be required for rigorous RWE generation. Furthermore, given the 

growth in RWE to support new drug indications, post-marketing surveillance, and 

decision-making regarding reimbursement, such inaccuracies may have a profound 

impact on large numbers of patients.

Even though standard dictionaries and clinical terms related to cardiovascular medicine 

were used, there is a need to test the two analytic methods using different EHRs across 

a broader set of community and referral practices. With numerous EHRs available and 

practitioner-to-practitioner variability in documentation accuracy, efforts like the one 

described here represent an important means of strengthening data quality.
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Importantly, this study has several limitations. First, we used data from a single health 

system, with results that may not be generalizable to other populations. Second, the 

study protocol required the selection of patients enriched with cardiovascular disease to 

make the study feasible, with manual chart abstraction conducted to ensure the 

accuracy of results. While selection criteria were applied to both structured and 

unstructured data, it is possible that this could have biased results in a way that favored 

structured data since a larger proportion of patients with HF on the problem list may 

have been included than if the sample had been created randomly. In addition, the 

specific filters used likely led to a higher-than-expected proportion of HFrEF patients 

(compared to those with HFmrEF and HFpEF). Second, the study required laborious 

manual annotation of thousands of records. Such a sample size is adequate for high-

prevalence conditions, but would likely require adjustment for low-prevalence conditions 

with low concept occurrence rates. Finally, the study did not include clinical outcome 

assessment; rather, it was designed to compare data sources and processing methods.

Conclusion

As RWE is increasingly used to analyze patient subgroups, inform clinical decision-

making, and influence regulatory and reimbursement decisions, data reliability and 

evidence validity are of critical importance. Use of a traditional approach was associated 

with low data accuracy. While much greater accuracy was observed with AI-based 

methods, it depended upon the technology utilized. These findings highlight the 

importance of using data fit-for-purpose to the research question posed. In addition, 

they suggest that accuracy testing should be part of any EHR-based study that includes 
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HF patients. Finally, unstructured data and a technology-based approach to data 

extraction may be required in some studies to achieve sufficient accuracy, depending 

upon the clinical assertion being tested. 
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Table 1. Prespecified heart failure–specific concepts extracted from the electronic health record.

High Priority Conditions Comorbidities Symptoms Findings Medications
Congestive HF
HF with reduced EF
HF with mid-range EF
HF with preserved EF

Myocardial infarction
Atrial fibrillation
Aortic regurgitation
Mitral regurgitation
Tricuspid 
regurgitation

Angina
Chest pain
Dyspnea
Fatigue
Palpitations

LVEF Carvedilol
Lisinopril
Metoprolol
Furosemide

HF, heart failure; EF, ejection fraction; LVEF, left ventricular ejection fraction.
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Figure 1. Comparison of traditional and advanced real-world evidence approaches. EHR, electronic health 
record. 
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Figure 2. F1 scores for heart failure diagnoses. *F1-score could not be calculated due to lack of data for 
precision. †Structured data recall is not applicable for ejection fraction because no code was available within 
the problem list. HF, heart failure; HFmrEF, heart failure with mildly-reduced ejection fraction; HFpEF, heart 

failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left 
ventricular ejection fraction; 0% reflects a measured value and indicates the availability of the diagnosis 

code in the EHR dropdown versus N/A, not applicable, which refers to a diagnosis without available code in 
the relevant codeset. 
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Figure 3. F1 scores for (A) symptoms, (B) medications, and (C) comorbid conditions. *F1 score could not be 
calculated due to a lack of data for precision. N/A, not applicable. 
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Supplementary Table 1. Cohort identification of heart failure diagnoses, left ventricular 

ejection fraction, heart failure medications, symptoms, and comorbid cardiovascular 

conditions 

 Traditional approach Advanced approach  

Recal

l, % 

Precisio

n, % 

F1 

scor

e, % 

Recal

l, % 

Precisio

n, % 

F1 

scor

e, % 

Concept 

occurren

ce 

Encount

er 

occurren

ce 

P-

value 

HF diagnosis 
  HF 46.9 95.4 62.9 96.0 94.7 95.3 265 155 <0.00

1 

  HFrEF 0 N/A* N/A† 94.8 100.0 97.3 382 124 N/A§ 

  HFmrEF 0 N/A* N/A† 80.4 100.0 89.2 62 35 N/A§ 

  HFpEF 0 N/A* N/A† 83.5 100.0 91.0 103 55 N/A§ 

LVEF N/A‡ N/A‡ N/A‡ 93.7 100.0 96.7 677 238 N/A§ 

HF medications 
  
Carvedilol 

95.1 100.0 97.5 99.7 99.7 99.7 407 141 <0.00

1 

  
Furosemi
de 

87.7 100.0 93.4 99.3 99.8 99.5 1572 371 0.116 

  Lisinopril 83.9 100.0 91.2 99.7 99.9 99.8 1068 386 <0.00

1 

  
Metoprolol 

92.2 100.0 95.9 97.7 100.0 98.8 1370 397 <0.00

1 

Symptoms 
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  Angina 7.8 60.0 13.8 84.4 82.3 83.3 265 155 <0.00

1 

  Chest 
pain 

21.4 70.8 32.9 95.4 86.1 90.5 2332 756 <0.00

1 

  Dyspnea 12.7 78.2 21.9 94.7 92.0 93.3 4474 832 <0.00

1 

  Fatigue 1.4 75.0 2.8 96.5 94.5 95.5 1711 371 <0.00

1 

  
Palpitation 

8.2 52.9 14.2 90.9 82.6 86.6 896 493 <0.00

1 

Comorbid cardiovascular conditions 
  Atrial 
fibrillation 

72.2 98.7 83.4 93.0 98.7 95.8 1214 222 <0.00

1 

  Aortic 
regurgitati
on 

19.4 100.0 32.5 92.5 100.0 96.1 153 90 <0.00

1 

  Mitral 
regurgitati
on 

13.5 97.1 23.8 92.8 99.6 96.1 483 185 <0.00

1 

  
Myocardia
l infarction 

21.1 90.9 34.3 95.5 83.4 89.0 1220 578 <0.00

1 

  Tricuspid 
regurgitati
on 

0 N/A* N/A† 92.2 100.0 95.9 162 78 N/A§ 

*These elements did not occur when using the traditional approach. †F1 scores could not be calculated 

due to a lack of data for precision. ‡Structured data recall is not applicable for ejection fraction because 

there was no code available within the problem list. §P-value could not be calculated due to the 

unavailability of F1 scores for the traditional approach. P-values are derived from the chi-square test.  
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HF, heart failure; HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure with 

preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left ventricular 

ejection fraction; N/A, not applicable.  
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SUPPLEMENTAL MATERIAL  

Reference Standard 

Traditional and advanced approaches were tested against a reference standard for 

physician encounters. The reference standard consisted of an independent review, with 

manual annotation of relevant HF-specific features, including 19 unique HF-specific 

concepts. For each encounter, two independent clinical annotators labeled each 

concept and all metadata for that concept. For example, an annotator might mark the 

text "DOE over last month" as dyspnea on exertion, experienced = true, current = true, 

relative date = 1 month. Concept occurrence was defined as the sum of all concept 

occurrences, allowing for multiple occurrences per encounter. Encounter occurrence 

was defined as the number of encounters with at least one occurrence of the concept. 

Given that many concepts, such as LVEF are specific to a point in time, concepts were 

tested at the encounter level. For example, if a patient had an LVEF of 30% in an 

encounter, the data extraction would only be annotated as correct if it identified "LVEF 

30%" in that specific encounter. This reference standard was used to determine 

accuracy of automated extracted data and structured data. Specifically, this reference 

standard was used to calculate recall and precision for these individual features for 

traditional and advanced approaches. 
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Objective: Quantitatively evaluate the quality of data underlying real-world evidence (RWE) in 

heart failure (HF).

Design: Retrospective comparison of accuracy in identifying HF patients and phenotypic 

information was made using traditional (i.e., structured query language applied to structured 

EHR data) and advanced (i.e., AI applied to unstructured EHR data) RWE approaches. The 

performance of each approach was measured by the harmonic mean of precision and recall (F1 

score) using manual annotation of medical records as a reference standard.

Setting: EHR data from a large academic healthcare system in North America between 2015 and 

2019, with an expected catchment of approximately 500,000 patients. 

Population: 4288 encounters for 1155 patients aged 18 to 85 years, with 472 patients identified 

as having HF. 

Outcome measures: HF and associated concepts, such as comorbidities, left ventricular ejection 

fraction, and selected medications. 

Results: The average F1 scores across 19 HF-specific concepts were 49.0% and 94.1% for the 

traditional and advanced approaches, respectively (P<0.001 for all concepts with available data). 

The absolute difference in F1 score between approaches was 45.1% (98.1% relative increase in 

F1 score using the advanced approach). The advanced approach achieved superior F1 scores for 

HF presence, phenotype, and associated comorbidities. Some phenotypes, such as HFpEF, 

revealed dramatic differences in extraction accuracy based on technology applied, with a 4.9% 

F1 score when using natural language processing (NLP) alone and a 91.0% F1 score when using 

NLP plus AI-based inference.

Page 3 of 30

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Page 3 of 22

Conclusions: A traditional RWE generation approach resulted in low data quality in HF patients. 

While an advanced approach demonstrated high accuracy, the results varied dramatically based 

on extraction techniques. For future studies, advanced approaches and accuracy measurement 

may be required to ensure data are fit-for-purpose. 

Strengths and limitations of this study 

 Using RWE for HF patients requires demonstrating that the data source and technologies 

result in accurate data. 

 Natural language processing alone lacked context from the longitudinal record, limiting 

phenotype identification and study validity. 

 Findings suggest that advanced methods can enable high-validity RWE for heart failure 

patients. 

 The use of data from a single healthcare system may limit generalizability to other 

populations.
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INTRODUCTION

Heart failure (HF) is a major public health problem with significant associated morbidity, 

mortality, and cost.1,2 Despite the availability of novel drugs and devices, morbidity and 

mortality in HF rivals many malignancies, with a 5-year survival rate as low as 50%.3-8 

Randomized controlled trials (RCTs) have traditionally been used to assess the safety and 

efficacy of new therapies and represent a cornerstone for regulatory approval. However, RCTs 

are frequently conducted in highly selected populations, typically younger, healthier, and less 

diverse than patients treated in clinical practice. Furthermore, such trials often include patients 

with an established HF diagnosis, receiving guideline-directed medical therapy at tertiary 

centers, and may not represent the broader HF population. Because HF is a clinically 

heterogeneous syndrome with numerous etiologies and phenotypes, studying this population can 

be particularly difficult. 

Real-world evidence (RWE) has held promise as a potential means to assess therapeutic benefit 

outside of clinical trials, with sufficient power to characterize therapeutic impact in HF 

subgroups. Accordingly, RWE can complement RCTs, extending the findings to patient 

populations that may have been excluded from or insufficiently enrolled in pivotal trials. To 

accelerate these and similar precision medicine goals, the 21st Century Cures Act was passed in 

2016, which required the United States Food and Drug Administration (FDA) to develop 

guidance supporting the use of RWE in new drug indications and post-marketing surveillance.9 

In addition, payors have increasingly utilized RWE to inform reimbursement decisions and are 

increasingly demanding credible evidence.10 
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Not surprisingly, the quality of RWE hinges on how well real-world data are collected, 

processed11, and used to inform study questions. Such is the case in HF, where accurate 

identification of patients in administrative and other structured data sets is an ongoing focus.12-14 

Traditional methods of identifying HF patients rely on querying diagnosis codes and structured 

data in the electronic health record (EHR) or medical claims. Conversely, artificial intelligence 

(AI) applied to unstructured data represents a novel method of analyzing the medical record. 

Because of the importance of data reliability in RWE and the potential to use unstructured data to 

achieve data enrichment15, we sought to compare the accuracy achieved by traditional RWE 

methods versus advanced AI approaches in identifying a range of HF-specific data elements 

from the medical record.

METHODS

The study design is outlined in Figure 1. Varied data sources and applied technologies were used 

to assess data reliability in patients with risk factors for HF. Leveraging manual chart abstraction 

as the reference standard, comparisons were made between the two methods. The first method 

used structured EHR data (e.g., diagnosis codes and problem lists) and standard query 

techniques, defined as the 'traditional approach'. The second used unstructured EHR data (e.g., 

narratives from primary care and specialty notes) and AI techniques, described as the 'advanced 

approach' (Figure 1). The primary objective was measurement of the accuracy of identified HF-

specific elements using traditional and advanced approaches. We hypothesized that the advanced 

approach would better identify key HF-specific elements than the traditional approach. Data 

were deidentified before study initiation, and the study was determined not to be human subjects 

research. Both natural language processing (NLP) and machine-learned inference technologies 
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used in the advanced approach were provided by Verantos, Inc. (Menlo Park, CA, USA). The 

core of AI is a deterministic NLP layer. This layer is built on top of the GATE NLP 

architecture.16 The architecture is used to construct a flexible pipeline for processing incoming 

text against English language syntactical rules augmented with a lexicon based on a clinical 

vocabulary. The AI-based inference was applied during data processing. Millions of machine-

learned and manually curated associations enable disambiguation and identification of clinically 

relevant concepts. As an example of AI-based inference, a patient with HF on the problem list 

and a narrative encounter describing “EF 60%” would not be interpreted by NLP as having HF 

with preserved ejection fraction (HFpEF) since the text does not have sufficient information to 

identify this condition. On the other hand, AI-based inference would infer HFpEF based on 

disparate information in the record. 

EHR Data Source and Processing

EHR data from primary care encounters between 2011 and 2018 were deidentified and securely 

transferred to a cloud-based server for analysis. The data set consisted of both structured data 

(e.g., medical conditions, procedures performed, medications, and problem lists) and 

unstructured data (e.g., narrative notes from primary care providers and specialists, telephone 

visits, and other narrative text) (Figure 2). 

As the study aimed to test the accuracy of different RWE approaches and not treatment 

effectiveness, the cohort was enriched for patients with suspected HF based on comorbidities and 

medications. Specifically, the following filters were applied: records containing both narrative 

and structured components; narrative length 1,000 characters or more; and at least one of the 
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following problems or medications in structured or unstructured data: myocardial infarction, 

congestive heart failure, or carvedilol (Figure 1).

A prespecified set of clinical concepts pertinent to patients with HF was extracted using 

traditional and advanced techniques (Table 1). Problem lists were mapped to Systematized 

Nomenclature of Medicine (SNOMED) ontology, and unadjudicated claims were mapped to 

ICD-10 codes. Standard sets of individual codes were used to represent each concept. With the 

advanced approach, inference incorporating pattern recognition was utilized to identify 

potentially missing or ignored concepts within the text (e.g., HF being likely in patients with 

dyspnea and pitting edema on a diuretic). Specifically, no narrative coding took place before the 

AI algorithm was used; instead, it was applied directly to the narrative text and then mapped by 

the algorithm to the SNOMED ontology. Next, manual chart abstraction using the same 

SNOMED code set was used as a reference to assess the accuracy of the coding by the AI 

algorithm. Engineers were blinded to validation data and its corresponding chart abstraction.

Study End Points and Statistical Analysis

The primary endpoint was the F1 score for traditional and advanced approaches. The F1 score is 

an accuracy measure that combines recall and precision; more specifically, it is the weighted 

harmonic mean of these two measures. Secondary endpoints were recall (i.e., the proportion of 

patients correctly identified as having the condition, akin to sensitivity) and precision (i.e., the 

proportion of patients with HF and its subtypes correctly identified divided by the total number 

of patients identified in each cohort akin to positive predictive value)17,18 for the traditional and 

advanced approaches. The reference standard used to evaluate accuracy of the traditional and 

advanced approaches was manual chart abstraction. For each encounter, two independent clinical 
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annotators labeled each concept and all metadata for that concept. Annotators were blinded to 

each other's annotations, and inter-rater agreement was measured by Cohen's kappa score. 

Further description of the reference standard methodology is provided in the Supplemental 

Material. Results were summarized using descriptive statistics, and percentages were calculated 

for categorical variables. Differences in F1 scores between traditional and advanced approaches 

were analyzed using the chi-square test; associated P-values were reported.

Patient and Public Involvement

Data were deidentified before study initiation, and the study was determined not to be human 

subjects research. As a result, no patients were recruited for study participation. The research 

question and study goal of highlighting methods for improving RWE use were driven by 

recognition that improvements in use of RWE to inform new drug indications, post-marketing 

surveillance, and reimbursement decisions would ultimately result in patient benefit.

RESULTS

A total of 4288 encounters for 1155 patients were examined, of which 472 patients with HF were 

identified. Of these, 382 had HF with reduced ejection fraction (HFrEF), 35 had HF with mildly 

reduced ejection fraction (HFmrEF), and 55 had HF with preserved ejection fraction (HFpEF). 

The reference standard Cohen's kappa score was 0.95, suggesting high validity.

Supplementary Table 1 reports the F1 score, recall, and precision results achieved with both 

approaches. Figure 3 graphically presents F1 scores for HF diagnoses and Figure 4 includes F1 

scores for symptoms, medications, and comorbid conditions. Overall, accuracy was significantly 

greater for the advanced approach (AI applied to unstructured EHR data) than for the traditional 
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approach (structured query language applied to structured EHR data) (Supplementary Table 1; 

Figure 3; Figure 4), with an absolute difference of 45.1%. 

With the traditional approach, recall for any HF diagnosis was 46.9% (i.e., 53.1% of patients 

with HF were missed entirely) and precision was 95.4%, resulting in an F1 score of 62.9% 

(P<0.001). In contrast, with the advanced approach, recall for any HF diagnosis was 96.0% and 

precision was 94.7%, resulting in an F1-score of 95.3% (P<0.001 when F1 scores for the two 

approaches were compared) (Supplementary Table 1; Figure 3). Among HF phenotypes, recall 

with the advanced approach was highest with HFrEF, followed by HFpEF and HFmrEF; 

precision was 100% for all phenotypes. With the traditional approach, F1 scores could not be 

calculated for HFrEF, HFmrEF, and HFpEF because only less granular HF codes were used 

(Supplementary Table 1).

Accuracy in identifying left ventricular ejection fraction (LVEF) was similarly high with the 

advanced approach, with an F1 score of 96.7%. Data could not be extracted for LVEF with the 

traditional approach because no such codes were available within the EHR, nor did a mechanism 

to encode LVEF within the problem list or unadjudicated claims exist (Supplementary Table 1; 

Figure 3).

Accurate identification of HF symptoms was greater with the advanced approach (P<0.001) 

(Supplementary Table 1; Figure 4A). Whereas identification of commonly prescribed HF 

medications was high with both approaches (Supplementary Table 1; Figure 4B), identification 

of cardiovascular comorbidities was higher in all cases with the advanced approach (P<0.001) 

(Supplementary Table 1; Figure 4C).
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Data concept extraction with the advanced approach greatly depended upon the technology used. 

For example, NLP, which ends at the sentence boundary, was only able to identify HFpEF with 

an F1 score of 4.9% because "HFpEF" or "heart failure with preserved ejection fraction" was 

rarely written. Conversely, inference, which can find related items from the longitudinal record, 

was able to identify both "HF" and "normal ejection fraction" as separate annotations for HFpEF 

with an F1-score of 91.0% (Supplementary Table 1; Figure 3).

DISCUSSION

The utilization of RWE has grown substantially in recent years, driven in part by its perceived 

value by clinicians, regulators, and payors, particularly in light of the limitations of trial 

populations.19 As RWE is increasingly used to refine care standards through clinical, regulatory, 

and reimbursement pathways, its accuracy has come under increased scrutiny. This is 

particularly important for complex medical conditions, such as HF.20 Accordingly, in this 

analysis, chart abstraction was used to quantitatively evaluate traditional and advanced 

approaches to define HF-specific data elements. This enabled  rigorous evaluation of whether 

commonly used techniques are sufficiently accurate for observational studies, comparative 

effectiveness research, and post-approval safety studies. 

In this study, 1) the use of an advanced, AI-based approach consistently identified HF 

phenotypes (i.e., HFrEF, HFmrEF, and HFpEF) more accurately than a traditional approach; 2) 

common HF symptoms and comorbid conditions were consistently and accurately identified 

using an advanced approach; and 3) medications for HF were accurately identified using both 

advanced and traditional approaches. While studies have previously leveraged an AI-based 

approach to identify patients with HF,21-24 the findings presented here  highlight the discrepancy 
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between traditional EHR query methods and an AI-based approach standardized against a 

manual reference. Given that the accuracy of the data set and appropriateness of the applied 

technology are not tested in many RWE studies, there is a high potential for error.25-28 The 

current findings highlight this while also reinforcing the impact that specific AI technologies 

(e.g., NLP vs. NLP plus inference) can have on phenotype generation and study validity.

Accurate phenotyping is paramount in any RWE study that includes HF patients. With varying 

etiologies and multiple phenotypes, HF is a clinically diverse syndrome, with outcomes that may 

vary between and even within subgroups.29,30 In addition, HF patients may have different 

trajectories, highlighting some of the limitations of using structured data. For example, LVEF 

may fluctuate throughout a patient's disease course, with some patients experiencing recovery of 

their LVEF with the use of guideline-directed medical therapy.  Accordingly, accurate 

phenotyping of HF patients usually requires the incorporation of data that crosses clinical 

encounters. In addition, although symptoms are an essential reflection of clinical status, they are 

poorly captured in structured data. Suboptimal recognition of comorbidities like valvular heart 

disease can also impact disease trajectory and risk for future cardiovascular events. 

The findings presented here represent an important advance for RWE studies that include HF 

patients. Notably, the only way to ascertain comparative accuracy between data sources and 

technologies in a domain is to test it. Accuracy consists of both recall and precision, and in the 

case of many health conditions, recall can fall below 50% when one relies solely upon the 

problem list.31,32

In the current study,  use of the F1 score enabled analysis of both precision and recall. Despite 

availability of SNOMED codes for HFrEF and HFpEF, along with a similar code for HFmrEF, 
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such codes were rarely included. Documentation of a HF code using structured data was only 

found 46.9% of the time when there was clear evidence of HF in the chart. The low accuracy of 

structured data for disease subtypes may, at least partially, relate to how the data is likely to be 

used. A physician may look within notes to understand HF subtype. Information entered into 

problem lists and claims may be more to provide a high-level understanding of disease burden. 

Granular billing codes may be a low priority for physicians if claims are reimbursed with the 

non-granular HF code. Furthermore, because addition of diagnoses to the problem list is not a 

requirement, the problem list may not be specific or updated. This contrasts with clinical notes, 

where detailed documentation is usually performed to communicate a care plan and is a medical-

legal requirement.

When low-accuracy and non-granular data are utilized, there are several potential consequences. 

Missingness can result in selection bias, particularly if sicker patients have more frequent 

encounters, higher rates of specialty care, and more complete documentation. Depending on the 

study question, use of structured data alone to identify certain subgroups may be inadvisable, 

since these data have a low recall for specific clinical concepts such as ST-elevation myocardial 

infarction and HFrEF.33 Even advanced approaches (e.g., NLP) may result in poor accuracy, as 

illustrated in this study, where HFpEF required AI-based inference for proper identification. 

Collectively, this highlights that not all data sources and technologies are the same; therefore, 

accuracy testing may be required for rigorous RWE generation.34 Furthermore, given the growth 

in RWE to support new drug indications, post-marketing surveillance, and decision-making 

regarding reimbursement, such inaccuracies may have a profound impact on large numbers of 

patients.
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Even though standard dictionaries and clinical terms related to cardiovascular medicine were 

used, there is a need to test the two analytic methods using different EHRs across a broader set of 

community and referral practices. With numerous EHRs available and practitioner-to-

practitioner variability in documentation accuracy, efforts like the one described here represent 

an important means of strengthening data quality.

Importantly, this study has several limitations. First, data from a single health system was used 

and results may not be generalizable to other populations. Second, the study protocol required 

the selection of patients enriched with cardiovascular disease to make the study feasible, with 

manual chart abstraction conducted to ensure the accuracy of results. While selection criteria 

were applied to both structured and unstructured data, it is possible that this could have biased 

results in a way that favored structured data since a larger proportion of patients with HF on the 

problem list may have been included than if the sample had been created randomly. In addition, 

the specific filters used likely led to a higher-than-expected proportion of HFrEF patients 

(compared to those with HFmrEF and HFpEF). Second, the study required laborious manual 

annotation of thousands of records. Such a sample size is adequate for high-prevalence 

conditions, but would likely require adjustment for low-prevalence conditions with low concept 

occurrence rates. Finally, the study did not include clinical outcome assessment; rather, it was 

designed to compare data sources and processing methods.

Conclusion

As RWE is increasingly used to analyze patient subgroups, inform clinical decision-making, and 

influence regulatory and reimbursement decisions, data reliability and evidence validity are of 

critical importance. Use of a traditional approach was associated with low data accuracy. While 
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much greater accuracy was observed with AI-based methods, it depended upon the technology 

utilized. These findings highlight the importance of using data fit-for-purpose to the research 

question posed. In addition, they suggest that accuracy testing should be part of any EHR-based 

study that includes HF patients. Finally, unstructured data and a technology-based approach to 

data extraction may be required in some studies to achieve sufficient accuracy, depending upon 

the clinical assertion being tested. 
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Table 1. Prespecified heart failure–specific concepts extracted from the electronic health record.

High Priority Conditions Comorbidities Symptoms Findings Medications
Congestive HF
HF with reduced EF
HF with mid-range EF
HF with preserved EF

Myocardial infarction
Atrial fibrillation
Aortic regurgitation
Mitral regurgitation
Tricuspid regurgitation

Angina
Chest pain
Dyspnea
Fatigue
Palpitations

LVEF Carvedilol
Lisinopril
Metoprolol
Furosemide

HF, heart failure; EF, ejection fraction; LVEF, left ventricular ejection fraction.
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Figure 1: Electronic Health Record data source and processing. 
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Figure 2: Comparison of traditional and advanced real-world evidence approaches. EHR, electronic health 
record. 
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Figure 3: F1 scores for heart failure diagnoses. *F1-score could not be calculated due to lack of data for 
precision. †Structured data recall is not applicable for ejection fraction because no code was available within 
the problem list. HF, heart failure; HFmrEF, heart failure with mildly-reduced ejection fraction; HFpEF, heart 

failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left 
ventricular ejection fraction; 0% reflects a measured value and indicates the availability of the diagnosis 

code in the EHR dropdown versus N/A, not applicable, which refers to a diagnosis without available code in 
the relevant codeset. 
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F1 scores for (A) symptoms, (B) medications, and (C) comorbid conditions. *F1 score could not be 
calculated due to a lack of data for precision. N/A, not applicable. 
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Supplementary Table 1. Cohort identification of heart failure diagnoses, left ventricular 

ejection fraction, heart failure medications, symptoms, and comorbid cardiovascular 

conditions 

 Traditional approach Advanced approach  

Recal

l, % 

Precisio

n, % 

F1 

scor

e, % 

Recal

l, % 

Precisio

n, % 

F1 

scor

e, % 

Concept 

occurren

ce 

Encount

er 

occurren

ce 

P-

value 

HF diagnosis 
  HF 46.9 95.4 62.9 96.0 94.7 95.3 265 155 <0.00

1 

  HFrEF 0 N/A* N/A† 94.8 100.0 97.3 382 124 N/A§ 

  HFmrEF 0 N/A* N/A† 80.4 100.0 89.2 62 35 N/A§ 

  HFpEF 0 N/A* N/A† 83.5 100.0 91.0 103 55 N/A§ 

LVEF N/A‡ N/A‡ N/A‡ 93.7 100.0 96.7 677 238 N/A§ 

HF medications 
  
Carvedilol 

95.1 100.0 97.5 99.7 99.7 99.7 407 141 <0.00

1 

  
Furosemi
de 

87.7 100.0 93.4 99.3 99.8 99.5 1572 371 0.116 

  Lisinopril 83.9 100.0 91.2 99.7 99.9 99.8 1068 386 <0.00

1 

  
Metoprolol 

92.2 100.0 95.9 97.7 100.0 98.8 1370 397 <0.00

1 

Symptoms 
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  Angina 7.8 60.0 13.8 84.4 82.3 83.3 265 155 <0.00

1 

  Chest 
pain 

21.4 70.8 32.9 95.4 86.1 90.5 2332 756 <0.00

1 

  Dyspnea 12.7 78.2 21.9 94.7 92.0 93.3 4474 832 <0.00

1 

  Fatigue 1.4 75.0 2.8 96.5 94.5 95.5 1711 371 <0.00

1 

  
Palpitation 

8.2 52.9 14.2 90.9 82.6 86.6 896 493 <0.00

1 

Comorbid cardiovascular conditions 
  Atrial 
fibrillation 

72.2 98.7 83.4 93.0 98.7 95.8 1214 222 <0.00

1 

  Aortic 
regurgitati
on 

19.4 100.0 32.5 92.5 100.0 96.1 153 90 <0.00

1 

  Mitral 
regurgitati
on 

13.5 97.1 23.8 92.8 99.6 96.1 483 185 <0.00

1 

  
Myocardia
l infarction 

21.1 90.9 34.3 95.5 83.4 89.0 1220 578 <0.00

1 

  Tricuspid 
regurgitati
on 

0 N/A* N/A† 92.2 100.0 95.9 162 78 N/A§ 

*These elements did not occur when using the traditional approach. †F1 scores could not be calculated 

due to a lack of data for precision. ‡Structured data recall is not applicable for ejection fraction because 

there was no code available within the problem list. §P-value could not be calculated due to the 

unavailability of F1 scores for the traditional approach. P-values are derived from the chi-square test.  
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HF, heart failure; HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure with 

preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left ventricular 

ejection fraction; N/A, not applicable.  
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SUPPLEMENTAL MATERIAL  

Reference Standard 

Traditional and advanced approaches were tested against a reference standard for 

physician encounters. The reference standard consisted of an independent review, with 

manual annotation of relevant HF-specific features, including 19 unique HF-specific 

concepts. For each encounter, two independent clinical annotators labeled each 

concept and all metadata for that concept. For example, an annotator might mark the 

text "DOE over last month" as dyspnea on exertion, experienced = true, current = true, 

relative date = 1 month. Concept occurrence was defined as the sum of all concept 

occurrences, allowing for multiple occurrences per encounter. Encounter occurrence 

was defined as the number of encounters with at least one occurrence of the concept. 

Given that many concepts, such as LVEF are specific to a point in time, concepts were 

tested at the encounter level. For example, if a patient had an LVEF of 30% in an 

encounter, the data extraction would only be annotated as correct if it identified "LVEF 

30%" in that specific encounter. This reference standard was used to determine 

accuracy of automated extracted data and structured data. Specifically, this reference 

standard was used to calculate recall and precision for these individual features for 

traditional and advanced approaches. 
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Objective: Quantitatively evaluate the quality of data underlying real-world evidence (RWE) in 

heart failure (HF).

Design: Retrospective comparison of accuracy in identifying HF patients and phenotypic 

information was made using traditional (i.e., structured query language applied to structured 

EHR data) and advanced (i.e., AI applied to unstructured EHR data) RWE approaches. The 

performance of each approach was measured by the harmonic mean of precision and recall (F1 

score) using manual annotation of medical records as a reference standard.

Setting: EHR data from a large academic healthcare system in North America between 2015 and 

2019, with an expected catchment of approximately 500,000 patients. 

Population: 4288 encounters for 1155 patients aged 18 to 85 years, with 472 patients identified 

as having HF. 

Outcome measures: HF and associated concepts, such as comorbidities, left ventricular ejection 

fraction, and selected medications. 

Results: The average F1 scores across 19 HF-specific concepts were 49.0% and 94.1% for the 

traditional and advanced approaches, respectively (P<0.001 for all concepts with available data). 

The absolute difference in F1 score between approaches was 45.1% (98.1% relative increase in 

F1 score using the advanced approach). The advanced approach achieved superior F1 scores for 

HF presence, phenotype, and associated comorbidities. Some phenotypes, such as HFpEF, 

revealed dramatic differences in extraction accuracy based on technology applied, with a 4.9% 

F1 score when using natural language processing (NLP) alone and a 91.0% F1 score when using 

NLP plus AI-based inference.

Page 3 of 30

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Page 3 of 22

Conclusions: A traditional RWE generation approach resulted in low data quality in HF patients. 

While an advanced approach demonstrated high accuracy, the results varied dramatically based 

on extraction techniques. For future studies, advanced approaches and accuracy measurement 

may be required to ensure data are fit-for-purpose. 

Strengths and limitations of this study 

 Using RWE for HF patients requires demonstrating that the data source and technologies 

result in accurate data. 

 Natural language processing alone lacked context from the longitudinal record, limiting 

phenotype identification and study validity. 

 Findings suggest that advanced methods can enable high-validity RWE for heart failure 

patients. 

 The use of data from a single healthcare system may limit generalizability to other 

populations.
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INTRODUCTION

Heart failure (HF) is a major public health problem with significant associated morbidity, 

mortality, and cost.1,2 Despite the availability of novel drugs and devices, morbidity and 

mortality in HF rivals many malignancies, with a 5-year survival rate as low as 50%.3-8 

Randomized controlled trials (RCTs) have traditionally been used to assess the safety and 

efficacy of new therapies and represent a cornerstone for regulatory approval. However, RCTs 

are frequently conducted in highly selected populations, typically younger, healthier, and less 

diverse than patients treated in clinical practice. Furthermore, such trials often include patients 

with an established HF diagnosis, receiving guideline-directed medical therapy at tertiary 

centers, and may not represent the broader HF population. Because HF is a clinically 

heterogeneous syndrome with numerous etiologies and phenotypes, studying this population can 

be particularly difficult. 

Real-world evidence (RWE) has held promise as a potential means to assess therapeutic benefit 

outside of clinical trials, with sufficient power to characterize therapeutic impact in HF 

subgroups. Accordingly, RWE can complement RCTs, extending the findings to patient 

populations that may have been excluded from or insufficiently enrolled in pivotal trials. To 

accelerate these and similar precision medicine goals, the 21st Century Cures Act was passed in 

2016, which required the United States Food and Drug Administration (FDA) to develop 

guidance supporting the use of RWE in new drug indications and post-marketing surveillance.9 

In addition, payors have increasingly utilized RWE to inform reimbursement decisions and are 

increasingly demanding credible evidence.10 
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Not surprisingly, the quality of RWE hinges on how well real-world data are collected, 

processed11, and used to inform study questions. Such is the case in HF, where accurate 

identification of patients in administrative and other structured data sets is an ongoing focus.12-14 

Traditional methods of identifying HF patients rely on querying diagnosis codes and structured 

data in the electronic health record (EHR) or medical claims. Conversely, artificial intelligence 

(AI) applied to unstructured data represents a novel method of analyzing the medical record. 

Because of the importance of data reliability in RWE and the potential to use unstructured data to 

achieve data enrichment15, we sought to compare the accuracy achieved by traditional RWE 

methods versus advanced AI approaches in identifying a range of HF-specific data elements 

from the medical record.

METHODS

The study design is outlined in Figure 1. Varied data sources and applied technologies were used 

to assess data reliability in patients with risk factors for HF. Leveraging manual chart abstraction 

as the reference standard, comparisons were made between the two methods. The first method 

used structured EHR data (e.g., diagnosis codes and problem lists) and standard query 

techniques, defined as the 'traditional approach'. The second used unstructured EHR data (e.g., 

narratives from primary care and specialty notes) and AI techniques, described as the 'advanced 

approach' (Figure 1). The primary objective was measurement of the accuracy of identified HF-

specific elements using traditional and advanced approaches. We hypothesized that the advanced 

approach would better identify key HF-specific elements than the traditional approach. Data 

were deidentified before study initiation, and the study was determined not to be human subjects 

research. Both natural language processing (NLP) and machine-learned inference technologies 
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used in the advanced approach were provided by Verantos, Inc. (Menlo Park, CA, USA). The 

core of AI is a deterministic NLP layer. This layer is built on top of the GATE NLP 

architecture.16 The architecture is used to construct a flexible pipeline for processing incoming 

text against English language syntactical rules augmented with a lexicon based on a clinical 

vocabulary. The AI-based inference was applied during data processing. Millions of machine-

learned and manually curated associations enable disambiguation and identification of clinically 

relevant concepts. As an example of AI-based inference, a patient with HF on the problem list 

and a narrative encounter describing “EF 60%” would not be interpreted by NLP as having HF 

with preserved ejection fraction (HFpEF) since the text does not have sufficient information to 

identify this condition. On the other hand, AI-based inference would infer HFpEF based on 

disparate information in the record. 

EHR Data Source and Processing

EHR data from primary care encounters between 2011 and 2018 were deidentified and securely 

transferred to a cloud-based server for analysis. The data set consisted of both structured data 

(e.g., medical conditions, procedures performed, medications, and problem lists) and 

unstructured data (e.g., narrative notes from primary care providers and specialists, telephone 

visits, and other narrative text) (Figure 2). 

As the study aimed to test the accuracy of different RWE approaches and not treatment 

effectiveness, the cohort was enriched for patients with suspected HF based on comorbidities and 

medications. Specifically, the following filters were applied: records containing both narrative 

and structured components; narrative length 1,000 characters or more; and at least one of the 
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following problems or medications in structured or unstructured data: myocardial infarction, 

congestive heart failure, or carvedilol (Figure 1).

A prespecified set of clinical concepts pertinent to patients with HF was extracted using 

traditional and advanced techniques (Table 1). Problem lists were mapped to Systematized 

Nomenclature of Medicine (SNOMED) ontology, and unadjudicated claims were mapped to 

ICD-10 codes. Standard sets of individual codes were used to represent each concept. With the 

advanced approach, inference incorporating pattern recognition was utilized to identify 

potentially missing or ignored concepts within the text (e.g., HF being likely in patients with 

dyspnea and pitting edema on a diuretic). Specifically, no narrative coding took place before the 

AI algorithm was used; instead, it was applied directly to the narrative text and then mapped by 

the algorithm to the SNOMED ontology. Next, manual chart abstraction using the same 

SNOMED code set was used as a reference to assess the accuracy of the coding by the AI 

algorithm. Engineers were blinded to validation data and its corresponding chart abstraction.

Study End Points and Statistical Analysis

The primary endpoint was the F1 score for traditional and advanced approaches. The F1 score is 

an accuracy measure that combines recall and precision; more specifically, it is the weighted 

harmonic mean of these two measures. Secondary endpoints were recall (i.e., the proportion of 

patients correctly identified as having the condition, akin to sensitivity) and precision (i.e., the 

proportion of patients with HF and its subtypes correctly identified divided by the total number 

of patients identified in each cohort akin to positive predictive value)17,18 for the traditional and 

advanced approaches. The reference standard used to evaluate accuracy of the traditional and 

advanced approaches was manual chart abstraction. For each encounter, two independent clinical 
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annotators labeled each concept and all metadata for that concept. Annotators were blinded to 

each other's annotations, and inter-rater agreement was measured by Cohen's kappa score. 

Further description of the reference standard methodology is provided in the Supplemental 

Material. Results were summarized using descriptive statistics, and percentages were calculated 

for categorical variables. Differences in F1 scores between traditional and advanced approaches 

were analyzed using the chi-square test; associated P-values were reported.

Patient and Public Involvement

Data were deidentified before study initiation, and the study was determined not to be human 

subjects research. As a result, no patients were recruited for study participation. The research 

question and study goal of highlighting methods for improving RWE use were driven by 

recognition that improvements in use of RWE to inform new drug indications, post-marketing 

surveillance, and reimbursement decisions would ultimately result in patient benefit.

RESULTS

A total of 4288 encounters for 1155 patients were examined, of which 472 patients with HF were 

identified. Of these, 382 had HF with reduced ejection fraction (HFrEF), 35 had HF with mildly 

reduced ejection fraction (HFmrEF), and 55 had HF with preserved ejection fraction (HFpEF). 

The reference standard Cohen's kappa score was 0.95, suggesting high validity.

Supplementary Table 1 reports the F1 score, recall, and precision results achieved with both 

approaches. Figure 3 graphically presents F1 scores for HF diagnoses and Figure 4 includes F1 

scores for symptoms, medications, and comorbid conditions. Overall, accuracy was significantly 

greater for the advanced approach (AI applied to unstructured EHR data) than for the traditional 
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approach (structured query language applied to structured EHR data) (Supplementary Table 1; 

Figure 3; Figure 4), with an absolute difference of 45.1%. 

With the traditional approach, recall for any HF diagnosis was 46.9% (i.e., 53.1% of patients 

with HF were missed entirely) and precision was 95.4%, resulting in an F1 score of 62.9% 

(P<0.001). In contrast, with the advanced approach, recall for any HF diagnosis was 96.0% and 

precision was 94.7%, resulting in an F1-score of 95.3% (P<0.001 when F1 scores for the two 

approaches were compared) (Supplementary Table 1; Figure 3). Among HF phenotypes, recall 

with the advanced approach was highest with HFrEF, followed by HFpEF and HFmrEF; 

precision was 100% for all phenotypes. With the traditional approach, F1 scores could not be 

calculated for HFrEF, HFmrEF, and HFpEF because only less granular HF codes were used 

(Supplementary Table 1).

Accuracy in identifying left ventricular ejection fraction (LVEF) was similarly high with the 

advanced approach, with an F1 score of 96.7%. Data could not be extracted for LVEF with the 

traditional approach because no such codes were available within the EHR, nor did a mechanism 

to encode LVEF within the problem list or unadjudicated claims exist (Supplementary Table 1; 

Figure 3).

Accurate identification of HF symptoms was greater with the advanced approach (P<0.001) 

(Supplementary Table 1; Figure 4A). Whereas identification of commonly prescribed HF 

medications was high with both approaches (Supplementary Table 1; Figure 4B), identification 

of cardiovascular comorbidities was higher in all cases with the advanced approach (P<0.001) 

(Supplementary Table 1; Figure 4C).
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Data concept extraction with the advanced approach greatly depended upon the technology used. 

For example, NLP, which ends at the sentence boundary, was only able to identify HFpEF with 

an F1 score of 4.9% because "HFpEF" or "heart failure with preserved ejection fraction" was 

rarely written. Conversely, inference, which can find related items from the longitudinal record, 

was able to identify both "HF" and "normal ejection fraction" as separate annotations for HFpEF 

with an F1-score of 91.0% (Supplementary Table 1; Figure 3).

DISCUSSION

The utilization of RWE has grown substantially in recent years, driven in part by its perceived 

value by clinicians, regulators, and payors, particularly in light of the limitations of trial 

populations.19 As RWE is increasingly used to refine care standards through clinical, regulatory, 

and reimbursement pathways, its accuracy has come under increased scrutiny. This is 

particularly important for complex medical conditions, such as HF.20 Accordingly, in this 

analysis, chart abstraction was used to quantitatively evaluate traditional and advanced 

approaches to define HF-specific data elements. This enabled  rigorous evaluation of whether 

commonly used techniques are sufficiently accurate for observational studies, comparative 

effectiveness research, and post-approval safety studies. 

In this study, 1) the use of an advanced, AI-based approach consistently identified HF 

phenotypes (i.e., HFrEF, HFmrEF, and HFpEF) more accurately than a traditional approach; 2) 

common HF symptoms and comorbid conditions were consistently and accurately identified 

using an advanced approach; and 3) medications for HF were accurately identified using both 

advanced and traditional approaches. While studies have previously leveraged an AI-based 

approach to identify patients with HF,21-24 the findings presented here  highlight the discrepancy 
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between traditional EHR query methods and an AI-based approach standardized against a 

manual reference. Given that the accuracy of the data set and appropriateness of the applied 

technology are not tested in many RWE studies, there is a high potential for error.25-28 The 

current findings highlight this while also reinforcing the impact that specific AI technologies 

(e.g., NLP vs. NLP plus inference) can have on phenotype generation and study validity.

Accurate phenotyping is paramount in any RWE study that includes HF patients. With varying 

etiologies and multiple phenotypes, HF is a clinically diverse syndrome, with outcomes that may 

vary between and even within subgroups.29,30 In addition, HF patients may have different 

trajectories, highlighting some of the limitations of using structured data. For example, LVEF 

may fluctuate throughout a patient's disease course, with some patients experiencing recovery of 

their LVEF with the use of guideline-directed medical therapy.  Accordingly, accurate 

phenotyping of HF patients usually requires the incorporation of data that crosses clinical 

encounters. In addition, although symptoms are an essential reflection of clinical status, they are 

poorly captured in structured data. Suboptimal recognition of comorbidities like valvular heart 

disease can also impact disease trajectory and risk for future cardiovascular events. 

The findings presented here represent an important advance for RWE studies that include HF 

patients. Notably, the only way to ascertain comparative accuracy between data sources and 

technologies in a domain is to test it. Accuracy consists of both recall and precision, and in the 

case of many health conditions, recall can fall below 50% when one relies solely upon the 

problem list.31,32

In the current study,  use of the F1 score enabled analysis of both precision and recall. Despite 

availability of SNOMED codes for HFrEF and HFpEF, along with a similar code for HFmrEF, 
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such codes were rarely included. Documentation of a HF code using structured data was only 

found 46.9% of the time when there was clear evidence of HF in the chart. The low accuracy of 

structured data for disease subtypes may, at least partially, relate to how the data is likely to be 

used. A physician may look within notes to understand HF subtype. Information entered into 

problem lists and claims may be more to provide a high-level understanding of disease burden. 

Granular billing codes may be a low priority for physicians if claims are reimbursed with the 

non-granular HF code. Furthermore, because addition of diagnoses to the problem list is not a 

requirement, the problem list may not be specific or updated. This contrasts with clinical notes, 

where detailed documentation is usually performed to communicate a care plan and is a medical-

legal requirement.

When low-accuracy and non-granular data are utilized, there are several potential consequences. 

Missingness can result in selection bias, particularly if sicker patients have more frequent 

encounters, higher rates of specialty care, and more complete documentation. Depending on the 

study question, use of structured data alone to identify certain subgroups may be inadvisable, 

since these data have a low recall for specific clinical concepts such as ST-elevation myocardial 

infarction and HFrEF.33 Even advanced approaches (e.g., NLP) may result in poor accuracy, as 

illustrated in this study, where HFpEF required AI-based inference for proper identification. 

Collectively, this highlights that not all data sources and technologies are the same; therefore, 

accuracy testing may be required for rigorous RWE generation.34 Furthermore, given the growth 

in RWE to support new drug indications, post-marketing surveillance, and decision-making 

regarding reimbursement, it is imperative for clinicians to understand that such inaccuracies may 

have a profound impact on large numbers of patients.
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Even though standard dictionaries and clinical terms related to cardiovascular medicine were 

used, there is a need to test the two analytic methods using different EHRs across a broader set of 

community and referral practices. With numerous EHRs available and practitioner-to-

practitioner variability in documentation accuracy, efforts like the one described here represent 

an important means of strengthening data quality.

Importantly, this study has several limitations. First, data from a single health system was used 

and results may not be generalizable to other populations. Second, the study protocol required 

the selection of patients enriched with cardiovascular disease to make the study feasible, with 

manual chart abstraction conducted to ensure the accuracy of results. While selection criteria 

were applied to both structured and unstructured data, it is possible that this could have biased 

results in a way that favored structured data since a larger proportion of patients with HF on the 

problem list may have been included than if the sample had been created randomly. In addition, 

the specific filters used likely led to a higher-than-expected proportion of HFrEF patients 

(compared to those with HFmrEF and HFpEF). Second, the study required laborious manual 

annotation of thousands of records. Such a sample size is adequate for high-prevalence 

conditions, but would likely require adjustment for low-prevalence conditions with low concept 

occurrence rates. Finally, the study did not include clinical outcome assessment; rather, it was 

designed to compare data sources and processing methods.

Conclusion

As RWE is increasingly used to analyze patient subgroups, inform clinical decision-making, and 

influence regulatory and reimbursement decisions, data reliability and evidence validity are of 

critical importance. Use of a traditional approach was associated with low data accuracy. While 

Page 14 of 30

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

Page 14 of 22

much greater accuracy was observed with AI-based methods, it depended upon the technology 

utilized. These findings highlight the importance of using data fit-for-purpose to the research 

question posed. In addition, they suggest that accuracy testing should be part of any EHR-based 

study that includes HF patients. Finally, unstructured data and a technology-based approach to 

data extraction may be required in some studies to achieve sufficient accuracy, depending upon 

the clinical assertion being tested. 
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Table 1. Prespecified heart failure–specific concepts extracted from the electronic health record.

High Priority Conditions Comorbidities Symptoms Findings Medications
Congestive HF
HF with reduced EF
HF with mid-range EF
HF with preserved EF

Myocardial infarction
Atrial fibrillation
Aortic regurgitation
Mitral regurgitation
Tricuspid regurgitation

Angina
Chest pain
Dyspnea
Fatigue
Palpitations

LVEF Carvedilol
Lisinopril
Metoprolol
Furosemide

HF, heart failure; EF, ejection fraction; LVEF, left ventricular ejection fraction.
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Figure 1: Electronic Health Record data source and processing. 
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Figure 2: Comparison of traditional and advanced real-world evidence approaches. EHR, electronic health 
record. 
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Figure 3: F1 scores for heart failure diagnoses. *F1-score could not be calculated due to lack of data for 
precision. †Structured data recall is not applicable for ejection fraction because no code was available within 
the problem list. HF, heart failure; HFmrEF, heart failure with mildly-reduced ejection fraction; HFpEF, heart 

failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left 
ventricular ejection fraction; 0% reflects a measured value and indicates the availability of the diagnosis 

code in the EHR dropdown versus N/A, not applicable, which refers to a diagnosis without available code in 
the relevant codeset. 
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F1 scores for (A) symptoms, (B) medications, and (C) comorbid conditions. *F1 score could not be 
calculated due to a lack of data for precision. N/A, not applicable. 
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Supplementary Table 1. Cohort identification of heart failure diagnoses, left ventricular 

ejection fraction, heart failure medications, symptoms, and comorbid cardiovascular 

conditions 

 Traditional approach Advanced approach  

Recal

l, % 

Precisio

n, % 

F1 

scor

e, % 

Recal

l, % 

Precisio

n, % 

F1 

scor

e, % 

Concept 

occurren

ce 

Encount

er 

occurren

ce 

P-

value 

HF diagnosis 
  HF 46.9 95.4 62.9 96.0 94.7 95.3 265 155 <0.00

1 

  HFrEF 0 N/A* N/A† 94.8 100.0 97.3 382 124 N/A§ 

  HFmrEF 0 N/A* N/A† 80.4 100.0 89.2 62 35 N/A§ 

  HFpEF 0 N/A* N/A† 83.5 100.0 91.0 103 55 N/A§ 

LVEF N/A‡ N/A‡ N/A‡ 93.7 100.0 96.7 677 238 N/A§ 

HF medications 
  
Carvedilol 

95.1 100.0 97.5 99.7 99.7 99.7 407 141 <0.00

1 

  
Furosemi
de 

87.7 100.0 93.4 99.3 99.8 99.5 1572 371 0.116 

  Lisinopril 83.9 100.0 91.2 99.7 99.9 99.8 1068 386 <0.00

1 

  
Metoprolol 

92.2 100.0 95.9 97.7 100.0 98.8 1370 397 <0.00

1 

Symptoms 
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  Angina 7.8 60.0 13.8 84.4 82.3 83.3 265 155 <0.00

1 

  Chest 
pain 

21.4 70.8 32.9 95.4 86.1 90.5 2332 756 <0.00

1 

  Dyspnea 12.7 78.2 21.9 94.7 92.0 93.3 4474 832 <0.00

1 

  Fatigue 1.4 75.0 2.8 96.5 94.5 95.5 1711 371 <0.00

1 

  
Palpitation 

8.2 52.9 14.2 90.9 82.6 86.6 896 493 <0.00

1 

Comorbid cardiovascular conditions 
  Atrial 
fibrillation 

72.2 98.7 83.4 93.0 98.7 95.8 1214 222 <0.00

1 

  Aortic 
regurgitati
on 

19.4 100.0 32.5 92.5 100.0 96.1 153 90 <0.00

1 

  Mitral 
regurgitati
on 

13.5 97.1 23.8 92.8 99.6 96.1 483 185 <0.00

1 

  
Myocardia
l infarction 

21.1 90.9 34.3 95.5 83.4 89.0 1220 578 <0.00

1 

  Tricuspid 
regurgitati
on 

0 N/A* N/A† 92.2 100.0 95.9 162 78 N/A§ 

*These elements did not occur when using the traditional approach. †F1 scores could not be calculated 

due to a lack of data for precision. ‡Structured data recall is not applicable for ejection fraction because 

there was no code available within the problem list. §P-value could not be calculated due to the 

unavailability of F1 scores for the traditional approach. P-values are derived from the chi-square test.  
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HF, heart failure; HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure with 

preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LVEF, left ventricular 

ejection fraction; N/A, not applicable.  
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SUPPLEMENTAL MATERIAL  

Reference Standard 

Traditional and advanced approaches were tested against a reference standard for 

physician encounters. The reference standard consisted of an independent review, with 

manual annotation of relevant HF-specific features, including 19 unique HF-specific 

concepts. For each encounter, two independent clinical annotators labeled each 

concept and all metadata for that concept. For example, an annotator might mark the 

text "DOE over last month" as dyspnea on exertion, experienced = true, current = true, 

relative date = 1 month. Concept occurrence was defined as the sum of all concept 

occurrences, allowing for multiple occurrences per encounter. Encounter occurrence 

was defined as the number of encounters with at least one occurrence of the concept. 

Given that many concepts, such as LVEF are specific to a point in time, concepts were 

tested at the encounter level. For example, if a patient had an LVEF of 30% in an 

encounter, the data extraction would only be annotated as correct if it identified "LVEF 

30%" in that specific encounter. This reference standard was used to determine 

accuracy of automated extracted data and structured data. Specifically, this reference 

standard was used to calculate recall and precision for these individual features for 

traditional and advanced approaches. 
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