Supporting Information

Visible Light-Induced C-F Bond Activation for the Difluoroalkylation of Indoles

Scott T. Shreiber, Albert Granados,[†] Bianca Matsuo,[†] Jadab Majhi,[†] Mark W. Campbell, Shivani Patel, Gary A. Molander*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States † These authors contributed equally

*To whom correspondence should be addressed. E-mail: gmolandr@sas.upenn.edu

Table of Contents

1. General Considerations	2
2. Source of Indoles and Fluorinated Esters and Arenes	3
3. Synthesis of Fluorinated Indoles	4
a. Reaction Workflow	.4
b. Optimization Table	.4
c. General Procedure	.5
d. Characterization Data	.6
e. Gram Scale Synthesis Reaction2	22
f) Unsuccessful Substrate Examples2	23
4. Mechanistic Experiments2	24
a. TEMPO Trapping with bis(4-methoxybenzen)disulfide2	24
b. TEMPO Trapping with 4-methoxybenzenethiol2	25
c) Control Reaction without Substrate2	26
d) UV-Vis Data2	28
5. NMR Spectra2	? 9
6. References	;7

1. General Considerations

All chemical transformations requiring inert atmospheric conditions were carried out using Schlenk line techniques with a 4- or 5-port dual-bank manifold. For blue light irradiation, Kessil PR160L-blue LED lamps (30 W High Luminous DEX 2100 LED, $\lambda_{max} = 427$ nm) was placed 2 inches away from the reaction vials. NMR spectra (¹H, ¹³C, ¹⁹F) were obtained at 298 K using 400, 500 and 600 MHz spectrometers. ¹⁹F NMR (376 MHz) and ¹³C NMR spectra are ¹H decoupled unless otherwise noted. ¹H and ¹³C NMR Spectra are referenced to the residual non-deuterated solvent peak. Data is presented as follows: chemical shift (ppm), multiplicity (s = singlet, d =doublet, t = triplet, q = quartet, dt = doublet of triplets, dd = doublet of doublets, qd = quartet of doublets, dq = doublet of quartets, dt = doublet of triplets, ddd = doublet of doublets, m = multiplet), coupling constant J (Hz) and integration. Reactions were monitored by GC/MS, 1 H NMR, and/or TLC on silica gel plates (60 Å porosity, 250 µm thickness). TLC analysis was performed using hexanes/EtOAc as the eluent and visualized using potassium permanganate stain, and/or UV light. Flash chromatography was accomplished using an automated system (CombiFlash[®], UV detector, $\lambda = 254$ nm and 280 nm) with RediSep[®] R_f silica gel disposable flash columns (60 Å porosity, 40-60 µm) or RediSep Rf Gold[®] silica gel disposable flash columns (60 Å porosity, 20–40 µm. Accurate mass measurement analyses were conducted using electron ionization (EI) or electrospray ionization (ESI). The signals were mass measured against an internal lock mass reference of perfluorotributylamine (PFTBA) for EI-GCMS, and leucine enkephalin for ESI-LCMS. The utilized software calibrates the instruments and reports measurements by use of neutral atomic masses. IR spectra were recorded on an FT-IR using either neat oil or solid products. Melting points (°C) are uncorrected.

2. Source of Indoles and Fluorinated Esters and Arenes

1 and 2 were either purchased and used as received or prepared according to established procedures.

3. Synthesis of Fluorinated Indoles a. Reaction Workflow

Photoredox reactions were performed with Kessil PR160L-blue LED lamp (30 W High Luminous DEX 2100 LED, $\lambda_{max} = 427$ nm) with a distance of 2 inches from the vials. Two fans were used to keep reactions near room temperature in a fume hood. A typical reaction setup is shown.

b. Optimization Table

1a entry	+ CF_2F 10 equiv. 2a MeO S (50 mol %) 3 K_2HPO ₄ , DMSO 427 nm Kessil Lamp 16 h, Ar, rt deviation	$\stackrel{\text{le}}{\rightarrow} \underbrace{\downarrow}_{4a} \underbrace{\downarrow}_{0} \underbrace{\downarrow}_{$
1	none	63
2	no Kessil	n.d.
3	390 nm Kessil	13
4	open to air	40
5	no base	n.d.
6	Na ₂ CO ₃	58
7	K_2CO_3	52
8	MeCN	12
9	no 3	n.d.
10	4-methoxybenzenethiol (100 mol %)	61
11	Ir(ppy) ₃ (5 mol %)	n.d.
12	3 (25 mol %)	45
13	3 (100 mol %)	72 (63) ^c

^{*a*}Reaction conditions: indole **1a** (0.1 mmol), **2a** (1.0 mmol), K₂HPO₄ (0.2 mmol), **3** (0.05 mmol) in DMSO (1 mL), stirred 16 h under 427 nm Kessil light irradiation at rt using a fan. ^{*b*}Yields were determined by ¹⁹F NMR analysis using 2-bromo-5-(trifluoromethyl)pyridine as an internal standard. ^{*c*} Isolated yield.

The conditions used in our groups prior C-F activation methodology found no detectable product for the difluoroalkylation of indoles. (*J. Am. Chem. Soc.* **2021**, *143*, 19649-29654)

c. General Procedure

An 8 mL vial equipped with a magnetic stir bar was charged with indole (0.5 mmol, 1 equiv), bis(4-methoxybenzene)disulfide (139 mg, 0.5 mmol, 1 equiv), and K_2HPO_4 (174 mg, 1.0 mmol, 2 equiv). The vial was purged with argon, and 5 mL of anhyd DMSO were added. After purging an additional 2 min, the fluorinated substrate (5.0 mmol, 10 equiv) was added *via* syringe, and the reaction vial was sealed with Parafilm. The reaction was then irradiated with light (as described in Reaction Workflow) for 16 h. The reaction was quenched with H₂O (20 mL) and extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with H₂O (30 mL), followed by brine (30 mL), and dried over Na₂SO₄. The solvent was removed *via* rotary evaporation, and the crude mixture was purified by automatic flash column chromatography.

d. Characterization Data

Ethyl 2-(1,3-Dimethyl-1*H*-indol-2-yl)-2,2-difluoroacetate (4a)

Prepared according to the *General Procedure* from the corresponding indole **1a** (73 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 5% EtOAc in hexanes), the title compound **4a** was obtained as a colorless oil (84 mg, 0.32 mmol, 63%). ¹**H NMR** (400 MHz, CDCl₃), δ (ppm) 7.65 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.23 (m, 2H), 7.19 – 7.15 (m, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 2.47 (t, *J* = 3.1 Hz, 3H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -98.0. Spectral Data agreed with previously reported.¹

Ethyl 2-(1-Ethyl-3-methyl-1*H*-indol-2-yl)-2,2-difluoroacetate (4b)

Prepared according to the *General Procedure* from the corresponding indole **1b** (80 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 5% EtOAc in hexanes), the title compound **4b** was obtained as a colorless oil (45 mg, 0.16 mmol, 32%). ¹**H NMR** (400 MHz, CDCl₃), δ (ppm) 7.64 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.28 (m, 2H), 7.20 – 7.14 (m, 1H), 4.34 (q, *J* =

6.9 Hz, 4H), 2.45 (t, J = 3.0 Hz, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃), δ (ppm) -98.1. Spectral Data agreed with previously reported.¹

Ethyl 2-(1-Butyl-3-methyl-1*H*-indol-2-yl)-2,2-difluoroacetate (4c)

Prepared according to the *General Procedure* from the corresponding indole **1c** (94 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4c** was obtained as a colorless oil **4c** (73 mg, 0.24 mmol, 47%). **¹H NMR** (400 MHz, CDCl₃), δ (ppm) 7.64 (dt, J = 8.0, 1.0 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.16 (ddd, J = 8.0, 6.3, 1.7 Hz, 1H), 4.33 (q, J = 7.4 Hz, 2H), 4.25 (t, J = 7.9 Hz, 2H), 2.45 (t, J = 3.0 Hz, 3H), 1.83 – 1.74 (m, 2H), 1.48 – 1.40 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.4 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -97.9. ¹³**C NMR** (101 MHz, CDCl₃), δ (ppm) 164.0 (t, $J_{CF} = 35.9$ Hz), 137.7, 128.2, 124.6 (t, $J_{CF} = 28.8$ Hz), 124.2, 120.2, 119.9, 114.5 (t, $J_{CF} = 4.0$ Hz), 112.8 (t, J = 251.1 Hz), 110.3, 63.7, 45.4 (t, J = 3.6 Hz), 32.7, 20.6, 14.2, 14.1, 9.3 (t, $J_{CF} = 3.1$ Hz). **FT-IR** (cm⁻¹, neat, ATR), $\tilde{v} = 2961, 2934, 2873, 1763, 1557, 1460, 1418, 1370, 1352, 1284, 1232, 1200, 1101, 1068, 1018, 948, 845.$ **HRMS (ESI)**calcd for C₁₇H₂₂F₂NO₂ [M+H]⁺: 310.1619, found 310.1603.

Ethyl 2-(1-Benzyl-3-methyl-1*H*-indol-2-yl)-2,2-difluoroacetate (4d)

Prepared according to the *General Procedure* from the corresponding indole **1d** (111 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4d** was obtained as a colorless oil (57 mg, 0.17 mmol, 33%). ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 7.66 (d, J = 7.7 Hz, 1H), 7.24 – 7.15 (m, 6H), 6.93 (d, J = 7.2 Hz, 2H), 5.51 (s, 2H), 4.09 (q, J = 7.1 Hz, 2H), 2.50 (t, J = 3.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -97.8. Spectral Data agreed with previously reported.¹

Ethyl 2,2-Difluoro-2-(3-methyl-1*H*-indol-2-yl)acetate (4e)

Prepared according to the *General Procedure* from the corresponding indole **1e** (66 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 10% EtOAc in hexanes), the title compound **4e** was obtained as a colorless oil (65 mg, 0.26 mmol, 51%). ¹**H NMR** (400 MHz, CDCl₃), δ (ppm) 8.40 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.31 (t, J = 7.6

Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.45 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃), δ (ppm) -101.4. Spectral Data agreed with previously reported.¹

Ethyl 2-(3-(2-Ethoxy-2-oxoethyl)-1H-indol-2-yl)-2,2-difluoroacetate (4f)

Prepared according to the *General Procedure* from the corresponding indole **1f** (102 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4f** was obtained as a yellow oil (86 mg, 0.27 mmol, 53%). ¹**H NMR** (500 MHz, CDCl₃), δ (ppm) 8.51 (s, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 2H) 1.33 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -101.5. ¹³**C NMR** (151 MHz, CDCl₃), δ (ppm) 170.9, 163.2 (t, *J*_{CF} = 35.4 Hz), 135.5, 127.9, 124.8 (t, *J*_{CF} = 29.8 Hz), 124.5, 120.7, 119.9, 111.7, 111.1 (t, *J*_{CF} = 251.7 Hz), 110.5 (t, *J*_{CF} = 3.3 Hz), 63.9, 60.9, 29.9, 14.2, 13.9. **FT-IR** (cm⁻¹, neat, ATR), \tilde{v} = 3245, 1805, 1680, 1541, 1244, 1165, 1129, 1082. **HRMS (EI)** calcd for C₁₆H₁₈F₂NO₄ [M+H]⁺: 326.1204, found 326.1207.

Ethyl 2-(3-(2-Ethoxy-2-oxoethyl)-1-methyl-1H-indol-2-yl)-2,2-difluoroacetate (4g)

Prepared according to the *General Procedure* from the corresponding indole **1g** (109 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4g** was obtained as a yellow oil (85 mg, 0.25 mmol, 51%). ¹**H NMR** (500 MHz, CDCl₃), δ (ppm) 7.62 (d, J = 8.0 Hz, 1H), 7.38 – 7.24 (m, 2H), 7.17 (ddd, J = 7.9, 6.2, 1.7 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.95 (s, 2H), 3.86 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -98.7. ¹³**C NMR** (151 MHz, CDCl₃), δ (ppm) 171.3, 163.3 (t, $J_{CF} = 35.8$ Hz), 138.0, 127.1, 126.2 (t, $J_{CF} = 28.9$ Hz), 124.2, 120.3, 119.7, 115.3, 112.1 (t, $J_{CF} = 252.3$ Hz), 109.8, 63.5, 60.8, 31.6, 30.1, 14.2, 13.9. **FT-IR** (cm⁻¹, neat, ATR), $\tilde{v} = 1804$, 1677, 1554, 1251, 1169, 1130, 1090. **HRMS (EI)** calcd for C₁₇H₁₉F₂NO4 [M]⁺: 339.1282, found 339.1284.

Methyl 3-(2-(2-Ethoxy-1,1-difluoro-2-oxoethyl)-1H-indol-3-yl)propanoate (4h)

Prepared according to the *General Procedure* from the corresponding indole **1h** (102 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification

by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4h** was obtained as a colorless oil (90 mg, 0.28 mmol, 55%). ¹**H NMR** (400 MHz, CDCl₃), δ (ppm) 8.58 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.17 (t, J = 7.3, 1H), 4.35 (q, J = 7.2 Hz, 2H), 3.69 (s, 3H), 3.32 – 3.20 (m, 2H), 2.71 – 2.64 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -101.2. Spectral Data agreed with previously reported.¹

Ethyl 2-(3-(2-((tert-Butoxycarbonyl)amino)ethyl)-1H-indol-2-yl)-2,2-difluoroacetate (4i)

Prepared according to the *General Procedure* from the corresponding indole **1i** (174 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4i** was obtained as a light-yellow solid (117 mg, 0.31 mmol, 61%). ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 8.57 (s, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.16 (t, *J* = 7.7 Hz, 1H), 4.66 (s, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.45 – 3.35 (m, 2H), 3.10 (t, *J* = 6.9 Hz, 2H), 1.43 (s, 9H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃), δ (ppm) 163.6 (t, *J*_{CF} = 35.7 Hz), 156.1, 135.8, 128.2, 124.6, 124.1 (t, *J*_{CF} = 30.0 Hz), 120.6, 120.3, 115.5, 111.7, 111.4 (t, *J*_{CF} = 251.5 Hz), 79.2, 63.8, 41.5, 28.5, 24.7, 14.0. ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -100.8. **FT-IR** (cm⁻¹, neat, ATR), \tilde{v} = 3409, 3231, 1748, 1682, 1532, 1122. **mp** = 105 – 107 °C. **HRMS (ESI)** calcd for C₁₉H₂₄F₂N₂O4Na [M+Na]⁺: 405.1602, found 405.1592.

Ethyl 2-(3-(2-Acetoxyethyl)-1*H*-indol-2-yl)-2,2-difluoroacetate (4j)

Prepared according to the *General Procedure* from the corresponding indole **1j** (102 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4j** was obtained as a colorless oil (82 mg, 0.25 mmol, 50%). ¹H NMR (500 MHz, CDCl₃), δ (ppm) 8.46 (s, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 4.34 (q, J = 7.5 Hz, 2H), 4.30 (t, J = 7.1 Hz, 2H) 3.24 (t, J = 7.2 Hz, 2H), 2.02 (s, 3H), 1.34 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃), δ (ppm) -101.1. Spectral Data agreed with previously reported.¹

Ethyl 2-(3-(2-Acetamidoethyl)-5-methoxy-1*H*-indol-2-yl)-2,2-difluoroacetate (4k)

Prepared according to the *General Procedure* from the corresponding indole **1k** (116 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **4k** was obtained as a colorless oil (74 mg, 0.21 mmol, 42%). ¹**H** NMR (600 MHz, CDCl₃), δ (ppm) 9.15 (s, 1H), 7.46 (d, *J* = 8.9 Hz, 1H), 7.11 (d, *J* = 8.6 Hz, 1H), 6.02 (t, *J* = 5.9 Hz, 1H), 4.49 (q, *J* = 7.2 Hz, 2H), 4.00 (s, 3H), 3.72 (q, *J* = 6.5 Hz, 2H), 3.26 (t, *J* = 6.4 Hz, 2H),

2.10 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H). One NH signal is not observed. ¹³C NMR (151 MHz, CDCl₃), δ (ppm)170.5, 163.6 (t, $J_{CF} = 36.2$ Hz), 154.7, 131.1, 128.4, 124.7 (t, $J_{CF} = 29.8$ Hz), 115.6, 114.6 (t, $J_{CF} = 3.2$ Hz), 112.9, 111.5 (t, $J_{CF} = 251.5$ Hz),100.6, 63.8, 55.9, 40.3, 24.0, 23.3, 14.0. ¹⁹F NMR (376 MHz, CDCl₃), δ (ppm) -100.4. FT-IR (cm⁻¹, neat, ATR) $\tilde{v} = 3265$, 2939, 1760, 1651, 1556, 1490, 1288, 1246, 1217, 1089 HRMS (ESI) calcd for C₁₇H₂₁F₂N₂O₄ [M+H]⁺: 355.1469, found 355.1482.

Methyl (*S*)-2-((*tert*-Butoxycarbonyl)amino)-3-(2-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1*H*indol-3-yl)propanoate (4l)

Prepared according to the *General Procedure* from the corresponding indole **11** (159 mg, 0.50 mmol, 1.0 equiv) and ethyl trifluoroacetate **2a** (710 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **41** was obtained as a colorless oil (130 mg, 0.30 mmol, 60%). ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 8.64 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 5.15 (d, J = 8.3 Hz, 1H), 4.65 (q, J = 7.5 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 3.66 (s, 3H), 3.42 – 3.38 (m, 1H), 3.31 (dd, J = 14.5, 7.7 Hz, 1H), 1.35 (s, 9H), 1.33 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃), δ (ppm) 207.5, 173.0, 164.0, 163.7 (t, J = 35.6 Hz), 155.4, 136.1, 128.2, 124.9 (t, J = 30.2 Hz), 124.8, 120.9, 120.3, 112.8, 112.0, 111.5 (t, J = 251.5 Hz), 80.0, 64.1, 54.5, 52.5, 28.5, 27.7, 14.2. ⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -100.65

(d, J = 268.0, 1F), -100.81 (d, J = 268.0, 1F). **FT-IR** (cm⁻¹, neat, ATR) $\tilde{v} = 3800, 2980, 1749, 1695, 1504, 1447, 1392, 1367, 1288, 1245, 1202, 1161, 1094.$ **HRMS (ESI)** $calcd for <math>C_{21}H_{26}F_2N_2O_6Na$ [M+Na]⁺: 463.1657, found 463.1647.

Isopropyl 2-(1,3-Dimethyl-1*H*-indol-2-yl)-2,2-difluoroacetate (5)

Prepared according to the *General Procedure* from the corresponding indole **1a** (73 mg, 0.50 mmol, 1.0 equiv) and isopropyl 2,2,2-trifluoroacetate (781 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 5% EtOAc in hexanes), the title compound **5** was obtained as a colorless oil (59 mg, 0.21 mmol, 42%). ¹H NMR (600 MHz, CDCl₃), δ (ppm) 7.63 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 4.0 Hz, 2H), 7.20 – 7.09 (m, 1H), 5.16 – 5.10 (m, 1H), 3.84 (s, 3H), 2.45 (s, 3H), 1.31 (d, J = 6.3 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃), δ (ppm) 163.2 (t, $J_{CF} = 35.7$ Hz), 138.0, 127.6, 125.0 (t, $J_{CF} = 28.9$ Hz), 123.9, 119.8, 119.6, 114.2 (t, $J_{CF} = 4.0$ Hz), 112.4 (t, $J_{CF} = 251.8$ Hz), 109.5, 71.9, 31.4, 21.5, 9.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -98.2. **FT-IR** (cm⁻¹, neat, ATR), $\tilde{v} = 2928$, 1758, 1556, 1468, 1287, 738. **HRMS (ESI)** calcd for C₁₅H₁₈F₂NO₂ [M+H]⁺: 282.1306, found 282.1316.

Isopropyl 2-(1-Ethyl-3-methyl-1*H*-indol-2-yl)-2,2-difluoroacetate (6)

Prepared according to the *General Procedure* from the corresponding indole **1a** (80 mg, 0.50 mmol, 1.0 equiv) and isopropyl 2,2,2-trifluoroacetate (781 mg, 5.0 mmol, 10 equiv). After

purification by automated flash column chromatography (from hexanes to 5% EtOAc in hexanes), the title compound **6** was obtained as a colorless oil (50 mg, 0.17 mmol, 34%). ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 7.64 (d, J = 8.0, 1H), 7.37 – 7.29 (m, 2H), 7.19 – 7.13 (m, 1H), 5.14 – 5.10(m, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.45 (t, J = 3.0 Hz, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.30 (d, J = 6.3 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃), δ (ppm) 163.4 (t, $J_{CF} = 35.7$ Hz), 137.0, 128.1, 124.4 (t, $J_{CF} = 28.9$ Hz), 124.0, 120.1, 120.0, 114.2 (t, $J_{CF} = 3.8$ Hz), 112.6 (t, $J_{CF} = 250.0$ Hz), 109.9, 72.0, 40.0, 21.6, 15.5, 9.1. ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm) -98.3. **FT-IR** (cm⁻¹, neat, ATR), $\tilde{v} = 1757, 1288, 1212, 1093, 1083.$ **HRMS (ESI)** calcd for C₁₆H₂₀F₂NO₂ [M+H]⁺: 296.1462, found 296.1473.

Isopropyl 2-(3-(2-((tert-Butoxycarbonyl)amino)ethyl)-1H-indol-2-yl)-2,2-difluoroacetate (7)

Prepared according to the *General Procedure* from the corresponding indole **11** (130 mg, 0.50 mmol, 1.0 equiv) and isopropyl 2,2,2-trifluoroacetate (781 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **7** was obtained as a light-yellow solid (127 mg, 0.31 mmol, 62%). **¹H NMR** (600 MHz, CDCl₃), δ (ppm) 8.49 (s, 1H), 7.70 (d, *J* = 8.2 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.0 Hz, 1H), 5.18 – 5.10 (m, 1H), 4.64 (s, 1H), 3.41 (s, 2H), 3.09 (t, *J* = 7.0 Hz, 2H), 1.44 (s, 9H), 1.31 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃), δ (ppm) 163.1 (t, *J*_{CF} = 35.4 Hz), 156.1, 135.8, 128.2, 124.5, 124.3, 120.6, 120.4, 115.5, 111.7, 111.4 (t, *J*_{CF} = 251.8 Hz), 79.2, 72.4, 41.6, 28.5, 24.7, 21.6. ¹⁹F NMR (376 MHz, CDCl₃), δ (ppm)- 100.8. **mp** = 97 – 99 °C. **FT-IR** (cm⁻¹, neat, ATR), \tilde{v} = 3389, 3229, 1748, 1685, 1541, 1296, 1114. **HRMS (ESI)** calcd for C₂₀H₂₆F₂N₂O₄Na [M+Na]⁺: 419.1758, found 419.1747.

2-Cyclohexylethyl 2-(3-(2-((*tert*-Butoxycarbonyl)amino)ethyl)-1*H*-indol-2-yl)-2,2difluoroacetate (8)

Prepared according to the *General Procedure* from the corresponding indole **11** (130 mg, 0.50 mmol, 1.0 equiv) and 2-cyclohexylethyl 2,2,2-trifluoroacetate (1.12 g, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **8** was obtained as a dense colorless oil (142 mg, 0.31 mmol, 61%). ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 8.49 (s, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.38 (d, *J* = 8.3 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.19 – 7.13 (m, 1H), 4.64 (s, 1H), 4.31 (t, *J* = 6.9 Hz, 2H), 3.46 – 3.33 (m, 2H), 3.22 – 2.98 (m, 2H), 1.64 – 1.51 (m, 7H), 1.44 (s, 9H), 1.27 – 1.18 (m, 1H), 1.14 – 1.04 (m, 3H), 0.91 – 0.82 (m, 2H). ¹³**C NMR** (CDCl₃, 151 MHz), δ (ppm) 163.6 (t, *J_{CF}* = 35.7 Hz), 156.0, 135.8, 128.2, 124.6, 124.2 (t, *J_{CF}* = 30.0 Hz), 120.6, 120.3, 115.5, 111.7, 111.5 (t, *J_{CF}* = 251.2 Hz), 79.2, 66.0, 41.6, 35.6, 34.5, 33.1, 28.6, 26.4, 26.1, 24.7. ¹⁹**F NMR** (CDCl₃, 376 MHz), δ (ppm) -101.2. **FT-IR** (cm⁻¹, neat, ATR) 3361 (br w), 2922 (s), 2851 (m), 1746 (m), 1682 (m), 1247 (m), 749 (m). **HRMS** (ESI) calcd for C₂₅H₃₅F₂N₂O₄ [M + H]⁺: 465.2565, found: 465.2563.

(3*s*,5*s*,7*s*)-Adamantan-1-yl 2-(3-(2-((*tert*-Butoxycarbonyl)amino)ethyl)-1*H*-indol-2-yl)-2,2difluoroacetate (9)

Prepared according to the *General Procedure* from the corresponding indole **11** (130 mg, 0.50 mmol, 1.0 equiv) and (3*s*,5*s*,7*s*)-adamantan-1-yl 2,2,2-trifluoroacetate (1.24 g, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **9** was obtained as a dense colorless oil (154 mg, 0.32 mmol, 63%). ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 8.70 (s, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 4.69 (t, *J* = 6.2 Hz, 1H), 3.62 – 3.27 (m, 2H), 3.11 (t, *J* = 7.0 Hz, 2H), 2.21 – 2.16 (m, 3H), 2.12 (d, *J* = 3.5 Hz, 6H), 1.65 (t, *J* = 3.2 Hz, 6H), 1.46 (s, 9H). ¹³**C NMR** (CDCl₃, 151 MHz), δ (ppm) 162.0 (t, *J_{CF}* = 34.9 Hz), 156.1, 135.7, 128.2, 124.8 (t, *J_{CF}* = 30.0 Hz), 120.4, 120.3, 115.0, 111.7, 111.2 (t, *J_{CF}* = 252.3 Hz), 85.9, 79.1, 41.6, 35.9, 31.0, 28.5, 24.6. ¹⁹**F NMR** (CDCl₃, 376 MHz), δ (ppm) -100.6. **FT-IR** (cm⁻¹, neat, ATR) 3288 (br w), 2914 (m), 1751 (m), 1690 (s), 1167 (s), 1093 (s), 1043 (s), 742 (s). **HRMS** (ESI) calcd for C₂₇H₃₄F₂N₂NaO₄ [M + Na]⁺: 511.2384, found: 511.2386.

Ethyl 2-(3-(2-((*tert*-Butoxycarbonyl)amino)ethyl)-1*H*-indol-2-yl)-2,3,3,3tetrafluoropropanoate (10)

Prepared according to the *General Procedure* from the corresponding indole **11** (130 mg, 0.50 mmol, 1.0 equiv) and ethyl pentafluoropropionate (960 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **10** was obtained as a dense colorless oil (138 mg mg, 0.32 mmol, 64%). ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 8.73 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 4.64 (t, *J* = 6.7 Hz, 1H), 4.51 – 4.39 (m, 2H), 3.48 – 3.29 (m, 2H), 3.14 – 3.04 (m, 2H), 1.44 (s, 9H), 1.39 (t, *J* = 7.2, 3H). ¹³**C NMR** (CDCl₃, 151 MHz), δ (ppm) 164.1 (d, *J*_{CF} = 21.8 Hz), 156.1, 135.9, 128.4, 124.3, 121.2 (qd, *J*_{CF} = 287.8, 30.5 Hz), 120.5, 120.2 – 120.0 (m), 116.1, 111.5, 91.1 (dq, *J*_{CF} = 205.4, 33.8 Hz), 79.2, 64.4, 41.6, 28.5, 24.9, 14.0. ¹⁹**F NMR** (CDCl₃, 376 MHz), δ (ppm) -77.5 (d, *J* = 9.7 Hz, 3H), -173.8 (q, *J* = 9.7 Hz, 1H). **FT-IR** (cm⁻¹, neat, ATR) 3420 (br w), 2980 (w), 1693 (s), 1251 (s), 1160 (s), 743 (s). **HRMS** (ESI) calcd for C₂₀H₂₅F₄N₂O₄ [M+H]⁺: 433.1750, found: 433.1731.

tert-Butyl (2-(2-(Difluoro(3-(trifluoromethyl)phenyl)methyl)-1*H*-indol-3-yl)ethyl)carbamate (11)

Prepared according to the *General Procedure*, with the addition of sodium formate (51 mg, 0.75 mmol, 1.5 equiv.), from the corresponding indole **11** (130 mg, 0.50 mmol, 1.0 equiv) and 1,3-bis(trifluoromethyl)benzene (1.07 g, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **11** was obtained as a light-yellow oil (93 mg, 0.21 mmol, 41%). ¹H NMR (600 MHz, CDCl₃), δ (ppm) 8.25 (s, 1H), 7.86 (s, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.70 (t, *J* = 8.9 Hz, 2H), 7.58 (t, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.18 (t, *J* = 7.0 Hz, 1H), 4.54 (s, 1H), 3.33 – 3.27 (m, 2H), 2.88 – 2.82 (m, 2H), 1.42 (s, 9H). ¹³C NMR (151 MHz, CDCl₃), δ (ppm) 154.8, 136.3 (t, *J*_{CF} = 28.9 Hz), 134.2, 130.4 (q, *J*_{CF} = 32.7 Hz), 128.4, 127.2, 126.9 (t, *J*_{CF} = 31.3 Hz), 126.6, 123.4, 123.2, 122.6 (q, *J*_{CF} = 268.1 Hz), 121.8 (q, *J*_{CF} = 4.4 Hz), 119.5, 119.1, 116.9 (t, *J*_{CF} = 239.5 Hz), 113.1, 110.5, 78.1, 40.1, 27.4, 23.8. ¹⁹F NMR (376 MHz, CDCl₃), δ (ppm) -62.7 (s, 3F), -84.2 (s, 2F). **FT-IR** (cm⁻¹, neat, ATR), \tilde{v} = 3300, 2979, 1689, 1511, 1454, 1165, 1128. **HRMS (ESI)** calcd for C₂₃H₂₄F₅N₂O₂ [M+H]⁺: 455.1758, found 455.1764.

tert-Butyl (2-(2-(Difluoro(4-fluorophenyl)methyl)-1H-indol-3-yl)ethyl)carbamate (12)

Prepared according to the *General Procedure*, with the addition of sodium formate (51 mg, 0.75 mmol, 1.5 equiv), from the corresponding indole **11** (130 mg, 0.50 mmol, 1.0 equiv) and 1-fluoro-4-(trifluoromethyl)benzene (821 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **12** was obtained as a colorless oil (42 mg, 0.11 mmol, 21%). ¹H **NMR** (600 MHz, CDCl₃), δ (ppm) 8.24 (s, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.38 (d, *J* = 8.3 Hz, 1H), 7.28 (t, *J* = 7.0 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 8.6 Hz, 2H), 4.52 (s, 1H), 3.31 (q, *J* = 6.9 Hz, 2H), 2.85 (t, *J* = 7.0 Hz, 2H), 1.42 (s, 9H). ¹³C **NMR** (151 MHz, CDCl₃), δ (ppm) 165.0, 163.3, 156.0, 135.2, 132.5 (dt, *J*_{CF} = 28.6, 3.3 Hz), 128.7 (t, *J*_{CF} = 31.6 Hz), 128.4 (t, *J*_{CF} = 4.6 Hz), 128.3 (t, *J*_{CF} = 4.9 Hz), 124.2, 120.6, 120.2, 118.4 (t, *J*_{CF} = 238.7 Hz), 116.0 (d, *J*_{CF} = 22.3 Hz), 113.9, 111.6, 41.3, 28.5, 24.9. ¹⁹F **NMR** (376 MHz, CDCl₃), δ (ppm) -82.5 (s, 2F), -109.3 (s, 1F). **FT-IR** (cm⁻¹, neat, ATR), \tilde{v} =3250, 2975, 2930, 1690, 1605, 1160. **HRMS (ESI)** calcd for C₂₂H₂₄F₃N₂O₂ [M+H]⁺: 405.1790, found 405.1787.

tert-Butyl (2-(2-(Difluoro(3-methoxyphenyl)methyl)-1H-indol-3-yl)ethyl)carbamate (13)

Prepared according to the *General Procedure*, with the addition of sodium formate (51 mg, 0.75 mmol, 1.5 equiv.), from the corresponding indole **11** (130 mg, 0.50 mmol, 1.0 equiv) and 1-methoxy-3-(trifluoromethyl)benzene (881 mg, 5.0 mmol, 10 equiv). After purification by automated flash column chromatography (from hexanes to 20% EtOAc in hexanes), the title compound **13** was obtained as a light yellow oil (44 mg, 0.10 mmol, 20%) ¹**H NMR** (600 MHz, CDCl₃), δ (ppm) 8.21 (s, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 5.0 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.09 (s, 2H), 7.00 (d, J = 7.8 Hz, 1H), 4.53 (s, 1H), 3.80 (s, 3H), 3.35 – 3.27 (m, 2H), 2.88 (t, J = 7.1 Hz, 2H), 1.41 (s, 9H). ¹³C **NMR** (151 MHz, CDCl₃), δ (ppm) 159.9, 156.0, 137.7 (t, $J_{CF} = 28.1$ Hz), 135.1, 130.0, 129.0 (t, $J_{CF} = 32.2$ Hz), 128.5, 124.0, 120.4, 120.2, 118.6 (t, $J_{CF} = 239.9$ Hz), 118.3 (t, $J_{CF} = 5.2$ Hz), 116.5, 113.7, 111.6, 111.5 (t, $J_{CF} = 5.0$ Hz), 79.1, 55.6, 41.3, 29.8, 28.5. ¹⁹F **NMR** (376 MHz, CDCl₃), δ (ppm) -83.9. **FT-IR** (cm⁻¹, neat, ATR), $\tilde{v} = 3300$, 1689, 1587, 1272, 1245, 1161. **HRMS (ESI)** calcd for C₂₃H₂₆F₂N₂O₃Na [M+Na]⁺: 439.1809, found 439.1815.

e. Gram Scale Synthesis Reaction

A 500 mL round bottom flask was charged with a magnetic stir bar, 1,3-dimethylindole (1.16 g, 8.0 mmol, 1 equiv), bis(4-methoxybenzene) disulfide (2.23 g, 8.0 mmol, 1 equiv), and K₂HPO₄ (174 mg, 16 mmol, 2 equiv). The round bottom flask was sealed with a septum and purged with argon. Anhyd DMSO (80 mL) was added with additional purging for 3 min. Ethyl trifluoroacetate (4.8 mL, 40 mmol, 5 equiv) was added and the septum-sealed round bottom flask was wrapped with Parafilm. The round bottom flask was placed in between two Kessil PR160L-blue LED lamp (30 W High Luminous DEX 2100 LED, λ_{max} = 427 nm) with a distance of 2 inches from the sides of the round bottom flask, and two fans were used on the other side to keep the reaction near room temperature. The reaction workflow is pictured below. After monitoring by ¹⁹F NMR, the reaction was quenched with H₂O (100 mL) after 24 h and extracted with EtOAc (3 x 110 mL). The combined organic layers were washed with H₂O (100 mL), followed by brine (100 mL), and dried (Na₂SO₄). The solvent was removed by rotary evaporation, and the crude mixture was purified by automatic flash column chromatography (from hexanes to 5% EtOAc in hexanes). The product 4a was obtained as a colorless oil (650 mg, 2.4 mmol), and starting material (1,3dimethylindole) was also recovered (300 mg, 2.1 mmol). Calculating the yield based on recovered starting material (8.0 mmol starting -2.1 mmol recovered = 5.9 mmol), furnishes a 41% yield of 4a.

f) Unsuccessful Substrate Examples

4. Mechanistic Experiments a. TEMPO Trapping with bis(4-methoxybenzen)disulfide

To a flame-dried 4 mL vial equipped with a magnetic stir bar, indole **1a** (14.5 mg, 0.1 mmol, 1.0 equiv), TEMPO (78.1 mg, 0.5 mmol, 5 equiv), K₂HPO₄ (34.8 mg, 0.2 mmol, 2.0 equiv) and bis(4-methoxyphenyl) disulfide (27.8 mg, 1 equiv) were added, and the vial was subjected to 3 cycles of vacuum/argon degassing. Subsequently, 1.0 mL of dry DMSO was added under inert atmosphere followed by 10 equiv of ethyltrifluoroacetate (142 mg, 0.12 mL, 1 mmol). The reaction mixture was irradiated with Kessil PR160L-blue LED lamp (30 W High Luminous DEX 2100 LED, $\lambda_{max} = 427$ nm) for 2 h, as described in the "Workflow" section. The temperature of the reaction was maintained at approximately 25 °C via a fan. The crude analysis by GCMS did not show the formation of product **4a**, thus the presence of TEMPO inhibits the product formation. Additionally, we detected the *p*-methoxythiophenol-TEMPO adduct.

b. TEMPO Trapping with 4-methoxybenzenethiol

To a flame-dried 4 mL vial equipped with a magnetic stir bar, indole **1a** (14.5 mg, 0.1 mmol, 1.0 equiv), TEMPO (78.1 mg, 0.5 mmol, 5 equiv), K₂HPO₄ (34.8 mg, 0.2 mmol, 2.0 equiv) and 4-methoxythiophenol (14 mg, 1 equiv) were added, and the vial was subjected to 3 cycles of vacuum/argon degassing. Subsequently, 1.0 mL of dry DMSO were added under inert atmosphere followed by 10 equiv of ethyltrifluoroacetate (142 mg, 0.12 mL, 1 mmol). The reaction mixture was irradiated with Kessil PR160L-blue LED lamp (30 W High Luminous DEX 2100 LED, λ_{max} = 427 nm) for 2 h, as described in the "Workflow" section. The temperature of the reaction was maintained at approximately 25 °C via a fan. The crude analysis by GCMS did not show the formation of product **4a**, thus the presence of TEMPO inhibits the product formation. Additionally, we detected the difluoroethylacetate-TEMPO adduct.

c) Control Reaction without Substrate

To a 4 mL vial charged with a stir bar, K₂HPO₄ (34.8 mg, 0.2 mmol, 2.0 equiv) and 1,2-bis(4methoxyphenyl) disulfide (27.8 mg, 1 equiv) were added. The vial was purged with argon, and 1 mL of anhyd DMSO was added. The vial was sealed with Parafilm and irradiated with a Kessil PR160L-blue LED lamp (30 W High Luminous DEX 2100 LED, $\lambda_{max} = 427$ nm) (as described in Workflow) overnight. Trimethoxybenzene was added, and the reaction was analyzed by GC-MS. The difluoroalkylated 4-methoxybenzenethiol and difluoroalkylated bis(4methoxybenzene)disulfide were detected.

d) UV-Vis Data

Individual solutions of **1a**, **2a**, **3**, and a mixture of **1a**, **2a**, **3**, and **base** in DMSO were prepared at 0.05 M concentration and used for the UV-Vis absorption spectroscopic measurements. The solutions were prepared in the presence of air.

5. NMR Spectra

 ^{19}F NMR (376 MHz, CDCl_3) of compound 4a.

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound 4b.

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of compound 4c.

 ^{19}F NMR (376 MHz, CDCl_3) of compound 4e.

 ^{13}C NMR (151 MHz, CDCl_3) of compound 4k.

 $^1\mathrm{H}$ NMR (600 MHz, CDCl_3) of compound 41.

¹H NMR (600 MHz, CDCl₃) of compound **5**.

 ^{13}C NMR (151 MHz, CDCl₃) of compound **5**.

¹³C NMR (151 MHz, CDCl₃) of compound 7.

S51

 ^{13}C NMR (151 MHz, CDCl₃) of compound 11.

¹⁹F NMR (376 MHz, CDCl₃) of compound **11**.

 ^{13}C NMR (151 MHz, CDCl₃) of compound 12.

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound 12.

 ^{13}C NMR (151 MHz, CDCl₃) of compound 13.

¹⁹F NMR (376 MHz, CDCl₃) of compound **13**.

6. References

- 1) Shao, C.; Shi, G.; Zhang, Y.; Pan, S.; Guan, X. Org. Lett. 2015, 17, 2652-2655.
- 2) Nadres, E.T.; Lazareva, A.; Daugulis, O. J. Org. Chem. 2011, 76, 571-483.
- 3) Roy, S.; Haque, S.; Gribble, G.W. Synthesis 2006, 23, 3948-3954.
- 4) Xu, J.; Tong, R. Green Chem. 2017, 19, 2952-2956.
- 5) Ye, J. -H.; Bellotti, P.; Heusel, C.; Glorius, F. Angew. Chem. Int. Ed. 2022, 61, e202115456.