A61603–a₁₄-AR–Gq cryo-EM data processing

Supplementary Figure 1. A61603– α_{1A} -AR–Gq cryo-EM data processing.

a, Cryo-EM data processing workflow of A61603– α_{1A} -AR–Gq complex. **b**, Fourier shell correction curves of consensus map and α_{1A} -AR and G α_{q} focus map. **c**, Cross-validation of consensus and composite maps to A61603– α_{1A} -AR–Gq complex model. **d**, Local resolution of consensus map.

Epinephrine– α_{1A} -AR–Gq cryo-EM data processing

Supplementary Figure 2. Epinephrine– α_{1A} -AR–Gq cryo-EM data processing.

a, Cryo-EM data processing workflow of epinephrine– α_{1A} -AR–Gq complex. **b**, Fourier shell correction curves of consensus map and α_{1A} -AR and G α_{q} focus map. **c**, Cross-validation of consensus and composite maps to epinephrine– α_{1A} -AR–Gq complex model. **d**, Local resolution of consensus map.

a A61603– α_{1A} -AR–Gq complex

b Epinephrine– α_{1A} -AR–Gq complex

Supplementary Figure 3. Cryo-EM maps versus refined structures.

Cryo-EM density maps and models are shown for all seven transmembrane α -helices of α_{1A} -AR and α 5-helix of $G\alpha_q$, of A61603– α_{1A} -AR– G_q complex (a) and epinephrine– α_{1A} -AR– G_q complex (b).

Supplementary Figure 4. Conformational changes of α_1 -AR during the activation. Structural comparisons of the inactive state α_{1B} -AR (grey; PDB 7B6W) and the active state of α_{1A} -AR in complex with Gq (this work) are shown. (a) The conformational changes of the CWxP motif during α_1 -AR activation are shown. (b) The conformational changes of the PIF motif during α_1 -AR activation are shown. (c) Movement of Y^{7.53} within the NPxxY motif. (d) The conformational changes in the DRY motif.

Supplementary Figure 5. GaMD simulations of epinephrine.

(a) Comparison of the conformations of epinephrine in the cryo-EM structure (in pink color) and from GaMD simulations (in blue color). (b) The epinephrine RMSD by comparing the conformations of epinephrine in the cryo-EM structure and from GaMD simulations. (c,d) time courses of the distances between epinephrine and specific residues of α_{1A} -AR were calculated from the GaMD simulations: between the CG atom of D106^{3.32} and N1 atom of epinephrine (c), and between the OG atom of S188^{5.43} and O2 atom of epinephrine (d). Three independent 500 ns GaMD simulations are shown for each condition.

Supplementary Figure 6. Different conformations of epinephrine.

(a) epinephrine in the complex of epinephrine– β_1 -AR–nanobody 6B9. (b) Comparison of epinephrine in complex with α_{1A} -AR and with β_1 -AR. (c) Epinephrine in the complex of epinephrine- β_2 -AR–nanobody 6B9. (d) Comparison of epinephrine in complex with α_{1A} -AR and with β_2 -AR.

Supplementary Figure 7. GaMD simulations of A61603.

Time courses of the distances between A61603 and specific residues of α_{1A} -AR were calculated from the GaMD simulations: the N atom of A189^{5.44} and the O2 atom of A61603 (**a**), the OG atom of S188^{5.43} and the O atom of A61603 (**b**), and the OG atom of S188^{5.43} and the O2 atom of A61603 (**c**). Three independent 500 ns GaMD simulations are shown for each condition.

a. Phylogenetic tree of all human ARs

D106^{3.32} V107^{3.33} C110^{3.36} V185^{5.40} S188^{5.43} A189^{5.44} $\boldsymbol{\alpha}_{\mathbf{1A}}\textbf{-}\mathbf{AR}$ VLCC V L F SALG α_{1B} -AR ASIL С D I W A A V D CAI YALFSSLGS SL S D V L C C T A S I L S L C T I α_{1D} -AR FCDVWAAV S V D R Y V GΥ AVFSSVC A G GKAWCEI YLAL T S S I V H L C A I S L <mark>D R Y W</mark> S **α κ <mark>w γ</mark> ν ι s s c** $\alpha_{_{\mathbf{2A}}}\text{-}\mathbf{AR}$ DVLFC I G S RRTWC E V Y IVHLCAISLDR AWYILASSIG LAL V L F C Y W A V S R $\alpha_{_{2B}}$ -AR TSS H L C A I S L <mark>D R Y W</mark> S V T Q <mark>g q v w</mark> c <mark>g v y</mark> FC ΙV WYILSSC LALDVL тзз I G α_{2C} -AR S T S V D V L C V T A S I E T L C V I A L D RYLAI FCELW β**_-AR** NRAYAIASS v v s F W C VLCV ASIETLCVIAVDR YFAI β_2 -AR FW TSID NQAYAIASSIV E T L C A L A V D TGC LAV N M P β**₃-AR** G A С VII S S W2856.48 F2886.51 F2896.52 M2926.55 F3127.38 G3157.41 Y3167.42 α_{1A} -AR L G I V V G C F V L C W G S K T L G I V V G M F I L C W L P F F $\alpha_{_{1B}}$ -AR IALP LGSL v v L A A SRE α_{1D} -AR L L <mark>K F S R E K K</mark> A A <mark>K T</mark> L A I V V <mark>G</mark> V F V L C <mark>W F P</mark> F F F V L P LGSL F L V E G V $\alpha_{_{2A}}$ -AR G V F V V C W F P F RGRQNREKRFT VVI AVG_ V L $\alpha_{_{2B}}$ -AR G V F V L C W F P F RAQLTRE KRFT F ννι С V 1 G C α_{2c} -AR VAQA ۷ V V M <mark>G</mark> V F V L CWF GICR KRF G R E Q K A L K T L G I I M G V F T L C W L P F F L A N β**,-AR** LVAL L V V RL F V G β**,-AR** SKFCL K E H K A L K T L G I I M G T F T L C W L RК PF F v F V N ALC LGLIMG С β**,-AR** L G

b. Most of A61603 interacting residues are conserved in $\alpha_{\rm 1}\text{-}\text{ARs}$

Supplementary Figure 8. Conservation assessments of all human ARs.

(a) Phylogenetic tree of all human ARs. (b) Structure-based sequence alignment of all human ARs generated in GPCRdb. A61603 interacting residues are labeled. As the sequence alignment indicated, most of A61603 interacting residues are conserved in α_1 -ARs.

Supplementary Figure 9. GaMD simulations of A61603 in complexes with mutant α_{1A} -ARs. Time courses of A61603 RMSDs relative to the initial structures in the systems of α_{1A} -AR(V185A) (**a-c**), α_{1A} -AR(A189S) (**d-f**), α_{1A} -AR(M292L) (**g-i**), and α_{1A} -AR(V185A,A189S,M292L) (**j-i**). Time courses of the distances between A61603 and specific residues of mutant α_{1A} -ARs were calculated from the GaMD simulations: the CG atom of D106^{3.32} and the N2 atom of A61603 (**b**,**e**,**h**,**k**), and the OG atom of S188^{5.43} and the O2 atom of A61603 (**c**,**f**,**i**,**l**). Three independent 500 ns GaMD simulations are shown for each condition.

Supplementary Figure 10. GaMD simulations of A61603 in complexes with wild-type and mutant α_{1B} -ARs. (a, d, g) Time courses of A61603 RMSDs relative to the initial structures in the system of wild-type α_{1B} -AR (a), α_{1B} -AR(S208A) (d) and α_{1B} -AR(A204V,S208A,L314M) (g). (b, e, h) Time courses of the distance between the CG atom of D125^{3.32} and N2 atom of A61603 in the system of wild-type α_{1B} -AR (b), α_{1B} -AR(S208A) (e) and α_{1B} -AR(A204V,S208A,L314M) (h). (c, f, i) Time courses of the distance between the OG atom of S207^{5.43} and the O2 atom of A61603 in the wild-type of α_{1B} -AR (c), α_{1B} -AR(S208A) (f) and α_{1B} -AR (A204V,S208A,L314M) (i). Three independent 500 ns GaMD simulations are shown for each condition.

Supplementary Figure 11. 2D free energy profiles.

(**a-e**) 2D free energy profiles of the A61603 RMSD relative to the distance between the CG atom of D106^{3.32} and N2 atom of A61603 in the system of α_{1A} -AR (WT) (**a**), α_{1A} -AR (V185A) (**b**), α_{1A} -AR(A189S) (**c**), α_{1A} -AR(M292L) (**d**) and α 1A-AR(V185A,A189S,M292L) (**e**). (**f-j**) 2D free energy profiles of the A61603 RMSD relative to the distance between the OG atom of S188^{5.43} and O2 atom of A61603 in the system of α_{1A} -AR (WT) (**f**), α_{1A} -AR (V185A) (**g**), α_{1A} -AR(A189S) (**h**), α_{1A} -AR(M292L) (**i**) and α 1A-AR(V185A,A189S,M292L) (**j**).

Supplementary Figure 12. 2D free energy profiles.

(**a-c**) 2D free energy profiles of the A61603 RMSD relative to the distance between the CG atom of D125^{3.32} and N2 atom of A61603 in the system of α_{1B} -AR (WT) (**a**), α_{1B} -AR (S208A) (**b**), and α_{1B} -AR (A204V,S208A,L314M) (**c**). (**d-f**) 2D free energy profiles of the A61603 RMSD relative to the distance between the OG atom of S207^{5.43} and O2 atom of A61603 in the system of α_{1B} -AR (WT) (**d**), α_{1B} -AR (S208A) (**e**), and α_{1B} -AR (A204V,S208A,L314M) (**f**).

Comparison of A61603 and epinephrine conformations and orientations in the complexes with $\alpha_{\rm 1A}\text{-}AR$ and Gq

Supplementary Figure 13. Orientations of A61603 and epinephrine in the complex structures.

The conformations of A61603 and epinepherine in the cryo-EM structures are compared.

Supplementary Table 1. Cryo-EM data collection, refinement and validation statistics

	A61603–α _{1A} -AR–Gq Epinephrine–α _{1A} -AR–G	
	(EMDB-41267)	(EMDB-41268)
	(PDB 8THK)	(PDB 8THL)
Data collection and processing		
Magnification	81,000x	64,000x
Voltage (kV)	300	300
Electron exposure (e⁻/Ų)	50	52
Defocus range (µm)	-1.0 to -1.8	-1.0 to -1.8
Pixel size (Å)	1.07	1.076
Symmetry imposed	C1	C1
Initial particle images (no.)	1,497,830	880,531
Final particle images (no.)	360,489	219,834
Map resolution (Å) (Full/α _{1A} -AR–	2.62/2.86	3.07/3.04
$G\alpha$ focus)		
FSC threshold	0.143	0.143
Refinement		
Initial model used (PDB/	6WHA and AF-P35348-F1	6WHA and AF-P35348-F1
AlphaFoldDB code)		
Model resolution (Å)	2.9/2.4	3.4/3.0
FSC threshold	0.50 / 0.143	0.50 / 0.143
Map sharpening <i>B</i> factor (Å ²)	-50	-30
Model composition		
Non-hydrogen atoms	8,159	7,837
Protein residues	1,080	1,080
Ligands	1	1
<i>B</i> factors (Ų)		
Protein	57.64	105.68
Ligand	48.76	123.23
R.m.s. deviations		
Bond lengths (Å)	0.002	0.003
Bond angles (°)	0.478	0.483
Validation		
MolProbity score	1.19	1.46
Clashscore	4.00	5.70
Poor rotamers (%)	0.95	0.79
Ramachandran plot		
Favored (%)	98.21	97.17
Allowed (%)	1.79	2.83
Disallowed (%)	0.00	0

Supplementary Table 2. Summary of the A61603 root-mean-square-fluctuation (RMSF) and binding free energy from MM/GBSA calculations on wild-type and mutant α_{1A} -ARs and α_{1B} -ARs. For each system, 1,000 frames were used for MM/GBSA calculations. Mean ± SD are shown.

α_{1A} -AR							
System	WT	V185A	A189S	M292L	V185A,A189S,M292L		
A61603 RMSF (Å)	1.46 ± 0.10	2.36 ± 0.52	1.10 ± 0.09	1.74 ± 0.39	2.58 ± 0.33		
A61603 binding free energy (kcal/mol)	-26.73 ± 0.22	-22.18 ± 0.73	-26.54 ± 1.89	-27.88 ± 1.53	-11.52 ± 2.47		
α _{1B} -AR							
System	WT	S208A	A204V,S208A,L314M				
A61603 RMSF (Å)	4.28 ± 0.30	3.55 ± 1.97	0.98 ± 0.21				
A61603 binding free energy (kcal/mol)	-11.52 ± 2.47	-25.81 ± 2.67	-28.21 ± 2.80				