Cell Reports, Volume 42

Supplemental information

Periodontal disease is associated with increased

gut colonization of pathogenic Haemophilus

parainfluenzae in patients with Crohn's disease

Jiho Sohn, Lu Li, Lixia Zhang, Robert J. Genco, Karen L. Falkner, Hervé Tettelin, Aryn M. Rowsam, Dominic J. Smiraglia, Jan M. Novak, Patricia I. Diaz, Yijun Sun, and Keith L. Kirkwood

<u>Saliva</u>

<u>Fecal</u>

Figure S1. Salivary and fecal beta diversity measurements associated with CD or PD.

Related to Figure 1. Salivary and fecal beta diversity was measured by unweighted-UNiFrac distance based on (A,C) CD ((n=25 in non-CD and n =25 in CD) or (B,D) PD (n=8 in healthy, n=21 in moderate, and n=21 in severe) status. Statistical testing was performed using PERMANOVA.

<u>Saliva</u>

Periodontal disease status

Figure S2. The relative abundance of *H. parainfluenzae* is unchanged in saliva, subgingival or fecal samples. Related to Figure 2. The relative abundance of *H. parainfluenzae* in fecal samples based on (A,D,G) CD (n=25 in non-CD and n =25 in CD), (B,E,I) PD (n=8 in healthy, n=21 in moderate, and n=21 in severe) status, or (C,G,J) stratified by CD and PD status (n=4 in healthy PD and non-CD, n= 4 in healthy PD and CD, n=7 in moderate PD and non-CD, n=13 in moderate PD and CD, n=14 in severe PD and non-CD, and n=8 in severe PD and CD). Statistical testing was performed using (A,D,H) Mann-Whitney U, (B,E,H) Kruskal-Wallis followed by Dunn's multiple comparisons test, and (C,F,I) two-way ANOVA followed by Sidak's multiple comparisons tests. Data are represented as mean ± SEM.

Figure S3. No significant changes in subgingival microbiota alpha-diversity with CD or PD. Related to Figure 1. Subgingival alpha diversity based on (A) CD (n=25 in non-CD and n =25 in CD), (B) PD (n=8 in healthy, n=21 in moderate, and n=21 in severe), (C) stratified by CD and PD status (n=4 in healthy PD and non-CD, n= 4 in healthy PD and CD, n=7 in moderate PD and non-CD, n=13 in moderate PD and CD, n=14 in severe PD and non-CD, and n=8 in severe PD and CD), or (D) CD surgery status ((n=25 in non-CD, n=12 in CD no surgery, n=13 in CD surgery) represented by observed OTUs. (E) Correlation matrix of subgingival alpha diversity measures and whole mouth periodontal clinical measurements (n=25 each group), pielou e: Pielou's Evenness index, faith pd: Faith's phylogenetic diversity, shannon: Shannon diversity index, brillouin d: Brillouin index, chao1: Chao1 richness estimate, PI: plaque index, GI: gingival index, PD: mean pocket depth, GR: gingival recession, CAL: mean clinical attachment loss, BOP: bleeding on probing. Beta diversity was measured by unweighted-UNiFrac distance based on (A) CD or (B) PD status. Statistical testing was performed using (A) Mann-Whitney U, (B,D) Kruskal-Wallis followed by Dunn's multiple comparisons test, (C)Two-way ANOVA followed by Sidak's multiple comparisons test. (E) Pearson correlation tests with coefficients shown in color scale. A two-tailed test was used to calculate p-values. (F,G) Beta diversity comparison was performed using PERMANOVA. Data are represented as mean \pm SEM.

Figure S4. Oligotyping analysis of *H. parainfluenzae* **16S rRNA amplicon.** Related to Figure 2. Oligotypes of *H. parainfluenzae* in (A) fecal, (B) saliva, and (C) subgingival based on CD or PD status (n=4 in healthy PD and non-CD, n= 4 in healthy PD and CD, n=7 in moderate PD and non-CD, n=13 in moderate PD and CD, n=14 in severe PD and non-CD, and n=8 in severe PD and CD) represented on stacked bar plot. Statistical testing was performed using two-way ANOVA followed by Sidak's multiple comparisons test. *Adjusted p-value <0.05

Haemophilus parainfluenzae biotype III (S1p)

Haemophilus parainfluenzae biotype V (S2)

В

ID	Location	Biotype
S1p	Saliva	111
S2	Saliva	V
F2	Fecal	111
F3p	Fecal	V

Figure S5. Biochemical and genomic analysis of *H. parainfluenzae* strains. Related to Figure 2. Biochemical assay to determine *H. parainfluenzae* biotype. (A) *H. parainfluenzae* biotype II (S1p and F2 strains) metabolizes ornithine, and *H. parainfluenzae* biotype V (S2 and F3p strains) does not metabolize ornithine. (B) Table summarizing *H. parainfluenzae* strain and biotype. (C) Whole genome-based phylogeny of H. parainfluenzae genomes. Isolated strains (S1p, S2, F2, and F3p) are highlighted in colors.

Figure S6. Quantification of H. parainfluenzae strains in (A) saliva, (B) subgingival, and (C) fecal samples based on PD status. Related to Figure 2. (n=8 in healthy, n=21 in moderate, and n=21 in severe)Statistical testing was performed using 2-way ANOVA and Sidak's multiple comparison test.

Supplementary Figure 7

Figure S7. Association between *H. parainfluenzae* strains and periodontal disease severity. Related to Figure 2. (A) qPCR quantification of *H. parainfluenzae* strains (A) S2, (B) F2, and (C) F3p in fecal samples based on periodontal disease status in CD patients (n=4 in healthy PD and non-CD, n= 4 in healthy PD and CD, n=7 in moderate PD and non-CD, n=13 in moderate PD and CD, n=14 in severe PD and non-CD, and n=8 in severe PD and CD). (D-I) Pearson correlation analysis of fecal *H. parainfluenzae* strains S2, F2, and F3p log (DNA copies/mL) with clinical attachment loss in non-CD (n=25) and CD (n=25). Statistical testing was performed using (A-C) 2-way ANOVA and Sidak's multiple comparison test, and (D-I) two-tailed statistical test.

Strain	Fprward_seq	Reverse_seq	Internal Oligo
S1p	TTTTCACGCAGTTTCACCAA	CCCACAATAACGCAGAACCT	CAACCCGTGGCAAGGGCTTG
S2	GGACTGTAATAGCGGAAACGA	TTACCGGCAGAAACTGAACC	TGCCCCACAAAGCGATGGTT
F2	ATTTTGGATCGAAGGGGAAG	GGCATCGTCTTGTTTGTTCC	TGGCGGGAGTTTGCGAGAGA
F3p	TCTTTACCCTGCGCATTTTT	ACACACCGTTTGGGAAAGAG	TGCCATCATCATCCACCGCC

Table S1. H. parainfluenzae strain-specific qPCR primer and probe sequences. Related to the design of strain-specific primers for *H. parainfluenzae* strains in STAR Methods section.

Dataset 1 (MTX EC)	Dataset 2 (MGX Species)	Spearman	P value	FDR p
4.1.1.17: Ornithine decarboxylase	Haemophilus parainfluenzae	0.626	4.41E-84	9.08E-80
4.1.1.17: Ornithine decarboxylase	Veillonella unclassified	0.422	3.72E-34	5.37E-31
4.1.1.17: Ornithine decarboxylase	Veillonella dispar	0.307	4.96E-18	1.59E-15
4.1.1.17: Ornithine decarboxylase	Veillonella atypica	0.299	3.29E-17	1.00E-14
4.1.1.17: Ornithine decarboxylase	Streptococcus parasanguinis	0.298	5.18E-17	1.55E-14
4.1.1.17: Ornithine decarboxylase	Streptococcus salivarius	0.247	5.19E-12	8.51E-10
4.1.1.17: Ornithine decarboxylase	Veillonella parvula	0.232	9.64E-11	1.35E-08
4.1.1.17: Ornithine decarboxylase	Oscillibacter unclassified	-0.145	6.27E-05	1.77E-03
4.1.1.17: Ornithine decarboxylase	Lachnospiraceae bacterium	-0.142	8.37E-05	2.23E-03
4.1.1.17: Ornithine decarboxylase	Flavonifractor plautii	-0.141	9.91E-05	2.55E-03
4.1.1.17: Ornithine decarboxylase	Klebsiella pneumoniae	0.135	1.93E-04	4.27E-03
4.1.1.17: Ornithine decarboxylase	Clostridium bolteae	-0.134	2.20E-04	4.71E-03
4.1.1.17: Ornithine decarboxylase	Parabacteroides goldsteinii	-0.123	6.50E-04	1.07E-02
4.1.1.17: Ornithine decarboxylase	Clostridium symbiosum	-0.113	1.73E-03	2.18E-02
4.1.1.17: Ornithine decarboxylase	Bacteroides intestinalis	-0.113	1.84E-03	2.27E-02
4.1.1.17: Ornithine decarboxylase	Parabacteroides distasonis	-0.104	3.97E-03	3.93E-02

Table S4. Significantly associated species with microbial ornithine decarboxylase activity. Related to Figure 6. This table was adapted from cross-data type association analysis from the original paper describing iHMP2 dataset¹. Subject-specific random effect and covariate effects were minimized by first residualizing using a linear mixed effect model. Spearman associations using HAIIA 0.8.17 (hierarchical all-against-all association testing) and FDR correction were performed for statistical testing. MTX: metatranscriptomics, MGX: metagenomics.

Reference

1. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655-62; doi: 10.1038/s41586-019-1237-9.