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Fig. 1. Low-level architectures used in this paper. Connections between the reg-
istration network, autoencoder, and projection MLPs correspond to Figure 1 in the
main text. Every convolution uses a 3x3x3 kernel size. LeakyReLU slopes set to 0.2.
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Fig. 2. Coronal view of T1w-T2w registration between arbitrarily selected subjects
for the ch=64 models. Error maps computed w.r.t. the T1w MRI of the target subject.
Hypernetwork registration models are sampled with the same λ as Table 1 (main text).
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Fig. 3. Hypernetwork T1w-T2w registration. Leftmost column: Arbitrarily se-
lected input images to register. Remaining columns: Registration results in ascend-
ing order of regularization strengths (λ). As λ increases, deformation energies reduce
and regularity increases, at the cost of increased image mismatch.


