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I. HARMONIC HALL VOLTAGE MEASUREMENT TECHNIQUE TO EXTRACT SPIN-ORBIT
TORQUES (SOTS).

Harmonic Hall voltage measurement technique has been used to determine quantitatively the two components of
the SO torques (SOT) in our sample series. The measurement geometry is shown in Fig. S1. The Hall voltage (VH)
in a perpendicularly magnetized system is expressed as:

VH =
(
R0 +RAHE cos (θ) +RPHE sin2 (θ) sin (2φ)

)
I (1)

where θ and φ are the polar and azimuthal angle of the magnetization, RAHE is the anomalous Hall resistance, RPHE
is the planar Hall resistance and R0 is the x−y resistance arises due to imperfect device geometry. When an AC current
of frequency f is injected in the Hall bar, it generates effective SOT fields (∆H) that produces magnetic oscillations
around its equilibrium (∆θ, ∆φ). Theses oscillations modulate the Hall voltage in synchronization with current
frequency f . By replacing I → I0 sin(2πft), ∆H → ∆H sin(2πft), θ → θ+ ∆θ sin(2πft), and φ→ φ+ ∆φ sin(2πft),
we obtain the following expression for the measured Hall voltage:

VH = V0 + Vf sin(2πft) + V2f cos(4πft) (2)

with

Vf =
(
R0 +RAHE cos (θ) +RPHE sin2 (θ) sin (2φ)

)
I0 (3)

and

V0 = V2f = 1/2 (RAHE sin(θ)−RPHE sin(2θ) sin(2φ)) ∆θI0 −RPHE sin2(θ) cos(2φ)∆φI0 (4)

Note that the Vf gives the information of magnetization direction (θ and φ) in the presence of an external magnetic
field. Whereas, the V2f contains all the information of magnetization oscillations (∆θ, ∆φ) generated by the two
torques. To extract the SOT effective fields, we simultaneously measure Vf and V2f as a function of in-plane magnetic
fields applied along the current direction in damping-like (DL) geometry and transverse to the current direction in
field-like (FL) geometry (see Fig. S1). Note that the external magnetic field is applied slightly off-plane with an angle
δθH ≈ 7o to ensure uniform magnetization inside the Hall bar.

For DL geometry, i.e., θH = π/2 + δθH and φ = φH = 0, after having replaced the values of ∆θ and ∆φ, one
obtains in the damping-like (DL) geometry, H ‖ I:
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Figure S1. Harmonic Hall measurements of damping-like (DL) and field-like (FL) spin-orbit effective fields in Pt(8)|Co(0.55-
1.4)|Al(1.4)|Pt(3) sample. The top panel illustrates the DL geometry when H ‖ I (Hx) and the FL geometry when H ⊥ I (Hy)
for a thin Co layer of magnetization M, at position (θ, φ). a-b) In-plane field dependence of V2f (green) for tCo = 0.9 nm in (a)
DL geometry and in (b) FL geometry. The solid black lines are fits to extract DLT and FLT. The horizontal axis is normalized
with respect to the anisotropy field, HK. The inset of Fig. 1a shows normalized Vf (green) as a function of in-plane magnetic
field and Stoner-Wohlfarth fit (solid black lines). The data are shown after correcting the contributions from inhomogeneous
device geometry as well as the thermal contributions as explained in Fig S2 and S3 . (c) DL and (d) FL SOT fields vs. I for
tCo = 0.55 nm (disc), 0.9 nm (square) and 1.4 nm (star). The dotted lines are the linear fit forced to cross through (0,0) with
uncertainty shown in shadow.

V DL2f = −1/2 sin(θ)

(
HDLRAHE

HK cos(2θ)−H sin(δθH − θ)
+

2HFLRPHE sec(δθH) sin(θ)

H

)
I0. (5)

In the similar way, for field-like (FL) geometry (H ⊥ I), θH = π/2 + δθH , φ = φH = π/2, and V2f becomes:
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V FL2f = 1/2 cos(θ) sin(θ)

(
HFLRAHE

HK cos(2θ)−H sin(δθH − θ)
+

2RPHEHDL sec(δθH) sin(θ)

H

)
I0. (6)

HDL and HFL are the damping-like and field-like effective fields, respectively. The values of RAHE , HK , θ(H) and
δθH are extracted from Vf . We use the following procedure to extract the HFL and HDL:

- the first harmonic data is centered around zero.
- the amplitude of RAHE is obtained from Vf vs Hx(y) curve. In our case, the resistance RAHE = Vf/I at Hx(y) = 0.

Additionally, RAHE can also be obtained from DC measurements (see section IV).
- the Vf vs. Hx(y) plot is normalized between +1 and -1 i.e. Vf

Vf (Hx(y)=0) (inset of Fig. S1a).
- the normalized Vf vs. Hx(y) curve is fitted by using the Stoner-Wohlfarth model (inset of Fig. 1a in the main

text) allowing to extract the anisotropy field (HK) and magnetic-field tilt (δθH). We also interpolate the fit to obtain
the magnetization rotation (θ) for each magnetic field.

- the base-line and thermal effects (if any) is removed from V2f data. The procedure is explained in the section II.
- keeping HDL and HFL × RPHE as a free parameter, V DL2f vs Hx is fitted to obtain HDL and the HFL × RPHE

product (see Fig. 1a in the main text).
- similarly keeping HFL and the HDL × RPHE product as a free parameter, V FL2f vs. Hy is fitted to obtain HFL

and HDL ×RPHE (see Fig. 1b in the main text).

The amplitude of V2f predominantly depends on HDL in the longitudinal geometry (V DL2f ) and on HFL in transverse
geometry (V FL2f ). In Fig. S1a-b, we show the dependence of second harmonic Hall voltage (V2f, green points) acquired
on a Pt(8)|Co(0.9)|Al(1.4)|Pt(3) sample as a function of in-plane magnetic fields in DL geometry and FL geometry.
The inset of Fig. S1a shows the variation of first harmonic Hall voltage (Vf) vs. Hx fitted with Stoner-Wohlfarth
model. The fit allows to extract the anisotropy fields (HK) and the magnetization angle (θ) away from the easy-axis
(z). Note that the accurate measurements of HK and θ are critical prerequisites to extract precise values of HDL and
HFL from V2f. We also emphasize that extracting the effective fields by restricting to the linear regime of the V2f may
give rise to a strong discrepancy, especially in the estimation of HFL values.

The HDL and HFL SOT components are determined by fitting V2f vs. Hx and Hy respectively, and taking into
account the contribution from the anomalous Hall (AHE) and planar Hall effects (PHE) [1]. We notice however that
the PHE contribution is one order of magnitude smaller than the AHE and the fits are dominated by the first term of
equation (5) and (6) in DL and FL geometries, respectively. The reported HDL and HFL values in the manuscript, are
extracted from DL and FL geometries, respectively (by considering RPHE). The fits are displayed by black continuous
lines in Fig. S1a-b. In Fig. S1c-d, we show the HDL and HFL vs. I = IRMS for three Pt(8)|Co(tCo)|Al(1.4)|Pt(3)
samples with Co thicknesses, tCo = 0.55, 0.9 and 1.4 nm, which are in the range, or below the typical transverse spin
decoherence length (λ⊥ ≈ 1.5− 2 nm) of Co [2, 3]. We note that HDL changes sign with m, whereas HFL does not,
in agreement with the expected SOT symmetries. The HDL and HFL are then measured at several currents and the
slope of HDL,FL vs. I (dashed lines in Fig. S1(c-d)) is considered to compare the SOT fields between the samples for
better accuracy. Furthermore, the SOT fields show linear scaling with current as expected. Additionally, the HFL

and Oersted field generated by current have the same symmetry. In our samples, we have estimated the Oersted field
strength to be 0.7 G for 1011 A/m2 current density in Pt, which, we have removed during the analysis.

II. CONTRIBUTION FROM THERMAL EFFECTS AND IMPERFECT DEVICE GEOMETRY IN
FIRST AND SECOND HARMONIC HALL VOLTAGE

Asymmetric voltage contacts or defects in the device geometry as well as anomalous Nernst effect (ANE) might also
contribute to the measured Hall voltage. Small misalignment in the voltage contacts leads to a constant offset (or a
baseline) in Vf and V2f and observed in almost all the devices. These effects (or the baseline) have been corrected in
the raw data while analyzing tha data. The raw measured Vf and the ones after correcting the offset as a function
of the in-plane magnetic field are shown in Fig. S3a and Fig. S3d. The thermal effects mainly arise due to the ANE
produced by an in-plane thermal gradient which generates an additional magnetization dependent voltage at the
frequency 2f . The amplitude of ANE voltage is determined by measuring the V2f as a function of the out-of-plane
magnetic field as shown in Fig. S2 (by keeping the magnetization out-of-plane θ = 0). At θ =0, the SOT fields do
not contribute to the V2f (from equations 5 and 6, V2f = 0 for θ = 0) and the measured signal arises from spurious
effects. The effect varies from sample to sample and the difference between V2f at +Mz and −Mz is due to the ANE.
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(b)(a)

Figure S2. The anomalous Hall voltage at 2f as a function of out-of-plane magnetic field in Pt8|Co0.9|Cu1|Pt3 sample. (a) as
measured (b) after an offset correction. The offset voltage arises due to misalignment at voltage contacts and the hysteresis
kind of behaviour at 2f arises due to ANE.

We point out that the ANE voltage is always much smaller then the AHE voltage. The offset in data is due to the
misalignment is voltage contacts as shown in Fig. S2a. The raw experimental data of V2f as well as after subtracting
an offset voltage and the ANE contribution are shown in Fig. S3 in both DL and FL geometries. We exclude these
contributions during the fitting of our data to extract the SOT fields.

On the other hand, an out-of-plane thermal gradient may produce an additional V2f contribution to the transverse
signal only in the DLT measurement configuration when the magnetic field is sufficiently large to rotate the magneti-
zation in the layer plane. Such "out-of-plane" ANE effects are expected to be maximum in the large field window over
the in-plane saturation value that we did not observe for the whole sample series. Furthermore, in order to get rid
from some possible thermal contributions, we have measured the contribution of out-of-plane thermal gradient into
second harmonic Hall resistance by performing planar Hall effect measurements on thicker and in-plane magnetized
"reference" Co samples. We have considered two different cases (i) a Pt/Co-based structure and (ii) in Co/oxide
multilayer. In Fig. S3 (g), we show the amplitude of R2f as a function of the external magnetic field in the two
samples. The dotted lines are the fit involving possible thermal effects to separate the damping-like torque signal
from the thermal effects. As the thermal effects are independent of the external magnetic field, the intercept of the
linear fit is only due to the spurious contributions. As expected and observed, these effects contribute significantly to
R2f signal in the presence of an oxide interface, whereas the signal in Pt/Co sample is free from thermal contributions,
which is presently our case.

III. VAN DER PAUW FOUR PROBE RESISTIVITY MEASUREMENTS AND CURRENT SHUNT IN
PT.

The resistivity of each sample has been measured on thin films using van der Pauw method in four probe geometry.
In Fig. S4, we show the sheet conductance, Gs (=1/sheet resistance, RS) as a function of Pt thickness measured on 25
µm long and 5 µm wide devices in Ta(5)|Pt(tPt)|Co(0.9)|Al(5) series of samples. The slope and intercept of the linear
curve gives sheet conductance of 1 nm Pt and rest of the material in the stack (Ta(5)|Co(0.9)|Al(5)), respectively.
From the slope, the resistivity of Pt ρPt = 24.2 µΩ×cm is determined. This method allows us to estimate also the
interface resistance.
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Figure S3. As measured (a) Vf voltage, (b) V2f in DL geometry and (c) V2f in FL geometry in Ta5|Pt8|Co0.9|Cu1|Pt3 sample.
(d) The Vf after an continuous offset subtraction from the raw data. (e) The V2f after an continuous offset and ANE correction
in DL geometry. (f) The V2f after an continuous offset and ANE correction in FL geometry. (g) Amplitude of R2f as a function
of external magnetic field (Hx) in two samples (i) Co/Pt samples in blue and (ii) Co/Oxide interface (red). The dotted lines
are linear fits to separate the amplitude of SOTs from the thermal effects.
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Figure S4. Sheet conductance of Ta(5)|Pt(tPt)|Co(0.9)|Al(5) as a function of Pt thickness (black points), measured in four
point van der Pauw geometry. The solid line is the linear fit to extract the resistivity of Pt.

The resistivities of Cu, Ta, Co and Al are also obtained from four-point geometries. To measure the shunt of the
current density through Pt layer JPt, we have used the following model:

JPt =
1

ρPt

tPt + trest
tPt
ρPt

+ tRest
ρRest

JT (7)

where JT is the total current density. In the similar way, the resistivity of Cu, Ta and Co was found to be ∼
11.5µΩ×cm, ∼ 169µΩ×cm, and ∼ 30µΩ×cm, respectively.
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IV. ANOMALOUS HALL RESISTANCE, PLANAR HALL RESISTANCE, Ms AND ANISOTROPY
FIELD.

A. Variation of Ms

We show below the values of the saturation magnetization measured on different sample series.

tCo Ms Pt8|Co(tCo)|Al1.4|Pt3 (MA/m) Ms Pt8|Co(tCo)|Cu1.4|Pt3 (MA/m)

0.7 nm 1 1
0.9 nm 0.96 1.17
1.2 nm 1.13 1.23
1.4 nm 1.09 1.19

Table I. Values of the magnetization (MA/m) measured on the different series of samples.

B. Experimental AHE and PHE

In perpendicularly magnetized systems, the Hall resistance (RH) is expressed as:

RH = RAHE cos (θ) +RPHE sin2 (θ) sin (2φ), (8)

where θ and φ are the polar and azimuthal angle of the magnetization (see Fig. S1), RAHE is the anomalous Hall
resistance and RPHE is the planar Hall resistance. For each sample, we obtain the RAHE by measuring the Hall
resistance as a function of the out-of-plane magnetic field as shown in Fig. S5a. The RPHE values are obtained by
measuring the Hall voltage as a function of the in-plane angle between magnetization and current under a 3 T in-plane
magnetic field. The 3 T magnetic field drags the magnetization in the plane i.e. θ = π/2 and the variation in RH
solely arises due to the planar Hall effect. By replacing θ = π/2 in Eq (7), we simply obtain:

RH = RPHE sin(2φ) (9)

In Fig. S5b, we display the variation of RH (black points) as a function of the in-plane field angle. We obtain
RPHE by fitting the data points with Eq (8). However, another way to obtain RPHE is to measure the peak value as
shown in Fig. S5b. The evolution of RAHE in various series of sample is shown in Fig. S7. The anisotropy fields (HK)
of each sample is extracted by fitting first harmonic Hall voltage as a function of the in-plane magnetic field using
Stonar-Wohlfarth model (inset of Fig. 1a of main text). The extracted anisotropy fields for Pt8|Co (t)|Al1.4|Pt3 and
Pt8|Co (t)|Cu1.4|Pt3 series of samples are shown in Fig. S6.

RAHE

RPHE

(a) (b)

Figure S5. The Hall resistance (RH) as a function of out-of-plane magnetic field in Pt8|Co0.7|Al1.4|Pt3 sample. The saturation
value of RH is the amplitude of RAHE . (b) RH (black points) as a function of angle (φ) between current (100 µA) and in-plane
magnetization in the same sample. The solid yellow line is the fit to extract the RPHE .
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Figure S5

Figure S6. Anisotropy field in Pt8|Co(tCo)|Al1.4|Pt3 (red) and Pt8|Co(tCo)|Cu1.4|Pt3 (blue) as a function of Co thickness.

C. AHE analyses and spin-current proximity effects

Our analyses of Anomalous Hall effects (AHE) is based on a semi-phenomenological approach of spin-dependent
transport, involving spin-dependent diffusion and electron scattering at the multiple interfaces, possibly considering
spin-flips caused by the local spin-orbit interactions [4]. The principle of our analyses is then:

1) a representation of the spin-current profiles within the whole multilayers by correctly matching the out-of-
equilibrium electronic Fermi distributions. This is of preliminary importance to provide the amplitude of the anoma-
lous Hall effect (AHE) in multilayers as far as a ferromagnetic layer ensures the polarization of the current via the
non-local spin-dependent conductivity calculated by our method.

2) Adjacent 5d SOC layers (mainly Pt) can affect the spin orbit assisted diffusion of electrons by spin-current
proximity effect. Therefore, the AHE may be enhanced by increasing the spin orbit coupling in those SOC bottom
and top Pt layers. The more important is the SOC, the largest is the transverse spin current via the spin-to-charge
conversion process and the Anomalous Hall angle.

Apart from spin-dependent electronic diffusions in the bulk of the layers (e.g layer-dependent conductivity), one may
emphasize the relevant boundary conditions to match for the out-of-equilibrium Fermi distribution in the framework
of Fuchs-Sondheimer model. This is generally performed by including possible specular [4, 5] or diffusive reflection
(R)/transmission(T ). Taking into account proximity (spin) currents effects we have calculated between layers (i) and
layer (i± 1), the overall square resistance Rxx and transverse Hall resistance Rxy write respectively:

Rxx = ρ∗xx
L

Wt
' L

W

1

tσ∗xx
=

L

W

1∑
i,σ σxx,iσti

, (10)

Rxy '
ρ∗xy
t

=
σ∗xy

t (σ∗xx)
2 =

∑
i,σ (σxy,iσti)(∑
i,σ σxx,iσti

)2 (11)

where L, W represents the length and width of the Hall cross bars, t is the overall thickness of MLs and σxx,iσ
the local longitudinal spin-dependent conductivity of the ith layer of thickness ti and σxy,iσ the local off-diagonal
spin-conductivity in the layer (i).

We have gathered the physical parameters used for the AHE fitting in Table II. The transmission coefficients
extracted and spin-memory loss are used to analyze the DLT and FLT torques in the main text.
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Figure S7. Anomalous Hall resistance (solid circles) in various series of samples. (a) In Pt8|Co(tCo)|Al1.4|Pt3 as a function
of Co thickness. (b) In Pt8|Co(tCo)|Cu1.4|Pt3 as a function of Co thickness. (c) In Pt8|Co0.9|Al(tAl)|Pt3 as a function of Al
thickness. (d) In Pt8|Co0.9|Cu(tCu)|Pt3 as a function of Cu thickness. (e) In Pt(tpt)|Co0.9|Al5 as a function of Pt thickness.
The open triangles are the values of calculated RAHE by considering current shunt (measured experimentally by using Van der
Pauw method) in each layer. The multilayer stacking is shown in the inset of each plot.
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Parameters Symbols Values for ↑ spin Value for ↓ spin
Conductivity of Co σCo

(
S.cm−1

)
σCo

2(1−βCo)
= 7.4± 1.0× 106 σCo

2(1+βCo)
= 1.6± 0.3× 106

Conductivity of Cu σCu
(
S.cm−1

)
1.3± 0.3× 107 1.3×±0.3107

Conductivity of Pt σPt
(
S.cm−1

)
2.5± 0.5× 106 2.5± 0.5× 106

Conductivity of Al130 σAl
(
S.cm−1

)
7± 1× 106 7± 1× 106

Mean free path of Co λCo(nm) 7.0± 1 2.0± 0.3

Mean free path of Cu λCu(nm) 7.0± 1 7.0± 1

Mean free path of Pt λPt(nm) 2.0± 0.5 2.0± 0.5

Mean free path of Al λAl(nm) 6.0± 1.5 6.0± 1.5

Bulk asymmetry coefficient of Co βCo 0.6± 0.1

Spin Hall angle of Co θCo 0.025± 0.01 −0.025± 0.01

Spin Hall angle of Pt θPt 0.22± 0.03 −0.22± 0.03

Spin Hall angle of Al θAl 0.02± 0.01 −0.02± 0.01

Pt/Co Interface transmission TPt/Co
TPt/Co

1−γPt/Co
= 0.9± 0.1

TPt/Co
1+γPt/Co

= 0.4± 0.1

Co/Cu Interface transmission TCo/Cu
TCo/Cu

1−γCo/Cu
= 0.9± 0.05

TCo/Cu
1+γCo/Cu

= 0.3± 0.1

Co/Al Interface transmission TCo/Al
TCo/Al

1−γCo/Al
= 0.1± 0.05

TCo/Al
1+γCo/Al

= 0.1± 0.05

Cu/Pt Interface transmission TCu/Pt TCu/Pt = 0.6± 0.1 TCu/Pt = 0.6± 0.1

Al/Pt Interface transmission TAl/Pt TAl/Pt = 0.2± 0.1 TAl/Pt = 0.2± 0.1

Pt/Co Interface asymmetry coefficient γPt/Co 0.5± 0.1

Co/Cu Interface asymmetry coefficient γCo/Cu 0.6± 0.1

Co/Al Interface asymmetry coefficient γCo/Al 0

Pt/Co specularity in reflection spPt/Co 0.2± 0.1

Co/Cu specularity in reflection spCo/Cu 0.3± 0.1

Co/Al specularity in reflection spCo/Al 0.15± 0.1

Cu/Pt specularity in reflection spCu/Pt 0.4± 0.1

Al/Pt specularity in reflection spAl/Pt 0

Pt/Co spin-loss memory δPt/Co 0.6± 0.1

Co/Cu spin-loss memory δCo/Cu 0.3± 0.1

Cu/Pt spin-loss memory δCu/Pt 0.5± 0.1

Co/Al spin-loss memory δCo/Al

Table II. Physical parameters of Pt, Co, Cu and Al and their interfaces extracted from our AHE fitting procedure. Those
values are compatible with the values extracted from the FLT and DLT torque fitting procedure. When not explicitly given,
the error bars correspond to the value of the latest significant figure. The issue of specularity in reflection are largely discussed
in Refs. [4, 5].
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V. SIGN AND AMPLITUDE OF SOTS IN REFERENCE PT|CO|PT STACKS.

The amplitude and sign of current-induced effective fields are compared in Pt(8)|Co(0.9)|Pt(3), Pt(8)|Co(0.9)|Pt(8)
and Pt(3)|Co(0.9)|Pt(8) samples by measuring second harmonic Hall voltage loops for reference. In Fig. S8, we show
V2f loops, measured in DL geometry with the magnetic field applied along the current direction for the three samples.
We observe sizable SOT effective field in Pt(8)|Co(0.9)|Pt(3) even though the structure is symmetric in terms of
interfaces.

Figure S6

Figure S8. V2f as a function of in-plane magnetic field in DL geometry in Pt(8)|Co(0.9)|Pt(3) in black, Pt(8)|Co(0.9)|Pt(8) in
red and Pt(3)|Co(0.9)|Pt(8) in blue.

This result suggests that spin current entering into Co from top 3 nm Pt is not large enough to compensate the
effect of spin injection from bottom interface, in agreement with the results shown in Fig. 4a of the main text, for
which at least 5 nm Pt is required to maximize the effect. To verify, we have measured torques in Pt(8)|Co(0.9)|Pt(8)
sample, and as expected, we do not observe any SOT effective fields as shown by red curve in Fig. S8. The V2f curve
in Pt(3)|Co(0.9)|Pt(8) sample (blue curve) has opposite polarity if compared to Pt(3)|Co(0.9)|Pt(8) (in black), which
indicates the sign of SOT fields in Pt(3)|Co(0.9)|Pt(8) is opposite to that of Pt(8)|Co(0.9)|Pt(3) as expected.

VI. PT LAYER THICKNESS DEPENDENT EVOLUTION OF DL AND FL SOTS.

In Fig. 4b of the main text, we show the ratio of FL effective fields over DL effective fields as a function of Pt
thickness in Pt(tPt)|Co(0.9)|Al(8) stacks. The individual change in HFL and HDL as a function of Pt thickness is
shown in Fig. S9. We note that when Pt thickness is smaller than 5 nm, both SOTs effective fields are decreasing
with decreasing the Pt thickness. However it is important to mention that the rate of the change is different and we
observe an increase in the ratio below 5 nm Pt (see Fig. 4b of the main text).
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Figure S9. Damping-like and field-like effective fields as a function of Pt thickness for 1011A/m−2 current density in Pt in
Pt(tPt)|Co(0.9)|Al(5) stacks.
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VII. MODELLING OF TORQUES IN MULTILAYERS.

SO torque related to SHE occur from the 4d or 5d host metallic materials [6], and is often described by a flow of
spins transverse to the current satisfying the quantum law Jσ ∝ θSHE Jc × σ̂ [7–9] with θSHE, the spin-Hall angle
(SHA) as the scaling parameter. It results in a linear relationship between the SHE-SOT and the applied electric
field E as τSOT ∝ σeff

SHE E with σeff
SHE the spin Hall conductivity (SHE). Concerning the SOT related to REE, it arises

that the charge current injected in the plane of an inversion asymmetric stack may produce a non-equilibrium spin-
accumulation owing to a Rashba spin-structure, generally accompanying the spin-momentum locking (SML) [10]. The
corresponding linear relationship is given by µ̂ ∝ κIEE E , where κIEE = NDOSλIEE is the Rashba-Edelstein tensor,
λIEE the Rashba-Edelstein length and NDOS the 2-dimensional density of states (DOS). Importantly, this makes
the REE distinct in nature from SHE. It is to be noticed that the spin-current and spin-accumulation generated by
either origin, may act in concert to exert net SOT onto a magnetization vector m̂ with two different components: the
damping-like torque (DLT) component, ˆτDL ∝ m̂× (µ̂× m̂) and the field-like torque (FLT) component, ˆτFL ∝ µ̂× m̂
giving rise correspondingly to a damping-like (HDL) and field-like (HFL) effective fields.

A. Hypothesis and general framework: the generalized Boltzmann equation.

1. Coupled equations for spin-current and spin-accumulation (local spin-density).

To understand the experimental observations, we have modelled our results, and notably the different thickness
dependence of the SOTs. Our modelling is adapted from the generalized drift-precession-diffusion equations and frame-
work like proposed in Refs. [11–13]. These are shown to be in-line with the spin-dependent Boltzmann treatment [14].
We provide here subsequent numerical insights for HDL and HFL in strong agreement with the experimental data.
We consider that the spin-orbit coupling in the 3d ferromagnetic transition metal (Co) is small enough and therefore,
we add a small correction to the spin relaxation by taking into account the longitudinal (τsf ) and transverse or
decoherence (τ∆) spin-flip relaxation times. Consequently, the steady-state dynamics of both spin-accumulation and
spin currents write:

∂µ̂

∂t
= − µ̂

τ∆
− µ̂

τsf
− µ̂× M̂

τJ
− ∂Jσ

∂z

∂Ĵσ
∂t

= −Ĵσ
τ∆
− Ĵσ
τp
− Ĵσ × M̂

τJ
− D
τp

∂µ̂

∂z
(12)

where µ̂(z) = Tr {〈Ψkn|σ̂| |Ψkn〉} is the out-of equilibrium spin-density and Jσ(z) is the out-of equilibrium spin-
current generated by SHE or REE. τJ is the spin precessing time in Co, τ∆ an extra transverse decoherence time
(i.e. interactions with magnons), τp the momentum relaxation time (λ = vF τp is the mean free path; vF is the Fermi
velocity), τsf is the longitudinal spin relaxation time and D is the diffusion constant.

In the steady state regime of spin injection and spin-orbit torque ( ∂∂t = 0), we obtain µ̃ = ± λ̃µ
λ̃p
Jσ and Jσ = ± λ̃J

λ̃p
µ̃

for Jσ and µ̃ = µvF (the local spin-density in the unit of a current) with λ̃p the characteristic (scaling) length
of the spin eigenmode we are searching for. We have defined two intermediate complex dephasing lengths, either

λ̃µ = vF (1/τ∆ + 1/τsf − i/τJ)
−1 and λ̃J = vF (1/τ∆ + 1/τp − i/τJ)

−1. Hence, we find λ̃p =
√
λ̃J λ̃µ, the unique

scaling length, characterized by a respective real (oscillatory part) and imaginary part λ⊥ = Im(λ̃p), the transverse
spin damping length previously defined.

We may also define a generalized spin-resistance for Co as rSF = 1
Gsh

√
λ̃µ
λ̃J

(Gsh is the Sharvin conductance), able

to treat the spin-injection problem in a non-collinear magnetic configuration.

In the case of non-magnetic materials, it means that, without the exchange terms as for (Pt, Al, Cu), the product
of the Sharvin conductance Gsh by the spin-resistance rs, largely employed throughout the calculations, equals
r̃s = Gsh r

s ≈
√

τsf
τp

that is always larger than unity when the spin-lifetime τsf in the considered material is larger

than the momentum relaxation time τp. Typical r̃s = Gsh r
s ≈

√
τsf
τp

product values for Pt equals about r̃s ≈2 for
tPt =∞ whereas the corresponding value for 10 nm finite Cu and Al is larger than r̃s �10.
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Figure S10. Sketch of the investigated multilayer structure constituted of a trilayer ’S/F/O’ whereby a transverse spin-current
is injected from a SHE ’S’ material (Pt) into a thin ferromagnet ’F’ (Co) and into an overlayer ’O’. Interfaces, e.g. Pt/Co, are
treated as a thin dissipative interface layer (int) location of a spin-memory loss L̃. The total amount of spin-current ejected
from ’S’ is noted J ints ∝ 1−R, whereas the proportion of the transverse spin-current injected in ’F’ is noted J ins ∝ T and the
one ejected from ’F’ is J outs . The integrated torque τSOT over the ’F’ thickness is proportional to J ins − J outs . The different
spin-resistance are noted rsS , rsint, rsF , rs0 respectively.

2. Torque calculations: analytical insights.

The integrated torque τSOT is calculated from the volume integral of the local torque due to the s-d exchange Jxc
acting in parallel on the accumulation µ̂F in Co according to [15, 16]:

τSOT =

∫
V

dM̂
dτ

= −
∫
V

m̂× µ̂F (z)

τJ
dV (13)

where τ is the time, V is the volume of Co,M the magnetization of Co per unit volume, µF is expressed in the same
unit (µB/V) than M̂, and m̂ being the direction of the magnetization vector and τJ = ~

Jexc (Jexc is the s-d exchange
interaction).

In the presence of additional decoherence processes other than dephasing by precession and from Eq. [10], the
knowledge of the transverse spin-current profile allows a rapid determination of the two SOT components.

From the generic equation [12]:

µ̂F
τ∆

+
µ̂F
τsf

+
µ̂F × M̂

τJ
= −∂Jσ

∂z
(14)

we can extract:

µ̂F =
iτJ

1− iτJ
(

1
τ∆

+ 1
τsf

) ∂Jσ
∂z

(15)

together with the integrated torque τSOT according to:

τSOT = −
1 + iτJ

(
1
τ∆

+ 1
τsf

)
1 +

[
τJ

(
1
τ∆

+ 1
τsf

)]2 (J inσ − J outσ

)
(16)
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from Eq. [13], in which the J in/outσ are the respective ingoing/outgoing transverse spin-current from the Co ferromag-
netic layer. Such generic expression for torques holds for REE too. In agreement with experimental data for Cu and
Al samples, we then treat the REE as the effect of an additional spin accumulation µ̂RE in both sample series.

3. Boundary conditions for the spin-current/spin-density.

In this section we give more details about the calculation techniques. The spin information propagating in the
multilayers is either given by the profile of the out-of equilibrium spin current Jσ(z) and/or spin-density µ̂(z) along
the thickness coordinate z. In each layer (l) (Pt, Co, Al, Cu) constituting the multilayers, the spin-current and spin
accumulation can be represented as:

Jσ(z) = J Σ(l)
σ + ∆J (l)−

σ exp

(
− z

λ̃
(l)
p

)
+ ∆J (l)+

σ exp

(
+

z

λ̃
(l)
p

)
(17)

µσ(z) = µΣ(l)
σ + ∆µ(l)−

σ exp

(
− z

λ̃
(l)
p

)
+ ∆µ(l)+

σ exp

(
+

z

λ̃
(l)
p

)
(18)

where J Σ(l)
σ is the SHE current source and µΣ(l)

σ is the REE spin-density source in the layer (l). ∆J (l)±
σ and ∆µ

(l)±
σ

are the out-of-equilibrium quantities generated from interfaces by SHE and/or by REE. We are searching from our
scattering matrix procedure. From the above dynamical equations, we then obtain a direct relationship linking ∆µ

(l)±
σ

and ∆J (l)±
σ according to ∆µ(l)±

σ

NDOSµB = ∓erSF∆J (l)±
σ (µB = e~/m is the Bohr magneton and NDOS is the 3D density

of states (DOS)).
The general self-consistent solutions can then be solved by using either ∆J (l)±

σ or ∆µ
(l)±
σ as unknown physical

quantities. We chose the ∆J (l)±
σ basis able to treat both SHE and REE owing to the relevant boundary conditions

to be used in each case (SHE or REE) separately.
Boundary conditions to be used to find the two outward out-of-equilibrium components ∆J (l)−

σ and ∆J (l+1)+
σ at

a given interface l/(l+ 1) between two consecutive layers (l) and (l+ 1) vs. i) the two incoming spin-current sources
J Σ(l)+
σ and J Σ(l+1)−

σ as well as ii) the inward out-of-equilibrium spin-current components ∆J (l)+
σ and ∆J (l+1)−

σ are:

1 - the continuity of the total current when the spin-memory loss is zero according to:

J Σ(l)+
σ −∆J (l)−

σ + ∆J (l)+
σ = −J Σ(l+1)+

σ + ∆J (l+1)+
σ −∆J (l+1)−

σ (19)

2 - equality between diffusive current and pure interface spin-current parametrized by the spin-mixing conductance
with negligible spin-orbit G↑↓ [17, 18] according to:

J Σ(l)+
σ −∆J (l)−

σ + ∆J (l)+
σ = G↑↓

[
rs(l)

(
∆J (l)−

σ + ∆J (l)+
σ

)
− rs(l+1)

(
∆J (l+1)−

σ + ∆J (l+1)+
σ

)]
(20)

when the spin-memory is absent.

3 - incorporate the form of the spin-current discontinuity at the same interface if the spin-memory loss is present
as well as an interface resistance rb considering that the corresponding interfacial spin-resistance is rsint = rb

δ = 1
Gsδ

with Gs being the surface conductance. This overall calculation is performed by implementing the effective spin-
transmission/reflection with loss. In the case of spin memory loss, the connection between the spin-mixing conductance
G↑↓ and the surface conductance Gs writes G−1

↑↓ = G−1
s + (rsF )

−1 (see following paragraph).

B. The contribution from the spin-Hall effect.

1. Semi-phenomenological description: extended Boltzmann equation in the spin injection/diffusion/precession regime.

We first consider the solution of the generalized Boltzmann equation describing the profile of the spin-current and
local spin-density (spin-accumulation) in the framework of the ’spin-injection’ problem. This includes the formalism
of complex spin-resistance of the ferromagnet rFs and interfacial Gs and/or spin-mixing conductance G↑↓.
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The trilayer structure of the type ’S/F/O’ (Fig. S10) is constituted by two semi-infinite materials ’S’ and ’O’,
where ’S’ is typically played by the SHE material (e. g. Pt) and ’O’ by the top part of the structure (overlayer).
’F’ is the ferromagnetic material of thickness tCo. We note t̃S = ts

λ̃s
and t̃F = tCo

λ̃p
the reduced thicknesses of ’S’ and

’F’ respectively (over their spin-relaxation length). We consider Gs the generalized surface spin conductance of the
S/F interface dependening on the surface transparency (the so-called spin-mixing conductance G↑↓ will be defined
afterwards Vs. Gs) and rsint, rsF and rsO the spin-resistance of the different materials (int for the interface, rF is the
generalized spin-resistance of the thin ferromagnet). From the diffusive theory of spin injection, one can extract the
profile of the SHE spin-current in the depth of the structure and give in particular the expression of the respective
ingoing (’in’ ) and outgoing (’out’ ) spin-current in/out the ’F’ layer according to:

J ints

JbulkPtSHE

=
r̃sS
(
1− sech t̃s

) [
r̃sint cosh δ

(
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ r̃sF sinh δ

(
r̃sF sinh t̃F + r̃sO cosh t̃F

)]
r̃sint (r̃sS cosh δ + r̃sint sinh δ)

(
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ r̃sF (r̃sS sinh δ + r̃sint cosh δ)

(
r̃sF sinh t̃F + r̃sO cosh t̃F

)
J ins

JbulkPtSHE

=
r̃sS
(
1− sech t̃s

)
r̃sint

(
r̃sF cosh t̃F + r̃sO sinh t̃F

)
r̃sint (r̃S cosh δ + r̃sint sinh δ)

(
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ r̃sF (r̃sS sinh δ + r̃sint cosh δ)

(
r̃sF sinh t̃F + r̃sO cosh t̃F

)
J outs

JbulkPtSHE

=
r̃sS
(
1− sech t̃s

)
r̃sintr̃

s
F

r̃sint (r̃sS cosh δ + r̃sint sinh δ)
(
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ r̃sF (r̃sS sinh δ + r̃sint cosh δ)

(
r̃sF sinh t̃F + r̃sO cosh t̃F

)
with JBulkPtSHE the bulk spin-Hall current and considering the finite transmission at the S/F interface (∝ 1

rsint
) and the

spin-memory loss parametrized by the δ parameter. This yields:

J ins
JbulkPtSHE

=
G̃sr̃

s
S

(
1− sech t̃s

) (
r̃sF cosh t̃F + r̃sO sinh t̃F

)(
sinh δ
δ + G̃sr̃sS cosh δ

) (
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ G̃sr̃sF

(
cosh δ + G̃sr̃sSδ sinh δ

) (
r̃sF sinh t̃F + r̃sO cosh t̃F

)
J outs

JbulkPtSHE

=
G̃sr̃

s
S

(
1− sech t̃s

)
r̃sF(

sinh δ
δ + G̃sr̃sS cosh δ

) (
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ G̃sr̃sF

(
cosh δ + G̃sr̃sSδ sinh δ

) (
r̃sF sinh t̃F + r̃sO cosh t̃F

)
with G̃s being the surface conductance in unit of Gsh. The integrated torque is given by Eq. [16] to give:

τSOT
J bulk PtSHE

∼
G̃sr̃

s
S

(
1− sech t̃s

) [
r̃sF
(
cosh t̃F − 1

)
+ r̃sO sinh t̃F

](
sinh δ
δ + G̃sr̃sS cosh δ

) (
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ G̃sr̃sF

(
cosh δ + G̃sr̃sSδ sinh δ

) (
r̃sF sinh t̃F + r̃sO cosh t̃F

)
where we remind that t̃ = t

λ̃p
.

In the limit of zero spin-memory loss δ = 0, one gets:

τSOT
J bulk PtSHE

∼
G̃sr̃

s
S

(
1− sech t̃s

) [
r̃sF
(
cosh t̃F − 1

)
+ r̃sO sinh t̃F

](
1 + G̃sr̃sS

) (
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ G̃sr̃sF

(
r̃sF sinh t̃F + r̃sO cosh t̃F

)
τSOT
J bulk PtSHE

∼
G̃↑↓r̃

s
S

(
1− sech t̃s

) [
r̃sF
(
cosh t̃F − 1

)
+ r̃sO sinh t̃F

](
1 + G̃↑↓r̃sS

) (
r̃sF cosh t̃F + r̃sO sinh t̃F

)
+ G̃↑↓r̃sF (r̃sO − r̃sF ) exp

(
−t̃F

) (21)

after having defined the spin-mixing conductance G↑↓ as G−1
↑↓ = G−1

s + (rsF )
−1.

In order to catch the underlying mechanism, two different cases have to be discussed:

(i) The infinite ’FM’ thickness (thickness large compared to the decoherence length) giving:

τSOT
J bulk PtSHE

∼
G̃↑↓r̃

s
S

(
1− sech t̃s

)
1 + G̃↑↓r̃sS

(22)

being essentially a real quantity (because G̃↑↓ is mainly real) giving rise to an almost pure Damping-like torque (DLT)
like already discussed [19] and formula we have used in the article text (Eq. [3]).
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Figure S11. Ferromagnetic layer thickness (tCo) dependence of the two torque components, respectively DLT and FLT, calculated
on a Pt8|Co(tCo)|Al(1.4)|Pt(3). The limit at small tCo displays a linear dependence of the FLT and a quadratic dependence of
the DLT as expected from the theory.

(ii) The limit of zero ’FM’ thickness (thickness small compared to the decoherence length) giving:

τSOT
J bulk PtSHE

∼
(
r̃sO
r̃sF

)
G̃↑↓r̃

s
S

1 + G̃↑↓r̃sS

(
1− sech t̃s

)
sinh t̃F (23)

Note that in the case of zero additional transverse decoherence τ∆ = ∞, sinh t̃F = i tCo

vF τJ
is purely imaginary and,

in that limit, the torque is mostly field-like (FLT) showing, as expected, a linear dependence on tCo. This explains
a part of our findings on Pt|Co|Cu|Pt systems. From these calculations, in the limit of zero ’F’ film thickness, the
DLT (real part of τ) admits a square dependence t2Co on the thickness (see Fig. S11). Moreover, the involvement of
additional decoherence processes τ∆ . τJ reinforces the strength of the FLT compared to DLT owing to the prefactor
in Eq. [16] as discussed previously in the case of ferromagnetic semiconductors [20].

2. Numerical implementation in the multilayer scattering framework [4]

We now turn on the numerical implementation of the theory previously described which uses multiple interface scat-
tering formalism (electronic reflection/transmission and subsequent interferences) where all the conductance quantities
and inverse of spin-resistance are scaled down by the Sharvin conductance (GSh). In particular, such implementation
also involves complex propagating functions in the Co ferromagnet as previously described. We give now some details.

The effective transmission/reflection coefficients :

Considering the presence of the spin-memory loss with parameter δ [21], the effective transmission T , reflection R
and loss L for a transverse spin-current Jσ propagating from the left (l) into the interface (l)/(l+1) writes respectively:

T =
T↑↓ r̃

s(l)
(

δ
sinh δ

)
1 + δ coth δ T↑↓

(
r̃s(l) + r̃s(l+1)

)
+ δ2 T 2

↑↓ r̃
s(l) r̃s(l+1)

R =
1 + δ coth δ T↑↓r̃

s(l+1)

1 + δ coth δ T↑↓
(
r̃s(l) + r̃s(l+1)

)
+ δ2 T 2

↑↓ r̃
s(l) r̃s(l+1)

L =
δ T↑↓ r̃

s(l)
(
tanh δ

2 + δ T↑↓ r̃
s(l+1)

)
1 + δ coth δ T↑↓

(
r̃s(l) + r̃s(l+1)

)
+ δ2 T 2

↑↓ r̃
s(l) r̃s(l+1)

(24)

satisfying T +R+ L = 1.



18

The relative spin memory loss defined as the relative spin-current lost over the total spin-current ejected writes
then:

L̃ =
L

1−R
=

tanh δ
2 + δ T↑↓ r̃

s(l+1)

coth δ + δ T↑↓ r̃s(l+1)
(25)

which increases with δ and approaches unity when δ → ∞. Note that this expression of L̃ does not depend of the
spin-resistance rs(l) of the material from which the carriers are injected.

Other equivalent expression of Eqs.[24] exist for the effective transmission T̃ and reflection coefficients R̃ related to
inward out-of-equilibrium spin-accumulation components, ∆J (l)+

σ and ∆J (l+1)−
σ , playing the role of sources according

to:

T̃ =
2T↑↓ r̃

s(l)
(

δ
sinh δ

)
1 + δ coth δ T↑↓

(
r̃s(l) + r̃s(l+1)

)
+ δ2 T 2

↑↓ r̃
s(l) r̃s(l+1)

R̃ =
1 + δ coth δ T↑↓

(
r̃s(l+1) − r̃s(l)

)
1 + δ coth δ T↑↓

(
r̃s(l) + r̃s(l+1)

)
+ δ2 T 2

↑↓ r̃
s(l) r̃s(l+1)

(26)

Equivalent formula exist for reciprocal transmission (T̃ ′) and reflection (R̃′) coefficients for carriers moving in an
opposite direction.

The use of the scattering matrix:

We consider the respective S =

[
R T ′

T ′ R′

]
and S̃ =

[
R̃ T̃ ′

T̃ ′ R̃′

]
, the respective scattering matrices linking the outward

out-of-equilibrium spin-current components to the incoming sources according to:

(
∆J (l)−

σ

∆J (l+1)+
σ

)
= S

(
J Σ(l)+
σ

J Σ(l+1)−
σ

)
+ S̃

(
∆J (l)+

σ

∆J (l+1)−
σ

)
(27)

In our approach, the spin-current source

(
J Σ(l)+
σ

J Σ(l+1)−
σ

)
is treated as an effective out-of-equilibrium source term

S̃−1S

(
J Σ(l)+
σ

J Σ(l+1)−
σ

)
according to:

(
∆J (l)−

σ

∆J (l+1)+
σ

)
= S̃

[
S̃−1S

(
J Σ(l)+
σ

J Σ(l+1)−
σ

)
+

(
∆J (l)+

σ

∆J (l+1)−
σ

)]
(28)

which allows to treat both sources in a universal scattering approach. We then solve self consistently the en-
semble of the above equations treating the boundary conditions at each interface of the multilayers by employ-
ing the scattering path operator technique in such diffusive problem as largely employed in the multiple inter-
face quantum scattering problem [4]. For the present case, this framework is generalized to the case of non-
collinear magnetization geometry [17] with the introduction on complex propagating electronic wavevectors q with
q−1 = λp = vF (1/τ∆ + 1/τsf − i/τJ) (1/τ∆ + 1/τp − i/τJ) [12].

The generalized multilayer scattering problem is then solved through a matrix inversion treatment of the recursive
formula for S̃ [22, 23]:

(
S̃
)
nm

= (s̃)nn δnm +
(
S̃
)
nl
Plm (s̃)mm (29)
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Figure S12. Spatial dependence of the out-of-equilibrium spin (spin-accumulation) and/or SOT components injected in a 5 nm
Co layer. The blue curve correspond to transverse spin-accumulation parallel to the incoming SHE spin direction (responsible
for FLT). The red curve is the component transverse to both the magnetization and SHE spin-current injected (responsible for
DLT).

with s̃nn =

[
R̃nn T̃ ′nn
T̃ ′nn R̃′nn

]
the bare scattering matrix at the single interface (n) , Plm the propagation matrix in a given

layer (l) from the interface (l) to the interface (m) = (m± 1). S̃nl is the super scattering matrix we are searching for
corresponding to an ingoing spin-injection at the interface (n) and an outgoing scattering out-of the interface (m).

C. Parameters used and resulting modelling:

For the fit of Figs. [2,3,4] in the main text, we have extracted:

- precession length parameter: λJ = 2πvF τJ = 4.7 nm

- transverse spin decoherence length λ⊥ = 1.7 nm

with the use of the following parameters for Co|Pt and Co|Cu|Pt [4, 24, 25]:

- average spin mean free path in Co: λCo = vF τp = 4 nm

- reduced spin resistance for Pt : r̃sPt = Gsh × rsPt = 2 with Gsh ≈ 4 × 1015 S/m2 (obtained from the value of
G
Co/Pt
↑↓ [21]) and rsPt = ρPt × λPtsf (ρPt ≈ 25µΩ.cm and λPtsf = 1.5 nm).

- reduced spin resistance for Al(1.4)|Pt and Cu(1.4)|Pt : r̃s(Al,Cu)/Pt = Gsh × rs(Al,Cu)/Pt = 3.

- spin-Hall angle of Pt (considering spin loss): θbulkPtSHE =
J bulk Pt
SHE

Jc = 0.22± 0.03 where Jc is the charge current.

- spin-mixing transmission T Co|Pt↑↓ =
G↑↓
Gsh

at the Co|Pt interface T Co|Pt↑↓ = 0.8

- spin-mixing transmission T Co|Cu3−4|Pt
↑↓ =

G↑↓
Gsh

at the Co|Cu|Pt interface T Co|Cu|Pt↑↓ = 0.55± 0.05.

- spin-mixing transmission T Co|Al1.4|Pt↑↓ =
G↑↓
Gsh

at the Co|Al(1.4)|Pt interfaces T Co|Al(1.4)|Pt
↑↓ = 0.2± 0.05.

The correspondence between the spin-mixing transmission ↑↓ extracted from SOT and the electronic transmission
Tσ in the collinear magnetic configuration extracted from AHE measurements (spin and local magnetization are here
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collinear) may be expressed as:

1

T↑↓
∼=

1

2
Σσ

(
1

Tσ

)
(30)

for a single interface and:

1

T↑↓
∼=

1

2
Σn=1..N
σ

(
1

T (n)
σ

)
+ 1−N (31)

for N consecutive interfaces (n) e.g played by Co/Al/Pt.

- spin memory loss parameter at Pt|Co and Co|Cu|Pt interfaces [21, 26] : δ = 0.6 (spin loss :L̃ = 1−exp(−δ) ≈ 0.5).

For Co|Al|Pt and Co|Cu|Pt interfaces, the spin-resistance of (Al,Cu)|Pt bilayers is needed. The spin-resistance of a
two-consecutive layer spin-resistance with t̃ = t

λsf
the ratio of the thickness over the Spin-Diffusion Length (SDL) of

the spacer material considered: either Al or Cu, equals rs = r
(1)
s

r(2)
s cosh(t̃)+r(1)

s sinh(t̃)

r
(1)
s cosh(t̃)+r

(2)
s sinh(t̃)

where r(1)
s is the spin-resistance

of the spacer (Al or Cu) and r(2)
s the spin-resistance of Pt. In the present case, the large spin-resistance of Al or Cu

r
(1)
s makes rs ≈ r(2)

s .

In Fig. S12, we display the typical coordinate dependence in z of the two components of the spin-accumulation
injected by SHE in the 5 nm thick ferromagnetic Co layer and transverse to the local 3d magnetizationM: respectively
the FL and DL components are represented in blue and red color. These two components oscillates out-of-phase by
precession in the exchange field of M before attenuating by decoherence effects [27]. The calculation presented in
Fig. S12 is performed for a Pt(8)|Co(5)|Al(1.4)|Pt(3) structure (a 5 nm thick Co layer was chosen here to exhibit
the oscillatory dependence of the two torque components) and shows typical oscillating features like proposed in
Refs. [12, 15].

D. The Rashba-Edelstein effect

The previous development mainly developed for the SHE component also holds for ultrathin ferromagnetic layers.
In order to fit the experimental results, we have added an imaginary part to the local spin-density integrated within
the thickness tCo of the ferromagnetic layer and thus giving rise to a FLT component.

In the case of Pt(8)|Co(tCo)|Al(1.4 nm)|Pt(3), the resulting integrated FLT from REE for tCo > 0.5 is set to
τFLSOT = 0.55 exp

[
−qREE (tCo − 0.5)2

]
with qREE = 0.7 nm that represents 75% of the total FLT component in the

tCo = 0.5− 1.1 nm range.

In the case of Pt(8)|Co(tCo)|Cu(1.4 nm)|Pt(3), the resulting integrated FLT from REE for tCo > 0.4 is set to a
constant, τFLSOT = 0.2, that represents 45% of the total FLT component for tCo=0.5 nm.
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