Causal isotonic calibration

A. Implementation of algorithms in R

R code implementing causal isotonic calibration with user-supplied (cross-fitted) nuisance estimates and predictions is
provided in the Github package

B. Algorithm for causal isotonic calibration with cross-fitted nuisance estimates

Algorithm 4 Causal isotonic calibration (cross-fitted nuisances)

Require: predictor 7, dataset D,,, # of cross-fitting splits k

1: partition D,, into datasets 71, 7). 7).,
2: fors=1,2,...,kdo

3:  letj(i) = sforeachi € T,

4:  get estimate X, s of xo from DN\T);

5: end for

6

. perform isotonic regression using pooled out-of-fold estimates to find
n

1 2
0’ = argmin — Xn.i(i)(Oi) — (@ oT)(W;)|™;
g L5 - 00700

7 setTy =0 oT;
Ensure: 7}

C. Technical proofs

Unless stated otherwise, the function 7,5 denotes a calibrated predictor obtained using Algorithm 1 with a predictor 7,
training dataset &,,, and calibration dataset C; = D,,\&,, as described in Section 4.

C.1. Notation & definitions

Let 7 := {7(w) : w € W} denote the range of the predictor 7, which is a bounded subset of R by Condition 4.4.
We redefine F;s, C {0 : T — R;0 is monotone nondecreasing} to denote the family of nondecreasing functions on 7
uniformly bounded by

B := sup sup sup [|xo(0)| + [xm(0)l],
meN &, o€O

where the second supremum is over all possible realizations of the training dataset £,,. We necessarily have that B
is nonrandom and finite by Lemma C.2. Redefining F;,, to be bounded allows us to directly apply certain maximal
inequalities for empirical processes indexed by F;s,. Since the isotonic regression estimator is obtained by locally
averaging the pseudo-outcome X, (Barlow & Brunk, 1972), the unconstrained isotonic regression solution satisfies this
bound and falls in the interior of this class almost surely. Moreover, F;,, is a convex subset of the space of monotone
nondecreasing functions. Let Fry C {6 : R — R;6 is of bounded variation} denote the space of functions with total
variation uniformly bounded by three times the total variation of the function 8y where 6y is as in condition 4.5. Additionally,
let Friso := {0 o7 : W — R;0 € Fis,} be the family of functions obtained by composing nondecreasing functions in
Fiso with 7, and let F. py := {f o7 : W — R; 6 € Fpry} be the family of functions obtained by composing functions
in Fpy with 7. Let Frip m := {0 — [12(w) — 71(w)][xm(0) — T2(w)] : O = R; 72 € Frrv, 71 € Friso}, Where X, is
the estimated pseudo-outcome function. Finally, for a function class F, let N (e, F, Lo (P)) denote the e—covering number
(van der Vaart & Wellner, 1996) of F and define the uniform entropy integral of F by

5
J (6, F) ::/0 sgp\/logN(g}',Lg(Q))de,

where the supremum is taken over all discrete probability distributions (). In contrast to the definition provided in van der
Vaart & Wellner (1996), we do not define the uniform entropy integral relative to an envelope function for the function class
F. We can do this since all function classes we consider are uniformly bounded. Thus, any uniformly bounded envelope
function will only change the uniform entropy integral as defined in van der Vaart & Wellner (1996) by a constant.
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In the results below, we will use the following empirical process notation: for a P— measurable function f, we denote
[ flo 0) by Pf, and so, letting P, denote the empirical distribution of C;, P, f equals 1 7 2iez, 1 (Oi) with Z, indexing

observatlons of Cy C D,,. We also let ||fHP .= Pf2; to simplify notation, we omit the dependency in P and use || f|>

instead of || f ||?3 Finally, for two quantities = and y, we use the expression z 5 y to mean that x is upper bounded by y
times a universal constant that may only depend on global constants that appear in conditions 4.1-4.5

C.2. Technical lemmas

The following lemma is a key component of our proof of Theorem 4.6.

Lemma C.1. For a calibrated predictor T, obtained using Algorithm 1, and any real-valued function r, we have that

D o (W)l (7 (W3) = xim(03)] = 0. )

€Ly

Proof. Note that 7,5 (w) can be expressed pointwise for any w € W as 0} o 7(w) = ag + Zj 1 a;1(1(w) > u; ) for a
piecewise constant function ¢, determined by coefficients {a]} _o and jump points {u;}7 5—1 (Barlow & Brunk, 1972). By
monotonicity, we necessarily have ag € R and {aj} _ are positive coefficients.

Let R, (0) := > ;7 [007(Wi) = Xm (0O,)]? denote the least-squares risk used in the isotonic regression step. Fix an arbitrary
jump point @;, and let &, : R? — R denote the function &, (¢, k) := 6}, (h) + €1(h > @;). Note that § > 0 can be chosen to
be sufficiently small that, for all |¢| < §, h — &, (€, h) is nondecreasing — for instance, 6 = min{a J} _4 suffices. Thus, for
sufficiently small § > 0, h — &, (€, h) lies in the space of monotone nondecreasing function for all |¢| < . In a slight abuse

of notation, we let Ry, (§,.(¢)) == 7, [€n (e, T(W3)) —Xm(0:)]? and R,, (&, (—¢€)) := Yier, [6n(—e, T(W3)) —xXm (0:)]?.
Now, because 6 minimizes § — R, (#) over the space of monotone nondecreasing functions, for all & > 0, it holds
that both R, (£, (¢)) — R, (7)) > 0 and R,,(£n(—¢)) — Ryn(7;) > 0. Moreover, when € = 0, R, (£,(0)) — R, (1) = 0.
Therefore, if ¢ is sufficiently close to 0, the derivative with respect to € of R,,(&,,(g)) — R, (7,5) must be non-negative, and
R, (§n(—¢)) — Ry, (7)) must be non-positive. Hence, it must be true that

d * d *
EIRA(6() = Ra(O)]] | 20 and (R (6a(—2)) — Ru(6)]] _ <0
This, in turn, implies that
23" 1(r (W) = ) [ (Wi) = xm(0)] = 0 and 237 1(r(Wy) = ;) [7 (W) — xn(02)] < 0,
i€y i€Zy

and so, it follows that ) ;7 1
that for all functions of the form s(w) = by + Z}]:1 bj1(7(w) > uy) with coefficients {b;}7_,, we can show that

T(W;) > ;) [1(W;) — xm(O;)] = 0. Because the jump point @; was arbitrary, we have
J n J

Z S(Wl) [T;:(Wl) - X’rn(Oi)] =0

1€Ly

by taking linear combinations of 1(7(w) > u;) and noting that the score equations are linear in s. The main result of this
lemma follows from the fact that, since both 7,7 and r o 7, can be expressed in this form, for any real-valued function r, we

have that
D rori (W) [15(Ws) = xm(0:)] = 0.
i€ZLy
O

Lemma C.2. Conditions 4.1, 4.2 and 4.4 imply that the function classes Fiso, Fr 1V, Friso and Frip m are bounded.

Proof. By Conditions 4.1, 4.2 and 4.4, we know that x,,(0) is bounded uniformly over all observations 0 € O and
realizations of &,,, that is, there exists a finite fixed constant B such that esssup,,,cy ,co Xm(0) < B/2. Hence, as
defined in the previous section, F;, is uniformly bounded. Moreover, because F;, is bounded, it directly implies that
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Friso 1s bounded. Noting that functions of finite variation are bounded, in view of Condition 4.5, we have that Fry is
uniformly bounded by some constant that depends neither on 6 nor 7. This implies that 7 7y is uniformly bounded. Finally,
because Fr v, Friso, Xm and the potential outcomes are uniformly bounded, the function class F7,;p m, is also uniformly
bounded. O]

Lemma C.3. Under conditions 4.5 and the conditions of Lemma C.2, the function 7' — E[Y1 — Yy | 75(W) = 7’| has total
variation bounded above by three times the total variation of 6y, where 6 is as in Condition 4.5.

Proof. Since the function 6}, is nondecreasing and piecewise constant, we have
EY1 =Yy | (0 or)(W)=17"]=E[Y1 - Y,y |7(W) € B,/]

forthe set B, :={z € T : 0}(2) = 7'}, where B, = {z € T : a(7") < z < b(7') } for some endpoints a(7’), b(7") € R.
The law of total expectation further implies that

E[Yi — Yy | 7(W) € By] = E[fg o 7(W) | 7(W) € By,

where 6 is such that 0y o 7(W) = ~o (7, W) P-almost surely. By Condition 4.5, the function 6, is of bounded total variation.
Heuristically, since 7/ +— E[fy o 7(W) | 7(W) € B,/] is obtained by locally averaging ¢, within the bins (B, : 7/), its
total variation should also be bounded. We show this formally as follows. Note first that

E[gom(W)|7(W) € By = E[0f or(W)|7(W) € B/ — E[0y o7(W)|7(W) € By],

where 0 and 6 are two bounded, nondecreasing functions satisfying the Jordan decomposition 8y = 6 — 6, (Theorem
4, Section 5.2 of Royden, 1963). Moreover, we can choose f such that 6 (c0) — 6 (—oc) is equal to the total variation of
0. Since |0y |lTv = 160 — 0d |7v < ||6oll7v + |05 || v, we have that |6 || is bounded by 2|6 |7

Since 6} is nondecreasing, by definition, we have that ¢; < to implies that 1 < x5 for any x; € B, and xo € By,.
It follows that both 7/ +— E[0f o 7(W)|7(W) € B.]and 7 +— E[f; o 7(W)|7(W) € B,/] are nondecreasing;
furthermore, they are also bounded. By Theorem 4 of Royden (1963), a function is of bounded variation if and only if it
is the difference between two bounded nondecreasing functions. We conclude that 7/ +— E[Y; — Yy |0} o 7(W) = 7'] =
E[0f om(W)|7(W) € By] — E[fy oT(W)|7(W) € B,/] is of bounded variation. Moreover, its total variation norm is
bounded above by the sum of the total variation norm of E[01 or(W) | 7(W) € B,/] and that of E[f; om(W)|7(W) € B,].
We recall that the total variation of monotone functions is simply the difference between the left and right endpoints of the
monotone function, and that

ess iVI\l)f(aa_ o7)(w) < E[0f or(W)|7(W) € B] < esssup(f§ o 7)(w),
we weWw

and similarly for 65 o 7. As a consequence, the total variation norms of E[f] o 7(W)|7(W) € B,/ and E[f, o
(W) | 7(W) € B,/] are bounded by the total variation norm of #;" and that of 6, respectively. Using the sublinearity of
the total variation norm, we conclude that 7’ — E[Y; — Y, | 6% o 7(W) = 7’] has total variation norm bounded above by
3)16ol|7v - O

C.3. Proofs of theorems
PROOF OF THEOREM 4.6
Proof. Conditioning on D,,, we have that

E{o(ry: W) = (W)l [x0(0) = 7 (W)] | Dn }
= E{E{[o(r;, W) = 7, (W)]
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The above equality implies that
[ ol = mi)y aptw) = [ (olriw) = 72w} fxalo) - 7iw)} aPlo)
— [ (i w) = 72w)} {x0(0) = xmlo)} dP(o) ©
+ [ Golrw) = T (@)} fn0) = 73 (@) P()

Note that, by Lemma C.1, for each real-valued function r, 77 satisfies the equation

7 3 T W) bon(03) — (W] = 0.

1€y
Setting r(7') := E[Y1 — Yy | 75(W) = 7'] — 7/, we conclude that
[ ol ) = 72} fxno) = 72w} dPilo) = 0.

Subtracting the above score equation from the second summand in (6), we obtain that
[ Gntrw) = mi@) aPw) = [ (i w) = 7)) {x(e) - xn(0)} dPlo) ™
+ / {r0(m, w) = 7 (w) } {xm (0) — 75 (w)} d(P — Py)(0) .

This may be written in shorthand as ||yo (7, ) — 7*||> = (I) + (II) with

(1) == P{[vo(m,) = 73] (xo = xm)}
(1) = (P = Po){lo(7s,) = 75]00m — 7)) -
In order to show the desired result, we will bound both (1) and (I7).

We can bound () using the law of iterated conditional expectations and the Cauchy-Schwarz inequality. First, conditioning
on &,,, we note that

Pl ) — 71000 — xm)}
- / (07 w) = 73 ()} Elx0(0) — Xm (0) | W = w, £,] dP(w)
< ho(rts ) = 72 I EDo(0) [W = -] = Elxm(0) | W = -, ]| . ®)

Next, we express the second norm in (8) in terms of ||7,,, — 7o || and || ttr, — pio||- Recalling that E[xo(O) | W = w] = 79(w),
we have that

Elxm(0) |W =w,En] = Elxo(0) | W = w]

= Mm(lvw) - N()(lvw) - [Nm(oaw) - ,U,O(O, w)] + TZ?L((U’LZI)) [;Uf()(la w) - Mm(Lw)]
1 — 7 (w)
= mi( [10(0,w) = i (0, w)]
B — 7rm Tm (W) — 7o (W)
= [ ] po(L, w) — pm (1, w)] + {1—7%(3))} [10(0, w) — i (0, w)] -

By Condition 4.2, P(1 — n > m,,, (W) > n) = 1 for some 7 > 0. The latter condition combined with the Cauchy-Schwarz
inequality gives that || E[xo(O) |W = -] — E[xm(0)|W = -, &,]|| is bounded above by

1mm (-) = 7o ()][10(0; ) = sm (0, I + [ 7rm () = 7o ()]0 (1, ) = prm (1, )]+
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By Condition 4.2, we also have that for any P-measurable function i : W — R

/h [0 (1, w) — fiyn (1, w)]?dP(w) //h [uo(a, w) — um(a,w)]zﬁP(da,dw)

U //h (1o (a,w) = i (@, w)]* P(da, dw) .

AN

The same bound holds for [ h(w)?[uo(0, w) — pm (0, w)]2dP(w). Setting h : w + mpp (w) — mo(w), we conclude

IEDm (O) [ W = -, &n] = Elxo(O)[W = ]Il 5 [(mm — m0) (10 — prm) | - ©)

Together, (8) and (9) yield that (I) is bounded above by

P{o(m,) = mal(xo = xm)} £ [o(7s, ) = 7l (7 — 70) (o — pm) |- (10)

We now find an upper bound for (/7). We claim that, conditionally on &,,, the random functions appearing in this empirical
process term are contained in fixed and uniformly bounded function classes. To see this, we note that 7,7 = 6 o 7 for
some 0 € Fis, and, as a consequence, 7,, € F;;s0, a uniformly bounded function class by Lemma C.2, Fy-almost
surely. By Lemma C.3, the function w +— 70( 75, w) falls in F- 7y . This further implies that o — {E[Y; — Yo | 75(W) =

T (w)] — 75 (w) Hxm(0) — 75 (w) } € Frip,m, which is a uniformly bounded function class by Lemma C.2.

Next, we let C := esssup,cq|fo(x)] and define K := B + C, where we recall that B :=
SUp,,cn SUPg, €SSUP,c o {|x0(0)] + [xm(0)|}. Furthermore, we set d, := ||70(7y;, ) — 7,;/|, which is a random rate.
For any given rate §, we define

Sn(6) == sup (P = Po){(r1 — 2)(Xm — T2)} = sup (P—Po)f.
TLEF 7,1V, T2€F 7 is0:||T1 —T2[| <6 FEFLip,m: || FISIK

As a consequence of the above, we have that (/1) < S,,(d,,). Due to the randomness in d,,, the above cannot be further
upper-bounded immediately. To bound the term above, we will take a § > 0 that is deterministic conditional on &,,, and
upper-bound ¢,,(9) := E {S,(9)}, where the expectation is also taken over D,,. To bound the above term, we will use
empirical process techniques with the function classes F;q0, Fr,7v, Fr iso and FrLip m. To do so, we must study the uniform

entropy integral
B
76.F):= [ s [NEF ) de
0

for each of these function classes. By Lemma C.2, all these function classes are uniformly bounded. We note that, conditional
on &y, so that x,, is fixed, F1;p , is a multivariate Lipschitz transformation of F 7y and F ;5,, and therefore, by Theorem
2.10.20 of (van der Vaart & Wellner, 1996), we have that 7 (8, Frip.m) = J (6, Frrv) + T (8, Fr iso). Since functions of
bounded total variation can be written as a difference of nondecreasing monotone functions, we have by the same theorem
that 7 (9, Frv) < J (9, Fiso). We claim the same upper bound holds up to a constant for F, 7y and F ;5. We establish
this explcitly for F; ;5, below; the result for F 7y follows from an identical argument. We note that

5
\7(57 -F'r,iso - / sup \/N T’LSO) || ||Q) dE - /0 Sgp \/N(Ea-ﬂsoa || : ||Qo7-*1)d6 = 57(6; -Fiso) )

where @ o 771 is the push-forward probability measure for the random variable (7). We now proceed with bounding
&n(9). Applying Theorem 2.10.20 of (van der Vaart & Wellner, 1996), we obtain, for any ¢ > 0 deterministic conditionally
on &,,, that

_ j((S?‘FL? m)
E[Sn(8)|En] < 712 0, FLip.m <1+p’)
S0(®) | Enl 5 72T, Fripn) L

j(jZ§;SO)) ’

QA

Y26, Fiso) (1 + (11)

where the right-hand side can only be random through 4.
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We can now proceed with the main argument that gives a rate of convergence for d,,. First, we note that combining Equations
7 and 10 yields that the event

{In0(77,) = 721 < 07, ) = 72l 1 = 0t — 20)l] + (6 }

occurs with probability one. We then proceed with a peeling argument to account for the randomness of d,,. Let €,, be any
given sequence that is deterministic conditional on &,,, and define A, as the event {2°F1e, > |lyo(7, ) — 74 || > 2°¢, }
as well as the random quantity €%** := || (7, — 7o) (tm — po)||- Then, for any S > 0, we have that

o0 o0
(o) = 7ol = 25e) = D" P (2 en > |, ) — mall = 2%,) = > P(4
s=5 _

= ZP(Aé,an < 5 enuis Sn(én)> . (12)
s=S

In all the events in the above sum, we have that S,,(d,,) < S,,(25F1e,,) since 6, = ||70(7;, ) — 7;5||. Next, manipulating
the inequalities in the above events, we have that

{A4,, 62 < §enuis 4 Sn(6n)}

N

{A,,62 <2°tle, e + 5, (2°1 e, }
{2286721 S 5721 S 2s+1€n6'r7;74uis 4 Sn(2s+1€n)}
{2285721 S 25—&-16"67;11”'3 + Sn(2s+15n)} ,

N 1N

which implies that the sum in (12) is upper bounded by

%)
ZP(ZQG&Z S 2<9+1€n6:znuis + Sn(23+15n)> )
s=S

Using (11) and Markov’s inequality, we find that

oo
Z P(2235i < 23-"—15”62@“18 + Sn(23+15n)>

s=S

Z E {P(QQSEi < 2S+15n€ZfZMS + Sn(28+15n) Igm) }
s=S
io: E { 25+1€ 6”“13 + E[S (2s+15n) | (c"’m] }

2522
228¢2

IA

IA

QA

i E 6%”5 + \7(2s+15na}—iso) 1+ j(2s+15n7]:7',so) '
= 27 22s/0e2 VI225+12

As a consequence of Lemma C.2 and the covering number bound for bounded monotone functions given in Theorem 2.7.5
of van der Vaart & Wellner (1996), we have that J(?Hlsn, Fiso) = 28/2+1/2 /z— Using this fact, we find that

j(2$+15na]:iso) < - 1 j(Ena zso)
2251/l ~2s o le2

from which it follows that

TOHey, Fu) (14 28 00T) gy, i) (14 o0 T))
S27° :
225\/2&% ~ \/ZE%

We now choose &,, := max{¢~'/3,||(7,, — 70)(ttm — p0)||}» which indeed is deterministic conditional on &,,. This choice
ensures that 7 (e,,, Fiso) S V2 and €24 = |(7Tm 70) (o — o) || S €n. so that

' T2 en Fiso) (| T2 e Fiso) | < L
25-1g 225\/&% \/522s+1€% ~ 9s’




Causal isotonic calibration

where the right-hand side is nonrandom. Thus, we have that
1
P ) > 25 n -
(ho(ri) =il 2 2%) £ 35 5

As a consequence, for every € > 0, we can find a constant 2° sufficiently large such that P (||yo(7r, ) — 71| = 25€,) <
e. In other words, we have shown that ||yo(7},-) — 75| = Op(e,) for our choice of ¢,, and so, CAL(7}) =
o(7,-) = 72||> = Op(e2). The result follows from that the fact that €2 < £72/3 1 ||(m,, — 70) (b — 10|/ O

PROOF OF THEOREM 4.7

Proof. By the definition of the pointwise median stated in Section 2.1, for each covariate value w € W, there exists some

random index j, (w) such that 7 (w) = 7 . ) (w). (We note here that this property may fail for other definitions of the

median when & is even.) Thus, we have that [yo (75, w) =75 (w)| = [70(7; ; (1) W) =Ty s () (W) < Zle [Yo(Ty s w) —
77 (w)|, and so,

n,s

ro(r7: ) = mall <

ZHVO ns" - ;:eH

k
Z |’YO(T';:,$7 ' Tn,s
s=1

’ 2

)

k
< kz H'YO(T;,SW) ~Ths
s=1

where the final inequality follows from the Cauchy-Schwarz inequality. Squaring both sides gives that CAL(7;}) <
k lezl CAL(} ), as desired. -

PROOF OF THEOREM 4.8

Proof. As before, we may write 7,5 = 6 o 7 for some 0}, € F;,, that minimizes the empirical risk
0):0— > [xm(0:) — 00 r(Wy)]?
i€Zy

over F;s,. For any given § € F;,,, the one-sided path {e — 6 + (0 — 6}) : € € [0, 1]} through &}, lies entirely in F;,
since F;, is a convex space. Furthermore, we have that

R, (0% 0—0))— R,(0F
2300 82) 0 T(W)lxn(03) — 0 0 m(Wi)] = timg L2 FEO N ZRelBi) 5
€Ly el0 €
for all § € Fis. The oracle isotonic risk minimizer 7; can be expressed as 7§ = 6y o 7 where 6y :=
argmingc r, || o 7 — 7ol|. Taking 6 = 6 in (13), we obtain the inequality
> " [(80 = 03) 0 T(W)][xm (01) — 0 0 (W3)] < 0. (14)
i€T,

Rearranging terms and adding and subtracting P;{[(6p — 67) o 7](x0)} in the above inequality implies that P,{[(0y — 02) o
TI(xm — x0)} < Pe{[(60 — 0%) o 7](0 o 7 — x0)}. Adding and subtracting P{[(6p — 6}) o 7](0; o T — x0)} yields that

Pi{[(80 — 0,) 0 7] (xm — x0)} — (P2 = P){[(6 — ) 0 7](6 0 7 — x0)}
< P{[(60— ) o )8 07 — x0)} (1)

Next, adding and subtracting P{(0y o 7)[(6y — 02) o 7]}, we have that
Pi{(00 = 0,) o 7] (67, 0 7 = x0)}

= P{[(60 — 0},) o 7][6;, 0 T — E[x0(O) |[W = -]]}

= P{[(6o — 0) o T](6} 07'770)}

= P{[(60 — 0y,) o 7][(6], — b0) o 7]} + P{[(60 — 0;,) o 7] (6o o T — 70) }

= P{[(60 —0;,) o 7](Bo o7 —70)} — [[(0 — b5) o 7|I* , (16)
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where we used the fact that E[xo(O) | W = w] = 79(w). Next, we note that §, minimizes the population risk function
0 — Ep[ro(W) — 6 o 7(W)]? over Fis,. As a consequence, the same argument used to derive (14) can be used to obtain
that P{[(0 — o) o 7](70 — 0p o 7)} < 0 for any 0 € F;,,. Taking 6 = 6, we find that

P{[(6o — 0y) o7](lp o7 —79)} < 0. a7
Combining (16) and (17), we obtain that
P{[(60 — 6) o 7)(05 0 7 — x0)} < — [|(0 — 65) o 7| (18)
Finally, combining (15) and (18), we obtain the following inequality
100 = 0;) o 7lI* < =Pe{[(60 = 03,) © 7] (Xem — X0)} + (P2 = P){[(60 = 03) o 7] (0 0 7 = X0)} -
Adding and subtracting P{[(6y — 0;;) o 7](xm — Xo)} and noting that 7§ — 7,5 = (6y — ;) o 7, we finally obtain the key
inequality
I = 7ll* < Pl(s = 70)(x0 = Xm)] + (P = Po)l(1G = 75) (xm — x0))]
+ (P = P)[(75 — ) (75 — x0)] - (19)
The above is similar to (7) in the proof of Theorem 4.6, and a similar proof technique is used to establish a convergence rate
for 7,7. Specifically, we use the Cauchy-Schwarz inequality to bound the first term on the right-hand side of (19) in terms of
|l7§ = 7.5||, and empirical process techniques to bound the remaining terms in terms of a function of ||7; — 7.%|| with high
probability. Using a similar approach as for the derivation of (10), we can upper-bound the first term of the right-hand side
of (19) as P[(75 — 7)) (xo — xm)] < |17 — 75 (7 — 0) (e, — o) || The second term in the right-hand side of (19) can

be examined as follows. We let Fy ., := {(71 — 72)(Xom — X0); T1, T2 € Fr iso}, and define Q := sup,c xo(0), which is
finite in view of Conditions 4.1 and 4.2. Additionally, we let R := ) + B, and define for any fixed 6 € R
Z1n(0) = sup (P = P){[(61 — 02) o T](xm — Xx0)} = sup (P —P)f.
01,02E€Fiso:||(01—02)oT|| <SR fE€F1m:||fIISOR

Letting 61 ,, := ||7g — 7,5||, we have that (P — Pp)[(75 — 75) (Xm — x0)] < Z1,n(1,n). We note that F; ,, is a Lipschitz
transformation of the function classes F ;5, and F ;s,, and so, for every 6 > 0 that is deterministic conditional on &,,, we
have that

L < _1/2 : j(éa ]:iso)

010001 80) = L2 | £4] 5 072765 (14 T52

in view of Theorem 2.10.20 of (van der Vaart & Wellner, 1996) and the results outlined in Theorem 4.6, where the
right-hand side can only be random through J. Finally, the third term in (19) can be studied as follows. We let F5 :=
{(m1 — 12)(T2 — x0) : 71, T2 € Friso}, and for any given 6 > 0, we define

Zon(0) == sup (P=P){[(61 —02)o7](02—x0)} = sup (P—P)f
01,02€Fiso:][(01—02)o7||<IG FEF5:|FIIS6G

with G := Q) + B. We note that F; is a Lipschitz transformation of F, ;5,. Hence, similarly as above, for any ¢ > 0 that is
nonrandom conditional on &,,,, we have that

_ T (0, Fiso)
w6 | Em) = BlZ20(8) | €] 5 € V2T (8, Fiso (H”” :
Vanl| €)= ElZanl0) | 0] 5 €276 Fn) (14 L02
where the right-hand side can only berandom through §. Defining €“* := ||(7,;, — 7o) (ttm — f10)||, by a similar peeling

argument as in Theorem 4.6, for any rate ,, that is nonrandom conditional on &,,, we can show that
0 95+l nuis + 1 (25+1€ |g )+w (25+15 ‘5 )
* * S ntm 1,n n m 2n n m
P(HTO — 7l 22 5n) = ZE { 9252 }
s=5 n
G nuis 25+1 nvfiso 28+1 n fiso
Z Bl m” J(2°7 e ) 14 J(2°" en, Fiso) .
2s—lg, 225\/Z€% \/2225+1€%

Then, by the same arguments used in Theorem 4.6 and the same choice of &,,-random ¢,, we can estab-
lish that || — 7] = Op(¢=Y3) + Op(||(7m — ) (1m — t0)||). By the triangle inequality and the fact that
Ty = argming.,gcr, |70 —0o7| implies |70 — 73] < |70 — 7|, we find that 7o — ;|| < |70 — 75| +

Il — 75l < |lmo — 7|l + |I7¢ — 7||. Combining these bounds, we find that |79 — 7| < ||7o — 7|| + Op(¢~1/3) +
Op([|(mm — 70) (Hm — po)])-

QA

s=S
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C4. Statement and proof of generalized Theorem 4.6 for random predictor

Here, we consider the same setup as Theorem 4.6 but allow 7,; to be obtained from a random predictor 7,,,, as long as 7, is
built using only data in &,,.

Condition C.4 (independence of predictor). The predictor w +— 7,,, (w) is independent of Cy.
Theorem C.5 (Calibration with random predictors). Provided Conditions 4.1-C.4 hold, it holds that

CAL(7) = Op (£72 4 || (= 70) (1t — o)1) -

Proof. Arguing exactly as in Theorem 4.6 with 7 taken to be 7,,, and conditioning on &,, as needed, we obtain the basic
inequality stating that

o(rss ) = 7l < P{lo(m;, ) = 7] (xo = xm)} + (P = Po){[o (7 ) = 7 (xm — 7)}

P-almost surely, where 7,7 := 0 o 7,,,. To establish the result of the theorem, we only need to make minor modifications to
the proof of Theorem 4.6 to allow 7 to be replaced by 7,,. We sketch those modifications here. A core component of the
proof of Theorem 4.6 involved upper-bounding E[S,,(9) | £,,]; this must now be done with .S,, () defined as

sup (P = P)l(11 = 72)(Xm — 2)] = sup (P—P)f

TLEF . TV T2E€Frp, isoi||T1 —T2[| <6 f€FLipm: I FIISSK

with 7., now a random predictor. Previously, we showed that F[S,,(d) | £,,] can be bounded by a nonrandom constant
depending on 7, m and J that is independent of &,,. To do so, we showed that the random function class Frp ., is fixed
conditional on &,,, uniformly bounded, and has uniform entropy integral bounded by the uniform entropy integral of F;,.
It suffices to show that this remains true when 7 is replaced by 7,,,. Since 7, is obtained from &,,, as with x,,, the predictor
Tm is deterministic conditionally on &,,. As a consequence, the function classes F 1y and F;  ;s0, Which are now
random through 7,,,, are fixed conditional on &,,. Since Fp,;p , is obtained from a Lipschitz transformation of elements of
Fr,rv and Fr oo, we have that Fr;;, ., is also fixed conditional on &,,. Moreover, by the same argument as in the proof
of Lemma C.2, which also holds for random 7, these function classes are uniformly bounded by a nonrandom constant
almost surely. Finally, the preservation of the uniform entropy integral argument of the proof of Theorem 4.6 is valid with 7

random. With these modifications to the proof of Theorem 4.6, the result follows. O
D. Simulation studies

D.1. Data-generating mechanisms

In simulation studies, data units were generated as follows for the two scenarios considered.

Scenario 1:

1. generate Wy, W, ..., W, independently from the uniform distribution on (—1, +1);

2. given (W, Wy, W5, Wy) = (wy, wa, w3, wy), generate A as a Bernoulli random variable with success probability
mo (w1, wa, w3, wy) := expit{ —0.25 — wy + 0.5wg — w3z + 0.5wy4 };

3. given (Wy, Wo, W3, Wy) = (w1, ws, w3, wy) and A = a, generate Y as a Bernoulli random variable with success
probability 1o(a, w1, wa, . .., ws) := expit{1.5+1.5a+2a|w; ||wa| —2.5(1 — a)|wz|ws +2.5w3 +2.5(1 —a)/|ws| —
1.5al(wg < 0.5) + 1.5(1 — a)I(wy < 0)}.

Scenario 2:

* generate Wy, W, ..., Wy independently from the uniform distribution on (—1, +1);

o given (Wq, Wa, ..., Wag) = (w1, wa,...,ws), generate A as a Bernoulli random variable with success probability
mo(wy, wa, ..., wa) := expit{0.2 — 0.5w; — 0.5ws — 0.5w3 + 0.5w4 — 0.5ws5 4 0.5wg — 0.5w7 — 0.5wg — 0.5wg —
0.2wq19 + 0.5wq1 — wi2 + w13 — 1.5w14 + w15 — wig + 2w17 — wig + 1.5wi9 — wzo};
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o given (Wy,Wa, ..., Wao) = (wq,ws,...,wy) and A = a, generate ¥ as a normal random variable with mean
tola, w1, wa, ..., wy) = —0.5+3.5a+3aw; +6.5(1 —a)ws +1.5awsz +4(1—a)ws +2.5aws —6(1 —a)ws + lawr +
4.5(1—a)ws +awg +2.5(1 —a)wig+1.5w11 — 2.5w12 + w13 — L.5wig + 3wis — 2w1 6+ 3wi7 —wis + 1.5wig — 2weg
and unit variance.

Coefficients of the propensity score logistic regression models above were selected such that the probabilities of treatment
were bounded between 0.05 and 0.95 in the low-dimensional case (Scenario 1), and between 0.01 and 0.99 in the high-
dimensional setting (Scenario 2).

D.2. Implementation of the causal isotonic calibrator

In our simulation studies, we followed Algorithm 3 to fit the causal isotonic calibrator. In particular, we estimated the
components of x (i.e., o and 7p) using the Super Learner (van der Laan et al., 2007) in Scenario 1, and penalized regression
in Scenario 2. Super learner is an ensemble learning approach that uses cross-validation to select a convex combination of
a library of candidate prediction methods. Table 1 shows the library of prediction models we used to estimate 1y and 7.
Note that all of our models for the outcome regression were misspecified in Scenario 1 because of the nonlinearities in the
true outcome regression. However, in both scenarios, the propensity score estimator was a consistent estimator of the true
propensity score. Additionally, for numerical stability, we imposed a threshold on the estimated propensity scores such that
it took values between 0.01 and 0.99. We used the R package sI3 (Coyle et al., 2021) to implement the estimation procedure.
Finally, we used the R function isoreg to performed the isotonic regression step.

Table 1. Information on the set of estimators used by the Super Learner to estimate the pseudo-outcome components. Abbreviations:
generalized additive models (GAM), generalized linear model (GLM), generalized linear model with lasso regularization (GLMnet),
gradient boosted trees (GBRT), random forests (RF), multivariate adaptive regression splines (MARS).

scenario library for pg library for ¢
1 logistic regression, GLMnet, GAM, logistic regression, GLMnet, GAM,
GBRT with depth € {2, 3,5, 6,8}, GBRT with depth € {2,4,6}
RF, MARS
2 GLMnet GLMnet

D.3. Performance metrics

We estimated the performance metrics as follows. With a slight abuse of notation, let 7 denote an arbitrary estimated
treatment effect predictor or its calibrated version. For each fitted 7 in a given simulation, we computed its mean squared
error by taking the empirical mean of the squared difference between the fitted values of the CATE estimator and 7y,

MSE(H) = — 3 [F(ws) — molwi)].

n
v w; €V

We obtained the estimated calibration measure in two steps. We recall that the calibration measure for a given predictor 7 is

/ o () — (w)]? dPyw (w) .

First, we estimated -y, (7, w) using an independent dataset of 100,000 observations and fitted gradient boosted regression
trees with the fitted values of the treatment effect predictors as covariates and the true CATE as outcome. For each simulation
setting and CATE estimator, the depths of each of the regression trees were obtained using cross-validation in a separate
simulation. Let 4o (7, w) denote the estimated function. In the second step, we used the sample V to estimate the calibration
measure as

_— 1 . o .

CAL(7) := — > Iro(wi) = #(wi)] Fo(F, wi) — #(w;)] -

v w; €V

The above measure has the advantage of having less bias with respect to CAL(7) than the plug-in estimator

1! Yiwey [o(F,wi) — #(w;)]?.
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E. Simulation results

Scenario 1
Causal Isotonic Calibrator DR Learner
0.32
0.05 \
=
00.008 \
0
Q Q Q QO O Q Q 0
RN oS o« UM oS ¥ 0N
sample size
Causal Isotonic Calibrator DR Learner
0.32
0126 \
0 0.05 —_ \
0.02 \\
0.008
Q Q Q Q O Q Q Q
RN oS o RSRPON oS o RSN
sample size
GAM - MARS GBRT 2 - GBRT 8
RF - GLMnet - GBRT 5

Figure 3. Calibration error and MSE in Scenario 1. The panels show the calibration error (top) and MSE (bottom) using the calibrated
(left) and uncalibrated Double Robust Learner (right) predictors as a function of sample size. The y-axes are on a log scale.
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(a) Scenario 1 calibration measure and MSE simulation re-
sults for causal calibration approach with an external hold-out
dataset. The top left and right panels show the calibration mea-
sure and using conventional calibration and the uncalibrated
estimator, respectively. Similarly, the bottom plots show MSE
for the calibrated and uncalibrated estimators. Results for
GLM and GBRT with depths of 3 and 6 are omitted because
they were nearly identical to results shown for GLMnet and
GBRT with other depths, respectively.
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(b) Scenario 2 calibration measure and MSE simulation results
for causal calibration approach with hold-out dataset. The top
left and right panels show the calibration error using conven-
tional calibration and the uncalibrated estimator, respectively.
Similarly, the bottom plots show the MSE for the calibrated
and uncalibrated estimators.

Figure 4. Causal isotonic calibration with a hold-out dataset external to the training dataset: Monte-Carlo estimates of calibration measure
and MSE for calibrated vs uncalibrated predictors for Scenarios 1 and 2.
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Table 2. Scenario 1 bias within bins of predictions for the calibrated and uncalibrated estimators. Each row shows the resulting bias for a
given CATE estimator, and the Cal column indicates if it is calibrated or not. The columns are organized by sample size, and within each
sample size, we show the results for the bias in the upper and lower deciles. Abbreviations: calibrated (cal), estimator (est), generalized
additive models (GAM), generalized linear model (GLM), generalized linear model with lasso regularization (GLMnet), gradient boosted
regression trees (GBRT), random forests (RF), multivariate adaptive regression splines (MARS).

Sample Size 1000 2000 5000 10000
Cal CATE Lower Upper | Lower Upper | Lower Upper | Lower Upper
estimator | Decile Decile | Decile Decile | Decile Decile | Decile Decile
yes MARS -0.01 -0.02 0 -0.01 0 -0.01 -0.02 0.02
no  MARS -0.02 -0.03 -0.01 -0.02 -0.02 -0.01 -0.05 0.03
yes GAM -0.02 0.01 0 0.01 0 0.03 -0.01 0.05
no GAM 0.02 -0.06 0.03 -0.07 0.02 -0.05 0.02 -0.04
yes GLM -0.01 0.02 -0.01 0.02 0 0.05 -0.01 0.06
no GLM 0.02 -0.01 0.02 -0.02 0.02 -0.01 0.02 -0.01
yes  GLMnet -0.01 0.02 -0.01 0.02 0 0.05 -0.01 0.06
no  GLMnet 0.02 -0.02 0.02 -0.02 0.03 -0.01 0.03 -0.01
yes RF -0.01 0 0 0 -0.03 0.03 -0.04 0.04
no RF -0.09 0.04 -0.08 0.05 -0.08 0.04 -0.06 0.03
yes GBRT 2 -0.01 0 0 -0.01 -0.01 0.01 0 0.02
no GBRT2 0.1 -0.16 0.11 -0.16 0.12 -0.15 0.13 -0.14
yes GBRT 3 -0.02 -0.02 0 -0.02 -0.01 0 -0.02 0.01
no GBRT3 0.02 -0.14 0.02 -0.14 0.03 -0.1 0.02 -0.08
yes GBRT S -0.01 -0.02 0 -0.01 0 0 -0.01 0
no GBRTS5 -0.04 -0.04 -0.01 -0.06 -0.07 0.01 -0.11 0.05
yes GBRT 6 0 -0.03 0.01 -0.02 0 -0.01 -0.01 0
no GBRT®6 -0.07 0 -0.04 -0.03 -0.11 0.06 -0.16 0.1
yes GBRT 8 0.01 -0.04 0.02 -0.03 0 -0.01 -0.01 -0.01
no GBRTS -0.14 0.08 -0.1 0.04 -0.19 0.14 -0.22 0.17

Table 3. Scenario 2 bias within bins of predictions for the calibrated and uncalibrated estimators. Each row shows the resulting bias for a
given CATE estimator, and the Cal column indicates if it is calibrated or not. The columns are organized by sample size, and within each
sample size, we show the results for the bias in the upper and lower deciles. Abbreviations: calibrated (cal), generalized linear model with
lasso regularization (GLMnet), gradient boosted regression trees with GLMNet screening (GLMNet scr + GBRT).

Sample Size 1000 2000 5000 10000

Cal CATE Lower Upper | Lower Upper | Lower Upper | Lower Upper
4 estimator Decile Decile | Decile Decile | Decile Decile | Decile Decile

yes  GLMnet 0 0 0 0 0.01 0.01 0.01 0.01

no GLMnet 0.18 0.19 0.2 0.18 0.15 0.16 0.14 0.12

yes fg\ég}t U1 023 006 | -0.18 -006 | -033 -008 | 037  -0.1

GLMnet scr

N0 GBRT -0.36 -0.16 -0.34 -0.15 -0.4 -0.2 -0.35 -0.22

yes ;2;‘35‘? 009 -003 | 006 003 | -0.14 -004 | -021 -0.04

no ff‘ndom 09 -075 | 086 -0.7 | -095 -0.82 | -098  -0.87

orest




