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Figure Supplemental 1. Associations between dietary, clinical parameters and
cognitive test. Heat map of Spearman’s correlations among dietary and clinical
parameters and cognitive test after correcting for multiple comparisons (FDR) a) in the

discovery cohort and b) in the intestine cohort.
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Figure Supplemental 2. Associations of visceral adipose tissue gene expression and

other cognitive domains in the discovery cohort. Volcano plots of differentially

expressed genes in the visceral adipose tissue associated with a) the Trail Making Test



Part A (TMTA), b) THE STROOP Colour Word test (STROOPCW) scores in discovery
cohort (IRONMET, n=17) identified by limma-voom analysis controlling for age, BMI,
sex, and education years. The log2 fold change associated with a unit change in the
cognitive test score and the logl0 p-values adjusted for multiple testing (pFDR) are
plotted for each gene. Differentially expressed genes (pFDR<0.05) are coloured in red
and green indicating down- and up-regulation, respectively. ¢) Dot plot of pathways
significantly associated (qvalue<0.1) with the TMTA in the visceral adipose tissue
identified from a pathway over-representation analysis mapping significant genes to the
Reactome database and d) the Wikipathways database. e) Dot plot of pathways
significantly associated (qvalue<0.1) with the STROOPCW test in the visceral adipose
tissue identified from a pathway over-representation analysis mapping significant genes
to the Wikipathways database and f) the KEGG database. The x-axis in the dot plots and
the bubble size in the Manhattan-like plots represents the ratio of input genes that are

annotated in a pathway (GeneRatio). Dots are coloured by the gqvalue.
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Figure Supplemental 3. Longitudinal associations of subcutaneous adipose tissue

(SAT) gene expression at baseline and the scores in different cognitive domains later



in life. Volcano plots of differentially expressed genes in the SAT at baseline associated
with a) the California Verbal Learning Test Long Delayed Free Recall (CVLT LDFR),
b) the California Verbal Learning Test Short Delayed Free Recall (CVLT _SDFR), and ¢)
the Trail Making Test part A (TMTA) scores two to three years later in the validation
cohort (INTESTINE, n=22) identified by limma-voom analysis controlling for age, BMI,
sex, and education years. The log2 fold change associated with a unit change in the
cognitive test score and the logl0 p-values adjusted for multiple testing (pFDR) are
plotted for each gene. Differentially expressed genes (pFDR<0.05) are coloured in red
and green indicating down- and up-regulation, respectively. d) Dot plot of pathways
significantly associated (qvalue<0.1) with the CVLT LDFR in the SAT identified from
a pathway over-representation analysis mapping significant genes to the Reactome and e)
Wikipathways databases. f) Dot plot of pathways significantly associated (qvalue<0.1)
with the CVLT SDFR in the SAT identified from a pathway over-representation analysis
mapping significant genes to the Reactome and g) Wikipathways databases. h) Dot plot
of pathways significantly associated (qvalue<0.1) with the TMTA in the SAT identified
from a pathway over-representation analysis mapping significant genes to the Reactome
and i) Wikipathways databases. The x-axis in the dot plots represents the ratio of input

genes that are annotated in a pathway (GeneRatio). Dots are coloured by the qvalue.
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Figure Supplemental 4. Gen-concept networks depicting pathways and genes with

key roles in synaptic function a) Gene-concept network depicting significant genes

involved in selected enriched pathways from the Wikipathways and b) Reactome

databases.
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Figure Supplemental 5. Validation of downregulation of s/lc/8a2 in adipose tissue. a)
Expression of green fluorescence protein (GFP) in the inguinal white adipose tissue
(IWAT) and b) the mesenteric white adipose tissue (mWAT). ¢) Western-Blot for the
protein levels of slc18a2 in the mWAT of mice fed a HFD. d) slc18a2 protein levels of
the groups fed a HFD. Data is shown as dots with the mean + SEM; n=12 normal diet +
saline (ND-S), n=11 normal diet + virus (ND-V), n=13 high fat diet + saline (HFD-S),
n=12 high fat diet + virus (HFD-V). ** P < (.01, *** P <0.001, **** P < (0.0001 for the

comparison S vs V; 7 P <0.0001 diet effect. Calculated with two-way ANOVA.
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Figure Supplemental 6. Effect of diet and s/ic/8a2 downregulation in the adipose
tissue of mice on food intake, exploration time and locomotion. a) Food intake
(kcal/day) was monitored weekly during the entire protocol (8 weeks). b) Average of food
intake in kcal/day. ¢,d) Exploration time on the short-term (3h) and long-term (24h) novel
object-recognition tests. e) Kinetics of total activity measured as beam breaks in activity
chambers for 1 hour. f) Total horizontal activity, g) back or forth movements, and h)
rearings measured in 1 hour. In a,e individual data is shown as the mean + SEM and in
b-d,f-h as dots with the mean + SEM; .n=12 normal diet + saline (ND-S), n=11 normal
diet + virus (ND-V), n=13 high fat diet + saline (HFD-S), n=12 high fat diet + virus
(HFD-V). 4&& P <(.001 week effect; **** P <(0.0001 ND-S vs ND-V or HFD-S vs HFD-
V; " P <0.05, " P <0.001 diet effect; $ P < 0.05 treatment effect; @@ P < 0.001 week
x diet interaction; ~" P < 0.001 week x treatment interaction; a,e calculated with three- or

b-d,f-h two-way ANOVA.
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Figure Supplemental 7. Courtship and learning indexes of flies of with SLC18A2
and Rim knockdown in fat body. a) V'mat downregulation in the Drosophila fat body
and associations with short-term memory. Results display male short-term memory in the
courtship conditioning paradigm performed 6h after training and 1 hour of isolation.
Control-1 (w; C7-GAL4/+) and Vmat-RNAi2 fat body-specific knockdown flies (w; C7-
GALA4/+; UAS-Dcr-2/ Vmat -RNAi2). b) Relative gene expression assessed by qRT-PCR
of rutabaga(rut), dunce (dnc), amnesiac (amn), homer, CAMKII, and orb2 in fly brains
of UAS-Rim fat body-specific overexpression flies and their corresponding genetic
background control. Error bars represent normalized S.E.M. P-values were determined
using the #-test (* P<0.05, ** P <0.01, *** P <0.001, **** P <(0.0001). Data are derived
from a minimum of five biological and two technical replicates. ¢,d) Rim downregulation
in the Drosophila fat body and associations with learning. Results display male learning

in the courtship conditioning paradigm performed immediately after 2.5h training.



Control-1 and 2 (w; C7-GAL4/+; UAS-Dcr-2/+) and Rim-RNAil and Rim-RNAi2 fat
body-specific knockdown flies (w, C7-GAL4/Rim-RNAil; UAS-Dcr-2/+ and w,; C7-
GALA4/+; UAS-Dcr-2/ Rim-RNAi2). Error bars represent normalized S.E.M. P-values
were determined using the #-test (* P<0.05, ** P <0.01, *** P <0.001, **** P <0.0001).

Data are derived from a minimum of five biological and two technical replicates.



Table S1. General lineal model, controlling by age, sex and years of education (ANCOVA)
depicting the efects of physical exercise in the 10 cognitive test

Table S2.Cohorts clinical and neuropsychological characteristics.

Table S3. Gene transcripts associated with the CVLT Immediate Recall fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Discovery cohort
(IRONMET, n=17)

Table S4. Gene transcripts associated with the CVLT Long Delayed Free Recall fitting a robust
linear regression model controlling for age, BMI, sex and education years in the Discovery cohort
(IRONMET, n=17)

Table S5. Gene transcripts associated with the CVLT Short Delayed Free Recall fitting a robust
linear regression model controlling for age, BMI, sex and education years in the Discovery cohort
(IRONMET, n=17)

Table S6. Gene transcripts associated with the Backaward Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Discovery cohort
(IRONMET, n=17)

Table S7. Gene transcripts associated with the Forward Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Discovery cohort
(IRONMET, n=17)

Table S8. Gene transcripts associated with the Total Digit Span fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Discovery cohort (IRONMET,
n=17)

Table S9. Gene transcripts associated with the STROOPCW fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Discovery cohort (IRONMET,
n=17)

Table S10. Gene transcripts associated with the STROOPI fitting a robust linear regression model
controlling for age, BMI, sex and education years in the Discovery cohort (IRONMET, n=17)

Table S11. Gene transcripts associated with the TMTA fitting a robust linear regression model
controlling for age, BMI, sex and education years in the Discovery cohort (IRONMET, n=17)

Table S12. Gene transcripts associated with the TMTB fitting a robust linear regression model
controlling for age, BMI, sex and education years in the Discovery cohort (IRONMET, n=17)

Table S13. Over-representation analysis (REACTOME) of the VAT genes significantlly associated
with the CVLT Immediate Recall in the discovery cohort (IRONMET, n=17)

Table S14. Over-representation analysis (REACTOME, WIKIPATHWAYS) of the VAT genes
significantlly associated with the TMTB in the discovery cohort (IRONMET, n=17)

Table S15. Over-representation analysis (REACTOME, WIKIPATHWAYS) of the VAT genes
significantlly associated with the STROOPI in the discovery cohort (IRONMET, n=17)

Table S16. Over-representation analysis (REACTOME, WIKIPATHWAYS) of the VAT genes
significantlly associated with the TMTA in the discovery cohort (IRONMET, n=17)



Table $17. Over-representation analysis (WIKIPATHWAYS, KEGG) of the VAT genes significantlly
associated with the STROOPCW in the discovery cohort (IRONMET, n=17)

Table $18. VAT Gene transcripts associated with the CVLT Immediate Recall fitting a robust
linear regression model controlling for age, BMI, sex and education years in the Validation
cohort (INTESTINE, n=22)

Table S19. VAT Gene transcripts associated with the CVLT Long Delayed Free Recall fitting a
robust linear regression model controlling for age, BMI, sex and education years in the
Validation cohort (INTESTINE, n=22)

Table S20. VATGene transcripts associated with the CVLT Short Delayed Free Recall fitting a
robust linear regression model controlling for age, BMI, sex and education years in the
Validation cohort (INTESTINE, n=22)

Table S21. VATGene transcripts associated with the Backward Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S22. VAT Gene transcripts associated with the Forward Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S23. VAT Gene transcripts associated with the Total Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S24. VAT Gene transcripts associated with the STROOPCW fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S25. VAT Gene transcripts associated with the STROOPI fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Validation cohort (INTESTINE,
n=22)

Table S26. VAT Gene transcripts associated with the TMTA fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Validation cohort (INTESTINE,
n=22)

Table S27. VAT Gene transcripts associated with the TMTB fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Validation cohort (INTESTINE,
n=22)

Table S28. SAT Gene transcripts associated with the CVLT Immediate Recall fitting a robust
linear regression model controlling for age, BMI, sex and education years in the Validation
cohort (INTESTINE, n=22)

Table $29. SAT Gene transcripts associated with the CVLT Long Delayed Free Recall fitting a
robust linear regression model controlling for age, BMI, sex and education years in the
Validation cohort (INTESTINE, n=22)



Table S30. SAT Gene transcripts associated with the CVLT Short Delayed Free Recall fitting a
robust linear regression model controlling for age, BMI, sex and education years in the
Validation cohort (INTESTINE, n=22)

Table S31. SAT Gene transcripts associated with the Forward Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S32. SAT Gene transcripts associated with the Backward Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S33. SAT Gene transcripts associated with the Total Digit Span fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S34. SAT Gene transcripts associated with the STROOPCW fitting a robust linear
regression model controlling for age, BMI, sex and education years in the Validation cohort
(INTESTINE, n=22)

Table S35. SAT Gene transcripts associated with the STROOPI fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Validation cohort (INTESTINE,
n=22)

Table S36. SAT Gene transcripts associated with theTMTA fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Validation cohort (INTESTINE,
n=22)

Table S37. SAT Gene transcripts associated with theTMTB fitting a robust linear regression
model controlling for age, BMI, sex and education years in the Validation cohort (INTESTINE,
n=22)

Table S38. Over-representation analysis (REACTOME,WKIPATHWAYS) of the VAT genes
significantlly associated with the TMTA in the validation cohort (INTESTINTE, n=22)

Table $39. Over-representation analysis (REACTOME) of the VAT genes significantlly associated
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Table S42. Over-representation analysis (REACTOME, WIKIPATHWAYS) of the SAT genes
significantlly associated with the CVLT Short Delayed Free Recall in the validation cohort
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Table S43. Over-representation analysis (REACTOME, WIKIPATHWAYS) of the SAT genes
significantlly associated with the TMTA in the validation cohort (INTESTINTE, n=22)

Table S44. Genes form the Veen Diagram associated at least with one cognitive test.



Table S45. Over-representation analysis (REACTOME, WIKIPATHWAYS) of the common
significant genes (n=188) assocaited with at least one tests in the VAT and SAT from the
discovery (IRONMET, n=17) and validation cohort (INTESTINTE, n=22).

Table S46. Results from network-oriented over-representation analysis after hierarchial
clustering of redundant terms

Table S47. Resume results of learning capabilities assessed with the courtship conditioning
paradigme

Table S48. FAT BODY Gene transcripts for the comparison CONTROL vs RIM overexpression in
Drosophila fat body

Table S49. BRAIN Gene transcripts for the comparison CONTROL vs RIM overexpression in
Drosophila heats

Table S50. Over-representation analysis (REACTOME) of differentially expressed BRAIN genes
for the comparison CONTROL vs RIM overexpression in Drosophila fat body

Table S51. Primer sequences for the Drosophila gRT-PCR analyses
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