Supplemental figure legends

Fig. S1 Test antibodies for FACS-based screens, related to Figure 1A.

(A) Plots of single cells based on FITC intensity and PI intensity. Red and blue dots respectively
indicate mock and CPT treated samples prepared using HEK293A cells.

(B) Normalized histograms of FITC intensity. Red and blue peaks respectively indicate mock

and CPT treated samples prepared using HEK293A cells.

Fig. S2 DrugZ analysis results of 30 screens, related to Figure 1A.
DrugZ analysis of sgRNA abundance between Top and Bottom groups in 30 screens. See also

Table S1 and S2.

Fig. S3 Comparison of screen data conducted with pKAP1 and pChk2 antibodies, related
to Figure 1B.

(A) DrugZ analysis of sgRNA abundance between Top and Bottom groups in screens obtained
with an antibody recognizing endogenous pChk2 in IR- or HU-treated samples.

(B) Venn diagram shows the overlaps of positive regulators in screens obtained with antibodies
recognizing endogenous pKAP1 or pChk2 in IR-treated samples.

(C) Immunoblots of indicated proteins using samples prepared from IR-treated HEK293A cells.

Fig. S4 The regulatory network of DNA damage-induced signaling revealed by treatment-
based analysis, related to Figures 1C.
(A) The criteria for analyzing positive and negative regulators of DDR signaling based on

treatment.



(B) Heatmap plots show the normZ values of hub candidates. Red and blue colors represent
positive and negative regulators, respectively. NormZ values were grouped by their absolute
values (1 to 2, 2 to 4, and over 4), labelled by different colors.

(C) Representation of the Reactome pathway network for the proteins in A. The network was
generated using the Cytoscape plug-in ClueGO. The pathways highlighted in color were

significantly enriched. The GO term list is provided in Table S4.

Fig. S5 Distinct positive and negative regulators specifically participate in cellular
responses to CPT and ETO treatment, related to Figure 1C.

(A) DrugZ analysis of sgRNA abundance between Top and Bottom groups in screens obtained
with an antibody recognizing endogenous yH2AX in CPT- and ETO-treated samples.

(B) Venn diagram shows the overlaps of positive regulators in the indicated screens.

(C) Venn diagram shows the overlaps of negative regulators in the indicated screens.

(D) NormZ scores of hub regulators across the 30 screens, which highlight the specific

involvement of unique sets of genes involved in CPT or ETO-induced DDR signaling.

Fig. S6 Identification of common positive regulators involved in DDR signaling, related to
Figure 1C.

(A) Venn diagram shows the overlaps of common positive regulators in 24 screens.

(B) DrugZ analysis of screens obtained with an antibody recognizing endogenous pRPA2-
S4/S8.

(C) Immunoblots of DDR signaling proteins were conducted with lysis prepared from ALDOA
knockdown HEK293A cells or control cells. HEK293A cells were infected with vector or ALDOA-
shRNA1/2 virus, followed by treatment with CPT, ETO and HU, and lysed directly with SDS

loading buffer for Western blotting analysis using indicated antibodies.



(D) Immunoblots of DDR signaling proteins were conducted with lysis prepared from U20S cells

with or without ALDOA knockdown in the presence or absence of DNA damaging agents.

Fig. S7 Two previously unknown proteins C21orf59 and C110rf57 were identified as key
regulators of DDR signaling, related to Figures 1A and 2B.

(A) DrugZ analysis of sgRNA abundance in the screen obtained with antibody recognizing CPT-
induced pKAP1 sample.

(B) HEK293A cells were co-transfected with constructs encoding C110rf57 and vector or
LentiV2-C110rf57-sgRNAs (1-8). 40 hours later, cells were lysed directly for Western blotting.
C110rf57 antibody was obtained from Proteintech.

(C) HEK293A cells infected with indicated sgRNAs of C110rf57 and selected by puromycin.
Cells were then exposed to 1 uM CPT for 1 h and fixation, followed by staining and flow
cytometry analysis.

(D) DrugZ analysis of sgRNA abundance in the screen obtained with antibody recognizing CPT-
induced RPA2S33 sample.

(E) Immunoblots of C210rf59 prepared from control and C210rf59 knockdown HEK293A cells
were performed with two different commercial antibodies purchased from Proteintech and
GeneTex respectively.

(F) HEK293A cells were infected with vector or pGIPZ-C210rf59-shRNA2/4/6. After puromycin
selection, cells were exposed to 1 uM CPT for 1 h and fixed, followed by staining and flow

cytometry analysis.

Fig. S8 C210rf59 may regulate pPRPA2S33 via its effect on DNA replication, related to

Figure 2B.



(A, B) Immunoblots of DDR signaling proteins were conducted with lysates prepared from
control and C210rf59 knockdown HEK293A cells. HEK293A cells were infected with empty virus
(vector) or virus expressing C210rf59-shRNA2/6, followed by treatment with CPT (1 uM) or
DMSO (i.e. no treatment; NT), and (A) lysed directly with SDS loading buffer for Western
blotting analysis using indicated antibodies; (B) NETN buffer extraction to isolate soluble fraction
(SF) and the remaining pellet was further treated with TurboNuclease to isolate chromatin
fraction (CF). The whole cell lysates (WCLs) were prepared separately using the same samples.
Immunoblots of the indicated proteins were conducted. Anti-Vinculin and anti-H3 were
respectively included as the loading control for soluble and chromatin fractions.

(C) Cells were infected with indicated viral particles and pulse labelled with 10 uM EdU for 30
min. Representative images of EAU immunostaining in control and C210rf59 knockdown cells
were shown (left panel; scale bar 100 px). More than 100 cells were counted for the analysis
(right panel). Data are represented as mean + SEM. n= 3 biological independent replicates.
Two-tailed unpaired t test with Welch’s correction was used for statistical analysis.

(D) HEK293A cells were treated with CPT (1 uM or 5 uM) or DMSO, followed by NETN buffer
extraction to isolate soluble fraction (SF) and the remaining pellet was further treated with
TurboNuclease to isolate chromatin fraction (CF). The whole cell lysates (WCLs) were prepared
separately using the same samples. Immunoblots of the indicated proteins were conducted.
Anti-Vinculin and anti-H3 were respectively included as the loading control for soluble and
chromatin fractions.

(E) C210rf59 knockdown cells showed modest sensitivity to HU treatment. HEK293A cells were
infected with empty virus or virus encoding C210rf59-shRNA2/6. After puromycin selection, the
infected cells were seeded in 96 well-plates overnight and then treated with IR, CPT, ETO, or
HU. Cell survival was then determined with the use of CellTiter-Glo luminescence assays. Data

are represented as mean + SEM. n= 6 biological independent replicates.



Fig. S9 The suppressive effect on CPT- and ETO-induced DDR signaling by proteasome
inhibition, related to Figures 1D and 3A.

(A) Immunoblots of DDR signaling proteins were conducted with lysates prepared from HelLa
and U20S cells. Cells were pretreated with 10 yM MG132 or DMSO for 1 h and then treated
with CPT or ETO.

(B) Proteasome inhibition leads to increased chromatin-bound topoisomerases. HEK293A cells
were pretreated with 10 uM MG132 for 1 h and then treated with 1 yM CPT or 10 uM ETO for 2
hours before cells were collected for RADAR assay. Anti-DNA blot was included as the loading
control. The quantification was performed with Image J.

(C) Immunofluorescent staining of yH2AX and EdU in HEK293A cells. Cells were pulse labeled
with 10 yuM EdU for 30 min and washed twice, followed by pre-treatment with 10 uM BTZ for 1 h

and treatment with 5 uM or 10 uM CPT for 1 h. Representative images of yH2AX and EdU were

shown (scale bar 20 um).

Fig. S10 The effect of PRMT1 and PRMTS5 inhibitors on cell proliferation and HU-induced
DDR signaling, related to Figures 2A, 2B and 4A-4D.

(A) PRMT1 inhibitor- or PRMTS5 inhibitor-treated cells exhibit defects in cell proliferation.
CellTiter-Glo luminescence assay as well as clonogenic assay were used to check cell
proliferation when HEK293A cells were treated with PRMT1 inhibitor or PRMT5 inhibitor (1 uM
or 10 uM) for the indicated days. Data are represented as mean + SEM. n= 6 biological
independent replicates.

(B) Immunoblots of DDR signaling proteins in lysates prepared from HEK293A cells. Cells were
pre-treated with 1 uM or 10 yM PRMT1 inhibitor (EPZ019997) for 3 days followed by HU

treatment.



(C) Immunoblots of DDR signaling proteins in lysates prepared from HEK293A cells. Cells were
pre-treated with 1 yM or 10 uM PRMT5 inhibitor (EPZ015666) for 3 days followed by HU
treatment.

(D) Detecting ATM mRNA level in PRMT1 inhibitor- and PRMT5 inhibitor-treated cells by RT-
gPCR. HEK293A cells were treated with the indicated concentrations of PRMT1 or PRMT5
inhibitors for 3 days, followed by RT-qPCR with different primers targeting ATM. Actin was used
as the control for the normalization. Data are represented as mean + SEM. n= 3 biological

independent replicates.

Fig. S11 PRMT1 and PRMTS5 regulate ATM protein level, related to Figures 4E-4H.

(A) Immunoblots of indicated proteins prepared from PRMT1 or PRMT5 knockdown HEK293A
cells.

(B) Immunoblots of indicated proteins prepared from PRMT1 or PRMTS knockdown U20S cells.
(C) Treatment of PRMT1 or PRMTS5 inhibitor sensitizes cells to DNA damaging agents.
HEK293T and U20S cells were seeded in 96 well-plates with DMSO, PRMT1 inhibitor (1 uM or
10 uM) or PRMTS inhibitor (1 uM or 10 uM) overnight and then treated with IR, CPT, ETO, or
HU. Cell survival was then examined using CellTiter-Glo luminescence assays. Data are

represented as mean + SEM. n= 6 biological independent replicates.

Fig. $12 Identification of GNB1L as the critical regulator of DDR signaling, related to
Figure 5A.

(A) DrugZ analysis of sgRNA abundance in screens obtained with antibodies recognizing
yH2AX and pKAP1 in CPT- and ETO-treated samples.

(B) Immunofluorescence staining of Flag-tagged GNB1L in HEK293T cells that stably express

SFB-GNB1L. Representative images of Flag (SFB-GNB1L) were shown (scale bar 20 um).



(C) GNB1L-depleted cells exhibit defective cell proliferation. CellTiter-Glo luminescence assay
as well as clonogenic assay were used to check cell proliferation when GNB1L-dTAG cells were
treated with NEG or dTAG"-1 for the indicated days. Data are represented as mean + SEM. n=
6 biological independent replicates.

(D) Immunoblots of GNB1L-HA proteins prepared from GNB1L-dTAG cells. GNB1L-dTAG cells
were treated with dTAG"-1-NEG or dTAG"-1 for indicated hours. Vinculin was included as the
loading control.

(E) Immunoblots of the indicated proteins prepared from GNB1L-dTAG cells treated with
dTAG"-1 or dTAG"-1-NEG with time course.

(F) Clonogenic survival of GNB1L-dTAG cells as well as reconstituted GNB1L cells in the

presence of dTAG"-1 (1 uM) or dTAG"-1-NEG (1 uM).

Fig. S13 GNB1L specifically regulates PIKK protein levels, but not their mRNA levels,
related to Figure 6C.

(A and B) HEK293A-GNB1L-dTAG cells were treated with 1 yM NEG or dTAG"-1 for 3 days
followed by the label-free quantitative proteomics analysis (see also Table S5) and RNA-seq
(see also Table S6). Volcano plots are presented showing the differentially expressed proteins
(A) and genes (B) in dTAG"-1-treated cells comparing to those in NEG-treated cells.

(C) Representative GO terms enriched by differentially expressed genes identified from RNA-

seq analysis. The GO term list is provided in Table S6.

Fig. S14 TELO2 depletion recapitulates the effect of depleting GNB1L on PIKK proteins
but does not enhance its effect, related to Figure 6F.
(A and B) Validation of two different HEK293A-TELO2-dTAG clones by Western blot (A) and

clonogenic survival (B) assays.



(C) TELO2-dTAG cells were treated with 1 uM NEG or dTAG"-1 for indicated days, followed by
immunoblots of the indicated proteins.

(D) HEK293A-GNB1L-dTAG cells were treated with 1 uM NEG or dTAG"-1, further infected with
LentiV2-sgRNA virus targeting TTI1 or TELOZ2. The cells were lysed directly after 3 days and
immunoblotted for the indicated proteins.

(E) HEK293T cells stably expressing SFB-GNB1L were treated with 10 yM HSP70 inhibitor
(VER155008) or HSP9O0 inhibitor (17-AAG) for 2 h, followed by co-immunoprecipitation assay to
identify the interaction between GNB1L and the indicated proteins.

(F) The HEK293A-GNB1L-dTAG cells were reconstituted with GNB1L truncation mutants SFB-
GNB1L-AWD (1-7) (depleting WD1, residues 16-54; depleting WD2, residues 58-97; depleting
WD3, residues 103-145; depleting WD4, residues 153-195; depleting WD5, residues 200-237;
depleting WD6, residues 242-282; depleting WD7, residues 286-323) or full-length (FL) GNB1L,
followed by treatment with 1 uM NEG or dTAG"-1 for 3 days. Immunoblots of the indicated
proteins were presented.

(G) Clonogenic survival of HEK293A-GNB1L-dTAG cells as well as GNB1L reconstituted cells
in the presence of 1 yM dTAG"-1-NEG or dTAG"-1.

(H) Co-immunoprecipitation assays were performed with HEK293A-GNB1L-dTAG cells as well
as GNB1L reconstituted cells to identify the interaction of GNB1L truncation mutants with the

indicated endogenous proteins.

Fig. S15 GNB1L maintains genomic stability, related to Figures 5F and 6B.

(A and B) GNB1L-dTAG cells were treated with 1 yM dTAG"-1-NEG or dTAG"-1 for 3 days.
Representative examples of neutral comet assay conducted with NEG- or dTAGY-1-treated
GNB1L cells in the absence or presence of ETO treatment (10 uM for 1 h). More than 100 cells
of each group were counted for analysis. Two-tailed unpaired t test with Welch’s correction was

used for statistical analysis. Representative images were shown (scale bar 20 um).



(C and D) GNB1L-dTAG cells were treated with 1 uM dTAG"-1-NEG or dTAG"-1 for 3 days.
Representative examples of mitotic spreads from NEG- or dTAG"-1-treated GNB1L cells (scale
bar 20 um). The red arrows indicate chromosomal fragments. 50 metaphases were counted for

analysis and cells with 2 or more chromosomal fragments were counted as aberrations.

Fig. $16 The correlation of GNB1L expression in cancers, related to Figures 5F and 6B.
(A) Boxplots show the expression distribution (log2(tpm+0.001)) of GNB1L gene in tumor
tissues and normal tissues. The abscissa represents different tumor tissues, and the ordinate
represents the expression distribution of GNB1L, different colors represent different groups.
RNA-sequencing expression (level 3) profiles for GNB1L were downloaded from the TCGA
dataset (https://portal.gdc.com).

(B) Kaplan-Meier survival analysis of the GNB1L from TCGA dataset. For each tumor type,
patients were divided into a low group (lower expressed GNB1L) and a high group (higher
expressed GNB1L) by the median expression of GNB1L. The high and low groups were
stratified and visualized using Kaplan-Meier survival curves and analyzed for statistical
significance using the log-rank test and univariate cox regression analysis. RNA-sequencing
expression (level 3) profiles and corresponding clinical information for GNB1L were downloaded

from the TCGA dataset (https://portal.gdc.com).
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Fig. S4
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Fig. S13
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