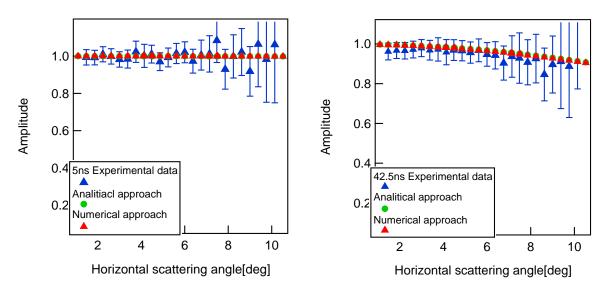
Supplementary Information: Neutron spin echo spectroscopy with a moving sample

Manuchar Gvaramia^{1,+}, Philipp Gutfreund^{2,+,*}, Peter Falus², Antonio Faraone³, Michihiro Nagao^{3,4,5}, and Max Wolff^{1,*}

¹Department for Physics and Astronomy, Uppsala University, Regementsvägen 1, SE-75120 Uppsala, Sweden ²Institut Laue–Langevin, CS 20156, 38042 Grenoble Cedex 9, France

³Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, United States ⁴Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States

⁵Department of Physics and Astronomy, University of Delaware, Newark, DE, United States


*corresponding.gutfreund@ill.eu,max.wolff@physics.uu.se

+these authors contributed equally to this work

ABSTRACT

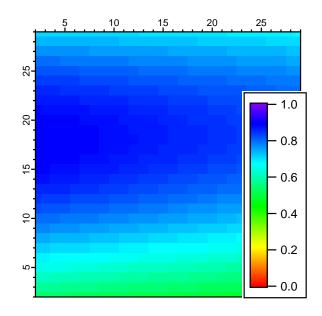

Additional Data.

Figure S1 depicts calculated and measured amplitudes for the same experimental conditions as shown in Fig. 4 in the main article but for shorter Fourier times of 5 ns and 42.5 ns.

Figure S1. Experimental amplitudes as a function of detector angle for Fourier times of (a) 5 ns, (b) 42.5 ns from a graphite block rotating at a speed of 73 rpm.

Finally, the 2D amplitude map for a liquid sample at 75 rpm without slip using the same parameters as in Fig. 6 of the main text is shown in Fig. S2.

Figure S2. Numerically calculated 2D amplitude for a liquid sample at 75 rpm without slip using the same parameters as in Fig. 6 of the main text at a detector angle of 9° .