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1 Supplementary Methods: Evaluation framework details

1.1 Fidelity metrics

For generative modeling, there is no standard way of evaluating the fidelity of the generated synthetic data

samples and often different works based their evaluations on different methods. Therefore, we use various

methods to provide the fidelity results including (i) training on synthetic / testing on real, (ii) KS-statistics,

(iii) CDF graphs, (iv) feature importance.

Regarding the rationale for (i), the common use-case of synthetic data is to construct ML models for

downstream tasks. To construct downstream ML models without utilizing the original data, we envision the

scenario of first generating synthetic data and then sharing the synthetic data to ML developers, will be

quite common. Then, in the ideal case, ML developers would be able to construct downstream models using

the synthetic data that can match the performance as if they were trained on real data. Therefore, we use

(i) as our primary metric for quantifying whether our synthetic data can provide satisfactory performance

on downstream learning tasks. Note that metric (iv) is inherently related to (i) as failure to capture the

properties of important features in the real data would be expected to hurt performance of downstream

models. Metric (ii) is adopted as the fundamental statistical fidelity metric for our synthetic data, as it

is both interpretable, and sufficiently general to handle the diverse data modalities addressed in our work.
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KS-statistics can be computed for binary, categorical, and continuous data; and in all cases, results can be

interpreted as the maximum distribution distance in terms of probability.

1.1.1 Distribution distance

We employ KS-statistics to quantify the distances between the distributions of real and synthesized samples.

KS-statistics is a non-parametric test that can be used to compare two samples, and provide a probability

that both collections were drawn from the same probability distribution. It quantifies the distance between

the empirical distribution functions of the two samples. If the computed KS-statistic value is small (or the

corresponding p-value (computed by Kolmogorov-Smirnov test) is high), we can say that the null hypothesis

can be rejected. The null hypothesis in this case states that the distribution of the original and synthetic

data (for one specific feature) is the same.

1.1.2 Utility metric

The utility metric focuses on usefulness of the synthetic data for a given task. One common use case of

synthetic data would be developing predictive models on them without access to the real data. The ideal

scenario would be synthetic and real data having sufficiently similar characteristics that they would yield

similar models (when the same model development procedure is applied on them), and eventually similar

predictions on the unseen real data (please see [1] for a more comprehensive discussion). It should be noted

that choice of training data, features to predict, and models to train can all have a big impact on observed

utility. For instance, low capacity or poorly-tuned models may result in low accuracy regardless of the

quality of the synthetic data. Throughout this paper, we present numerous results of the downstream model

performance that shows that the real data can be replaced with synthetic data with minimal performance

penalty.

1.1.3 Multi-target utility metric

The utility metric is inherently limited as a measure of the realisticness of synthetic data, as in the general

case, similarity of model performance does not strictly imply similarity of the underlying training data. For

instance the target feature may be completely unrelated with the rest of the dataset, leading to equally bad

performance regardless of the training data being used. Instead, the utility metric attempts to measure the

preservation of predicatively useful statistical properties of the underlying data. However, only measuring

utility with respect to a single target variable, may fail to capture important aspects of the data. Additionally,

only considering the scenario where all features are available for prediction may fail to capture the utility of

features of lesser importance for the predictive task under consideration.
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To address these limitations, we propose a framework to more comprehensively evaluate utility. In order

to validate that all features are well-preserved in the synthetic data, we can compute utility using every

possible subset of features as predictors (instead of using all features). If for each possible subset of features, a

common model trained on both datasets always makes similar predictions, then we can make stronger claims

about the usefulness of the synthetic dataset. To further validate the utility metric under diverse settings, we

can measure performance when predicting any feature (which is not part of the training data) instead of

fixing on only one such as mortality. In this paper, we focus on predicting only static-categorical data.

There are 2n subsets of features, which makes the task of running the utility-metric using each possible subset

a computationally unfeasible task. Instead, we can use the hypothesis-testing framework and work with a

confidence level. This approach will make our approach computationally feasible while giving us a confidence

level on our results.

We state our null hypothesis (H0) as follows: The mean of the absolute difference between the models trained

on real and synthetic data measured using metric M on predicting any categorical static feature F with

model P using any set of features is greater or equal than X.

We use Random Forest (RF) P due to its high accuracy while being relatively fast for training. We randomly

choose in each experiment the target feature to predict F among the available categorical static variables

(mortality, gender, condition-code, marital-status and religion). We also choose a random subset of features

to use for prediction, while avoiding to use the feature F. We run the experiment n = 30 times and compute

the Area Under the Receiver Operating Characteristic Curve (AUC) as our metric M. Then, we compute the

statistical test that the mean of the underlying distribution of the sample (i.e. the n results representing the

absolute differences between training-real and training-synthetic) is greater than the given population mean

(i.e. the percent we are using in our hypothesis or X
100 ). We did this only for MIMIC dataset as for the eICU

dataset only two target variables were available (mortality and gender), both of which we used for the results

in the main manuscript. The mean of the differences was 0.057. For X = 6, the p-value (computed by one

sample T-test) to reject the hypothesis was 0.052.

1.2 Privacy metrics

In this section, we overview the privacy attacks against the model. We choose three privacy metrics that

represent known approaches which adversaries may apply to de-anonymize private data – (i) membership

inference, (ii) re-identification, (iii) attribute inference. These metrics are highly practical as they represent

the expected risks that currently prevent sharing of conventionally anonymized data. Furthermore, they are
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highly interpretable, as results for these metrics directly measure the risks associated with sharing synthetic

data. For instance, membership inference is a common attack for extracting protected attributes from private

data. The ability for attackers to identify patients within a dataset also gives access to any sensitive attributes

within the data. Thus, demonstrating resilience to membership inference attacks is a necessary condition for

creating synthetic medical records that are safe to share. Furthermore, this metric can evaluate whether the

generative model just memorizes the training data or learns the distributions of the original data which is

critical for privacy. For (ii) and (iii) privacy metrics are about whether we can identify the private attributes

if some non-private attributes are revealed. These are also highly practical and easy to interpret privacy

metrics.

Our assumption for these attacks is that the adversary can be either in possession of the original data or the

synthetically generated data. The attacks below cover the scenarios where the adversary only has access to

the data rather than the model and does not cover the insider threat cases where the model is in the hands

of the malicious party.

1.2.1 Membership inference attack

The adversary’s goal with this attack is to understand whether an individual’s data has been used for

training the synthetic data generation model. In this case, the specific attribute is whether an individual has

participated in a medical study. To evaluate the risk of this attack, we first divide the original data into

training (50%) and holdout data (50%), and train EHR-Safe using only the training split. After generating

the synthetic data, we train a k nearest neighbor (kNN) model fitted on the synthetic data. We assume that

the adversary is in possession of real data containing both training data and holdout samples. Using the

kNN model, we identify the closest neighbors for each sample in the real dataset. Using a minimal threshold

line (e.g. minimum Hamming Distance), we predict whether the real data sample belongs to the training

data. Then, we calculate the accuracy, since we are in possession of the labels (unlike in the case of a real

attacker). For an ideal model (without privacy risk), the prediction accuracy would be 50%. If EHR-Safe had

high privacy leakage, the kNN model would lead to higher accuracy.

1.2.2 Re-identification attack

The re-identification attack is a linkage attack analysing if a certain subset of features suggests that the

synthesized sample belongs to a certain individual, then the same suggestion also holds with another subset

of features for the same sample. We define the re-identification ratio utilizing the feature subset proximity, as

a way of robustness against this linkage attack. We first divide the synthetically generated dataset into two
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subsets based on the features. We simply use half of the features in each subset. Then, we find the nearest

neighbors of each sub dataset from the original dataset to find one-to-one mapping between synthetic data

and original data. Finally, we check whether these one-to-one mappings are consistent between two subsets.

If they are consistent, we treat that sample as re-identifiable. The optimal value with this metric (i.e. no

privacy risk) can be computed by replacing the synthetic data into disjoint holdout original data.

1.2.3 Attribute inference attack

For this attack, the adversary has some partial information about some individuals and based on correlating

that information with the synthetic data, the attack analyses their ability to infer the specific attributes more

accurately. We focus on gender, age, and race as the sensitive features for the experiments. Then, using the

rest of the features, we assess the predictability of the values of these sensitive features. As the baseline, we

consider predicting these sensitive features using original data.

2 Supplementary Methods: Post-processing to minimize distribution distance

When the fidelity metric of KS-statistics optimization is considered, further improvements can be obtained

with a post-processing procedure to refine the distributions. We propose a post-processing method that

is applied to each feature individually to optimize the resulting KS-statistic between each pair of features.

In order to understand the method for optimizing, we start by giving a brief overview of the KS-statistic

computation:

• Samples from both datasets are concatenated and sorted;

• For each observation, estimate the CDF of original and synthetic data, as well as their absolute

difference;

• Compute the survival function over the maximum difference.

The goal of the proposed post-processing method is to define an arbitrary value distmax as the maximum

acceptable CDF difference between synthetic and real data, and find a set of minimal changes to the synthetic

dataset such that the distmax criteria is satisfied. Define So as the samples from the original dataset, and Ss

as the samples from the synthetic dataset, both in non-decreasing order. Define count(S, x) : |y ∈ S|y ≤ x|

(Amount of samples from S less or equal than x) and CDF(S, x) : count(S,x)
|S|

Recall the optimization goal is |CDF(S0, x)−CDF(Ss, x)| ≤ distmax and only values from Ss can be modified

to satisfy the condition. Thus, if there exists an x such that |CDF(S0, x)− CDF(Ss, x)| > distmax, we apply
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the optimization procedure. Let’s rewrite the original equation first, which represents the final state for each

x after the optimization:

1. count(Ss, x) ≤ ( count(So,x)
|So| + distmax)× |Ss|

2. count(Ss, x) ≥ ( count(So,x)
|So| − distmax)× |Ss|.

We want to minimize the amount of modifications to Ss while satisfying these inequalities. Thus, we only

need to modify elements until the elements are equal, more modifications may also satisfy the inequality but

will require more changes:

1. count(Ss, x) = ( count(So,x)
|So| + distmax)× |Ss|

2. count(Ss, x) = ( count(So,x)
|So| − distmax)× |Ss|.

Let’s define N+ = ( count(So,x)
|So| + distmax)× |Ss| and N− = ( count(So,x)

|So| − distmax)× |Ss| . Given distmax ≥ 0

and count(So,x)
|So| ≤ 1 we can affirm that N− ≤ |Ss|, thus we set N = N−. Note that distmax will be close to

zero, therefore in most cases N+ ≤ |Ss|. In the cases where N+ > |Ss|, set N = |Ss|, otherwise set N = N+.

Therefore, we need to modify Ss such that count(Ss, x) = N . There are many possible ways to modify Ss in

order to have the first N values less or equal to x, and the rest of the values greater than x. Below is the

approach we propose:

1. For the first N values of Ss: Change any value greater than x with x

2. For the rest of the |Ss| −N values, replace every value that is less or equal to x with value y where y

is the smallest value that belongs to Ss and is greater than x.

Note that we always use the replacement values existing in either Ss or So. This avoids adding values that

are nonexistent in the given sets. We use distmax = 0 for all the features. As Fig. 1 shows, the KS-statistics

can drastically improve with the proposed procedure.
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Minute Volume(Obser)
Original
Synthetic

(e) KS-value: 0.04 p-value: 0.0
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(f) KS-value: 0.00 p-value: 1.0

Figure 1: CDF curves between original and synthetic data before (left) and after (right) post-
processing Here, we use 3 features as examples. (a,b) High Insp. Pressure, (c,d) HR Alarm[Low], (e,f)
Minute Volume (Observed). P-values are computed by Kolmogorov-Smirnov test.

7



3 Supplementary Methods: Listwise feature generation

Listwise feature is another common data type in EHR data that represents a list of components at single

measurement time. For instance, ICD-9 or ICD-10 codes at certain time point for a specific patient can be

multiple; those are represented as listwise features. More examples can be found in Fig. 2.

Static listwise feature

Patient id Condition code

1 276.6, E87.70

2 573.9, K76.9

3 276.1, E87.0, E87.1

4 323.8, M32.19, G05.3

5 807.4

6 995.92, R65.2

7 294.10, 331.0, F02.8, G30.9

Temporal listwise feature

Patient id Measurement time Diagnosis code

1 1 428.0, I50.9, 585.9, N18.9

1 2 414.00, I25.10, 491.20, J44.9

1 4 427.31, I48.0

2 1 286.9, D68.9, 345.90, R56.9

2 3 294.9, F03

3 1 428.1, I50.1, 584.9, N17.9

3 5 530.82, K22.8

Figure 2: Examples of listwise features in EHR data (left) static, (right) temporal.

Generating synthetic listwise features would be important to generate realistic healthcare synthetic data.

Fortunately, with small modifications, EHR-Safe can generate synthetic listwise features. We describe the

details of the modified EHR-Safe framework to generate listwise features in the following sections.

3.1 Data preprocessing

The number of values in each listwise feature per patient can be different. We first aggregate those multiple

components and convert them into a numerical (binary) matrix.

id Time Temporal listwise feature

1 1 A, E

1 2 B, C

2 1 C, E

2 2 A, D, F

2 5 D, E, F

3 1 A, B

3 4 C

id Time Temporal listwise feature

A B C D E F

1 1 1 0 0 0 1 0

1 2 0 1 1 0 0 0

2 1 0 0 1 0 1 0

2 2 1 0 0 1 0 1

2 5 0 0 0 1 1 1

3 1 1 1 0 0 0 0

3 4 0 0 1 0 0 0

Figure 3: Listwise feature preprocessing Converting listwise features into numeric matrix.

As can be seen in Fig. 3, the number of columns is the number of unique component in listwise features.

Each row represents the unique patient id and measurement time. Present/absence of the component is
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represented as 1/0 in the converted numerical matrix. This is very similar with categorical data preprocessing

except the number of 1s in each row; listwise features can have multiple 1s in each row.

3.2 Encoder-decoder framework with listwise features

After encoding the listwise features, we can incorporate those encoded features into the categorical encoder

and decoder framework.

Cate-1 … Cate-K

Encoder

Rprs-1 Rprs-2 … Rprs-L

Cate- 
Decoder-1

R
econstruction 

loss

One-hot categorical data

Embedded data 
(Representations)

Cate-
Decoder-K…

Cate-1

Softmax

Cate-K

Softmax

one-hot one-hot

…

List-1 … List-M

binary binary

List-
Decoder-M

List-M

Sigmoid

List-
Decoder-1

List-1

Sigmoid

…

…

Binary listwise data

Decoded one-hot categorical data Decoded Binary listwise data

Figure 4: Encoder-decoder for listwise features Encoder-decoder architecture to convert both categorical
and listwise features into the latent representations. Note that the listwise feature decoder uses sigmoid as
the activation function.

As shown in Fig. 4, the overall architecture is highly overlapped with categorical encoder-decoder framework.

One small difference is that we use sigmoid output activation function for the listwise decoder (instead of

softmax) because multiple 1s can be possible in the converted listwise features in each row. The embedded

representations include both categorical and listwise feature information.

3.3 Fidelity of the synthetic listwise features

To evaluate the fidelity of the synthetic listwise features, we first illustrate some example synthetic listwise

features for some patients. As can be seen in Fig. 5, the generated synthetic listwise features are diverse and

realistic. One interesting and important point is that we generate ICD-9 and ICD-10 codes independently

but those are exactly matched in the synthetic listwise features.

We also plot the frequency of the listwise features in Fig. 6 which shows that the frequencies of top 10 features

in both condition code and diagnosis are well aligned.
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Synthetic static and temporal listwise features

Condition code Diagnosis

Other categories 038.9,A41.9,584.9,N17.9,R78.81,O

Other categories 038.9,A41.9,Other categories

414.00,I25.10 414.00,I25.10,401.9,I10

518.82 427.31,I48.0,780.09,584.9,N17.9,

518.82 427.31,I48.0,E87.1,348.30,G93.40

276.7,E87.5 491.20,J44.9,584.9,N17.9,799.02,

578.9,K92.2 518.82,038.9,A41.9,486,J18.9,585

Other categories 518.82,428.1,I50.1,584.9,N17.9,7

Other categories 585.9,N18.9,345.90,401.9,I10

Other categories 780.09,E980.2,Other categories

Original static and temporal listwise features

Condition code Diagnosis

414.00, I25.10 414.00,I25.10,584.9,N17.9

518.81,J96.00 427.31,I48.0,518.81,J96.00,427.5

414.00,I25.10,038.9,A41.9,428.1 518.81,J96.00,436,I67.8

414.00,I25.10,038.9,A41.9,428.1 491.20,J44.9,401.9,I10

Other categories 427.31,I48.0,Other categories

Other categories 427.31,I48.0,486,J18.9,348.30,G9

Other categories 427.31,I48.0,486,J18.9,348.30,G9

786.50,R07.9 410.71,I21.4,786.50,R07.9

Other categories Other categories

340,G35 585.9,N18.9

Figure 5: Examples of original and generated listwise features (left) Generated synthetic listwise
features and (right) original listwise feature.
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Figure 6: Top 10 components in both static and temporal listwise features The frequencies between
original and synthetic listwise features are well aligned.

4 Supplementary Methods: Training details and hyperparameters

In this section, we describe the details of EHR-Safe model training and hyper-parameters that we used. First,

we divide the entire dataset into disjoint train (80%) and test (20%). Note that we only use the training data

to train EHR-Safe model. Then, we preprocess the original data including normalization and padding. Note

that to guarantee monotonicity of the measurement time, we model the time difference instead of the absolute

time (which also included in the preprocessing). Then, we start EHR-Safe model training sequentially as

follows: (i) train categorical (including temporal) embedders to convert categorical data into the categorical

embedding, (ii) train encoder-decoder model, (iii) train WGAN-GP model. We summarize the values of the

important hyperparameters used in EHR-Safe in Table 1.
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Hyper-parameters MIMIC-III eICU
Static categorical embedder dimensions 30 30
Static categorical embedder epochs 100 100
Temporal categorical embedder dimensions 30 -
Temporal categorical embedder epochs 30 -
Encoder-decoder hidden dimensions 1000 1000
Encoder-decoder epochs 1500 1000
Batch size 256 256
WGAN-GP epochs 600 500
WGAN-GP gradient penalty weight 10.0 10.0
The number of WGAN-GP generator layers 4 4
The number of WGAN-GP discriminator layers 2 2
WGAN-GP hidden dimensions 2000 2000
Loss weights (temporal, mask, static, time) (1.0, 1.0, 1.0, 0.1) (1.0, 1.0, 1.0, 0.1)

Table 1: Hyperparameters to train EHR-Safe model for MIMIC-III and eICU datasets.

4.1 Alternative model training

In the main manuscript, we evaluate the utility and privacy performances of generated synthetic data

by alternatives: (i) TimeGAN [2] (https://github.com/jsyoon0823/TimeGAN), (ii) RC-GAN [1] (https:

//github.com/ratschlab/RGAN), (iii) C-RNN-GAN [3] (https://github.com/olofmogren/c-rnn-gan).

Note that the alternatives are not designed to handle various challenges of EHR data including varying

lengths of sequences, sparsity, categorical features, and joint representation of static and time-varying features.

To address those challenges with alternative methods, we introduce the following modifications.

• Varying lengths of sequences: Use padding approaches to make fixed length of sequences

• Sparsity: Use missing indicator to identify the missing components

• Categorical features: Use the integer encoding to convert string categories to integer. We avoid using

one-hot encoding due to the large number of categories per each categorical feature.

• Joint representation of static and time-varying features: We treat the static features as duplicated

time-series features for joint modeling.

5 Supplementary Note: Dataset details

Table 2 summarizes the key properties of the two EHR datasets used in our experiments. For MIMIC-III

data, instead of including all the temporal numerical features, we only include top 75 features with high

information gain which is computed by the Kullback-Liebler (KL) and Jensen-Shannon (JS) divergence

between positive and negative labeled samples.
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Datasets MIMIC-III eICU
Number of patients 19,946 198,707
Length of sequences (25% - 50% - 75% percentiles) 20 - 23 - 24 22 - 42 - 77
Maximum sequence length 30 50
Number of temporal numerical features 75 50
Number of temporal categorical features 8 0
Number of static numerical features 3 3
Number of static categorical features 3 1

Table 2: The key properties of the two EHR datasets: MIMIC-III and eICU, used for EHR-Safe evaluation.

6 Supplementary Discussions: Additional Experiments

6.1 Propensity scores - Distinguishing synthetic data from original data

In this subsection, we train an ad-hoc binary classifier whose objective is to identify real samples from

the synthetic samples. If the performance of the ad-hoc classifier (discriminator) is closer to 0.5 (random

guessing), we can claim that the synthetic data preserve the original data properties well.

Models MIMIC-III eICU
Accuracy AUC Accuracy AUC

GBDT 0.770 0.863 0.714 0.793
RF 0.805 0.884 0.784 0.858
GRU 0.764 0.852 0.877 0.954
LR 0.667 0.732 0.614 0.660

Average 0.751 0.832 0.747 0.816

Table 3: Propensity score performance with 4 different predictive models using MIMIC-III and eICU datasets.
Performances are evaluated on original and synthetic test sets.

We also report the propensity scores per features to check which features are more realistic/unrealistic

compared with the original features. As can be seen in Fig. 7, the discriminator performance is lower than

0.6 for most features.

6.2 Data coverage visualizations

Having similar coverage, and avoiding under-representation of certain data regimes, is crucial for synthetic

data generation. We use t-SNE (t-distributed stochastic neighbor embedding) analyses to provide a qualitative

intuition as to how well our synthetic data overlap the original data. More specifically, t-SNE analysis serves

as a non-linear dimensionality reduction method to visualize high dimensional data by giving each data point

a location in a two-dimensional map.
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(a) Propensity scores of each feature on MIMIC-III dataset.

(b) Propensity scores of each feature on eICU dataset.

Figure 7: Propensity score analyses per feature across two medical datasets Note that the propensity
scores of most features are less than 0.6 which is similar with random guessing.

(a) MIMIC-III - Temporal data (b) MIMIC-III - Mask data (c) MIMIC-III - Static data

(d) eICU - Temporal data (e) eICU - Mask data (f) eICU - Static data

Figure 8: t-SNE analyses Analyses on temporal, mask and static data on MIMIC-III and eICU datasets.
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As Fig. 8 shows, the coverage of the synthetic data is very similar with the coverage of the original data. Note

that for three-axes temporal and mask data, we first convert them into two axes data where each column

represents each feature at each time point.

6.3 Algorithmic fairness analysis

In this subsection, we provide algorithmic fairness analyses for different sensitive attributes: gender, marital

status, religion for MIMIC-III; and gender for eICU. We focus on the mortality prediction as the downstream

task and random forest as the predictive model.

We utilize three different metrics to evaluate the algorithmic fairness of original and synthetic data:

• Demographic parity: Differences between probability of being assigned to the positive class, across

the subgroups divided by the attributes;

• Equalized odds: True Positive Rates (TPR) and False Positive Rates (FPR) differences across the

subgroups divided by the attributes;

• Overall accuracy equality: Performance (with AUC being the metric) differences across the

subgroups divided by the attributes.

More details of these algorithmic fairness metrics can be found in [4]. Fig. 9 shows that the algorithmic

fairness performances metrics between the original and synthetic data are consistent across various subgroups.

In other words, the algorithmic fairness biases across different subgroups is not amplified by the synthetic

data generated by EHR-Safe compared with original data.

6.4 Impacts of stochastic normalization

Fig. 10 shows the cumulative distribution function (CDF) curves with and without stochastic normalization,

highlighting it’s key role in improving the fidelity of synthetic data.

6.5 Additional Privacy Results

In this section, we present privacy attack results. For the preliminary results, we used the Euclidean distance

metric for the kNN algorithms. However, since the data we generate is time series based type of the data,

it is recommended to also consider distance metrics that cover time. We consider three more time-series

distance metrics in kNN models from tslearn package:
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(c) Overall accuracy equality

Figure 9: Algorithmic fairness analyses for multiple subgroups divided by sensitive attributes
In most cases, the algorithmic bias in the original data is inherited to the synthetic data, and not amplified.

Figure 10: CDFs with stochastic normalization (Upper) vs. without stochastic normalization
(Lower) Without stochastic normalization, it is very challenging for EHR-Safe to mimic the CDF of the
original samples, especially for those with discrete jumps.
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• Dynamic Time Wrapping (DTW): For measuring the distance between two temporal sequence that

may have different speed.

• SoftDTW: A more advanced version of the DTW where the difference can be computed at every

point. The implementation of this metric is much faster compared to DTW as well.

• Canonical Time Warping (CTW): An improved version of DTW where the difference can be calculated

in more complex scenarios where there is rotation and transformation of the data over time.

The results are provided in Table 4.
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Privacy metrics Distance metrics MIMIC-III eICU
No privacy risk EHR-Safe No privacy risk EHR-Safe

Membership inference
DTW 0.500 0.488 0.500 0.472

SoftDTW 0.500 0.490 0.500 0.484
CTW 0.500 0.469 0.500 0.461

Re-identification
DTW 0.050 0.054 0.064 0.079

SoftDTW 0.048 0.057 0.066 0.078
CTW 0.061 0.069 0.068 0.082

Attribute-inference DTW 0.682 0.671 0.664 0.651
Target - Gender SoftDTW 0.719 0.708 0.681 0.669

CTW 0.723 0.714 0.692 0.685
Attribute-inference DTW 0.634 0.629 - -
Target - Marital status SoftDTW 0.629 0.621 - -

CTW 0.638 0.631 - -
Attribute-inference DTW 0.627 0.620 - -

Target - Religion SoftDTW 0.632 0.619 - -
CTW 0.637 0.632 - -

Table 4: Privacy risk evaluation with different distance metrics (DTW, SoftDTW, CTW). For membership
inference, the ideal value is random guessing (i.e. 0.5) whether an original sample has been leveraged for
training the synthetic data generation model. For the re-identification, the ideal case is to replace the
synthetic data with holdout original data which is disjoint with the training data. For attribute inference
attack, we set three static features (gender, race, medical status – note that eICU only has a gender attribute)
as the specific attributes and report prediction AUC. The baseline scenario is measured by performing feature
prediction using the original data. For multi-class data such as marital status or religion, we compute the
pairwise AUC values across all possible categories and report their average values.
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6.6 Statistical similarity

Fig. 11 shows the pairwise Pearson correlations - a measure of linear correlation between two sets of data to

evaluate whether the correlation between features are well conserved - between temporal numerical features.

We observe almost identical heatmaps indicating that the generated synthetic data largely conserve the

original correlations. Table 5 and 6 present the statistical similarity per each feature in MIMIC-III and eICU

datasets, respectively. Fig. 12 shows the top 10 frequent categories’ frequencies for original and synthetic

data. The distributions for the static and temporal categorical features are well aligned between original and

synthetic data.
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(a) MIMIC-III - Original data (b) MIMIC-III - Synthetic data

(c) eICU - Original data (d) eICU - Synthetic data

Figure 11: Pearson correlation analyses Analyses between temporal numerical features of original and
synthetic data.
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MIMIC-III Dataset

Feature name Original data Synthetic data KS-Stats
Mean Std Miss rate (%) Mean Std Miss rate (%)

Arterial BP [Systolic] 116.93 24.12 70.63 118.42 20.76 70.00 0.0243
Arterial BP [Diastolic] 56.68 12.25 78.24 56.90 10.19 79.20 0.0318

Arterial BP Mean 77.66 14.43 78.26 76.97 12.83 79.29 0.0293
Eye Opening 3.29 1.08 78.60 3.41 1.01 79.90 0.052

Motor Response 5.39 1.31 79.43 5.23 1.48 79.43 0.0442
Verbal Response 3.41 1.85 79.48 3.45 1.88 79.44 0.0401

GCS Total 12.10 3.75 79.59 11.99 3.97 79.56 0.0412
Braden Activity 1.20 0.58 79.62 1.18 0.51 79.68 0.0117
Braden Mobility 2.55 0.73 79.96 2.54 0.67 80.19 0.0297
Braden Nutrition 2.26 0.63 80.03 2.28 0.62 80.32 0.0347

GCS - Eye Opening 3.33 1.04 81.62 3.51 0.93 83.07 0.0968
GCS - Motor Response 5.46 1.23 86.89 5.43 1.30 86.71 0.0103
GCS - Verbal Response 3.59 1.78 86.89 3.61 1.80 86.78 0.0191

Temperature F 98.07 3.05 87.03 98.06 1.32 86.76 0.0493
Temperature C (calc) 36.73 1.27 87.49 36.70 0.73 87.79 0.0486

Temperature Fahrenheit 97.87 3.30 87.54 97.89 1.25 88.27 0.046
CVP 10.38 4.74 87.55 10.05 3.77 88.15 0.0592

Pain Level 2.72 3.01 87.61 2.73 3.01 88.75 0.0148
Mean Airway Pressure 9.81 3.07 89.23 9.89 2.86 89.71 0.0265

Hemoglobin 10.46 1.77 89.23 10.47 1.72 89.74 0.0213
Glucose (70-105) 138.12 48.53 89.24 148.16 48.49 89.93 0.1003

Braden Sensory Perception 3.06 0.87 90.15 3.07 0.82 90.24 0.0174
Arterial Base Excess -1.51 4.85 90.19 0.70 4.62 90.58 0.2262

Braden Friction/Shear 2.12 0.54 90.19 2.12 0.52 90.64 0.0159
Braden Score 14.45 2.34 90.66 14.51 2.18 91.87 0.0273

Peak Insp. Pressure 23.14 7.40 90.66 23.18 7.00 91.88 0.0173
Mental status 7.30 7.50 91.76 6.65 7.45 92.42 0.0435

O2 Flow 4.53 3.78 92.82 3.95 3.38 94.02 0.1055
Inspired O2 Fraction 55.17 20.93 93.30 59.11 21.65 94.24 0.0686

PEEP Set 5.64 1.89 94.11 5.70 1.74 94.82 0.0125
Resp Rate (Total) 17.42 5.18 94.19 17.15 4.82 95.77 0.0235

Richmond-RAS Scale -0.71 1.59 94.31 -0.94 1.77 96.26 0.0521
Minute Volume(Obser) 8.90 2.55 94.49 9.11 2.54 94.48 0.0402
Low Exhaled Min Vol 4.28 1.10 94.50 3.96 0.76 95.31 0.1462

Sensitivity-Vent 2.22 0.46 94.51 2.20 0.43 94.75 0.0299
High Insp. Pressure 41.62 6.52 94.85 41.11 5.99 96.05 0.0516

Plateau Pressure 19.50 4.79 94.88 19.74 4.81 95.38 0.0336
Respiratory Rate Set 14.29 4.30 95.20 14.03 3.88 96.12 0.0574
Pain Level Response 1.00 1.62 95.73 1.23 1.72 96.81 0.0652

Tidal Volume (Obser) 553.14 104.53 96.17 574.78 97.72 96.06 0.0867
Tidal Volume (Set) 547.10 107.70 96.28 581.24 87.15 96.53 0.1358

PEEP set 5.71 2.02 96.39 5.67 1.70 96.75 0.0212
Resp Rate (Spont) 1.95 3.29 96.46 2.24 3.35 97.59 0.0503

Minute Volume 8.48 2.26 96.48 8.26 2.07 96.83 0.0555
Compliance (40-60ml) 29.41 8.77 96.63 29.18 8.88 97.30 0.0472

Tidal Volume (observed) 470.28 112.09 96.64 448.82 98.97 97.28 0.1143

Table 5: Distribution analyses on numerical temporal features of MIMIC-III data (top 16 - 51). KS-stats
represents the maximum CDF difference between original and synthetic features (we ignore missing components
when computing KS-stats).
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eICU Dataset

Feature name Original data Synthetic data KS-Stats
Mean Std Miss rate (%) Mean Std Miss rate (%)

RBC 3.53 0.71 92.83 3.56 0.66 93.46 0.0256
MCHC 32.79 1.42 93.12 32.84 1.35 93.98 0.0256
MCV 90.18 6.22 93.14 90.41 5.75 93.79 0.0308
MCH 29.58 2.37 93.28 29.69 2.18 93.87 0.0197
RDW 15.42 2.24 93.38 15.31 2.22 94.01 0.0479

anion gap 10.50 4.08 93.48 10.22 3.76 93.98 0.0374
MPV 9.74 1.27 94.93 9.59 1.11 95.78 0.0639

lymphs 14.87 8.90 95.86 14.22 7.93 96.36 0.0311
monos 7.90 3.42 95.88 7.84 2.94 96.40 0.0373

eos 1.78 1.80 96.11 1.63 1.63 96.61 0.0251
magnesium 1.94 0.30 96.31 1.95 0.27 97.32 0.0362

basos 0.27 0.37 96.33 0.23 0.35 96.94 0.0488
polys 71.66 14.09 96.35 73.06 11.08 96.78 0.0428

albumin 2.79 0.67 97.04 2.87 0.65 97.59 0.0539
AST (SGOT) 46.48 50.48 97.51 42.97 48.16 97.90 0.0892
total protein 6.05 0.92 97.51 6.18 0.83 97.98 0.0750
ALT (SGPT) 43.96 48.03 97.53 40.78 45.94 97.99 0.0709
alkaline phos. 97.72 50.62 97.54 97.04 45.32 97.99 0.0472
total bilirubin 0.83 0.77 97.63 0.87 0.70 98.04 0.0577

PT - INR 1.52 0.58 97.64 1.60 0.64 98.56 0.0504
PT 17.28 5.70 97.73 17.83 6.04 98.62 0.0389

phosphate 3.25 1.07 97.77 3.35 0.96 98.63 0.0671
PTT 42.06 17.44 98.55 45.37 19.72 99.20 0.0806
paO2 110.67 57.50 98.59 115.28 60.21 99.25 0.0439
pH 7.34 0.12 98.60 7.31 0.14 99.22 0.0934

paCO2 40.68 9.66 98.61 42.01 10.35 99.22 0.0643
HCO3 22.87 5.39 98.66 23.04 5.93 99.23 0.0489
FiO2 47.04 28.76 98.77 47.71 30.41 99.32 0.0428

O2 Sat (%) 94.99 7.51 98.88 94.61 8.45 99.30 0.0412
Base Excess -1.96 6.13 98.96 -2.32 6.64 99.40 0.0391

lactate 1.92 1.17 99.16 2.68 1.76 99.45 0.2411
cardiac Output 3.28 2.12 99.83 4.14 1.93 99.91 0.2819

Table 6: Distribution analyses on numerical temporal features of eICU data (top 16 - 47). KS-stats represents
the maximum CDF difference between original and synthetic features (we ignore missing components when
computing KS-stats).
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(a) Religion
(b) Marital status (c) Medical code (d) Heart Rhythm

(e) Oral Care
(f) Position Change (g) Range of Motion (h) Ventilator Mode

Figure 12: Distribution analyses Analyses on static and temporal categorical features on MIMIC-III
datasets.

6.7 Feature importance analyses

In this section, we introduce feature importance comparisons as another fidelity measure to ver-

ify that the synthetic data can preserve the important feature characteristics of the original

dataset. More specifically, we extracted the feature importance (computed by mean decrease

in impurity (https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.

html#feature-importance-based-on-mean-decrease-in-impurity)) of two models: (i) trained on origi-

nal data, (ii) trained on synthetic data using Random Forest (RF) and Gradient Boosting Decision Trees

(GBDT) methods. Then, we plot top-30 ranked important features to qualitatively compare their similarities.

As can be seen in Fig. 13, the feature importance of the two models (trained on real vs trained on synthetic)

is highly similar, verifying that the synthetic data preserves the feature importance of the original data. For

instance, 80% of top 10 important features are overlapped between original and synthetic data for both

MIMIC-III and eICU datasets.
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(b) MIMIC-III: Top-30 important features discovered by
RF using synthetic data.
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(c) eICU: Top-30 important features discovered by GBDT
using original data.
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(d) eICU: Top-30 important features discovered by GBDT
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Figure 13: Feature importance for downstream tasks (left) original (right) synthetic data discovered
by Random Forest (RF) and Gradient Boosting Decison Trees (GBDT).
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7 Supplementary Discussions: Additional examples of real and synthetic EHR data

Feature Value

Age 76

Gender Male

Marital states Married

Medical code ‘0389’

Static numerical and 
categorical features

Feature Value

Age 66

Gender Male

Marital states Single

Medical code ‘4321’

Static numerical and 
categorical features

Feature Value

Age 72

Gender Female

Marital states Married

Medical code ‘41401’

Static numerical and 
categorical features

Feature Value

Age 86

Gender Female

Marital states widowed

Medical code ‘4829’

Static numerical and 
categorical features

Feature Value

Age 57

Gender Male

Marital states divorced

Medical code ‘431’

Static numerical and 
categorical features

Figure 14: Additional example of real EHR data examples They contains static and temporal features
(both numerical and categorical).
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Feature Value

Age 51

Gender Male

Marital states Single

Medical code ‘5770’

Static numerical and 
categorical features

Feature Value

Age 73

Gender Male

Marital states Married

Medical code ‘0845’

Static numerical and 
categorical features

Feature Value

Age 39

Gender Female

Marital states divorced

Medical code ‘99859’

Static numerical and 
categorical features

Feature Value

Age 83

Gender Female

Marital states Married

Medical code ‘5070’

Static numerical and 
categorical features

Feature Value

Age 73

Gender Male

Marital states Married

Medical code ‘2761’

Static numerical and 
categorical features

Figure 15: Additional example of synthetic EHR data examples They contains static and temporal
features (both numerical and categorical).
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