Cerium(IV) chitosan-based hydrogel composite for efficient adsorptive removal of phosphates(V) from aqueous solutions

Łukasz Wujcicki, Tomasz Mańdok, Wiktoria Budzińska-Lipka, Karolina Pawlusińska, Natalia Szozda, Gabriela Dudek, Krzysztof Piotrowski, Roman Turczyn, Maciej Krzywiecki, Alicja Kazek-Kęsik & Joanna Kluczka*

*email: joanna.kluczka@polsl.pl

Supplementary Information

SEM-EDS

Table S1. The average diameter of the pore size in chitosan-based hydrogel, modified with cerium(IV) - before and after phosphates(V) adsorption.

Hydrogel type	Average pore diameter, µm		
CTS	6.69 ± 0.43		
Ce-CTS	6.36 ± 0.67		
P-Ce-CTS	6.97 ± 0.41		

Figure S1. The wrinkled maze-like structures of the freeze-dried bead's surface of the chitosanbased hydrogel.

XRD

Fig. S2 The XRD spectra of the chitosan (**A** - blue), chitosan modified with cerium(IV) before (**B** - black) and after phosphates(V) adsorption (**C** - red)

Phosphate(V) adsorption

Adsorption capacity of the cerium-modified chitosan-based adsorbent in respect to phosphates(V), as well as the percentage of phosphates(V) removal, were calculated based on the (S1) and (S2):

$$q_{t} = \frac{(C_{0} - C_{t}) \cdot V}{m_{s}}$$
(S1)
$$R\% = \frac{(C_{0} - C_{t})}{C_{0}} \cdot 100\%$$
(S2)

In equations (S1) and (S2) parameter $q_t [mg/g]$ is the equilibrium mass of phosphorus, corresponding to the given time of the process *t*, chemically as phosphates(V), adsorbed on a unit mass of adsorbent, R% is the percentage of phosphorus removal from solution, C₀ and C_t [mg/dm³] are the initial and corresponding to the given time of the process *t* concentration of phosphorus in the chemical form of phosphates(V) in solution, respectively, V [dm³] is the volume of phosphates(V) aqueous solution, while m_s [g] is the mass of dry adsorbent used in the system.

Procedure of the point of zero charge (pH_{pzc}) determination for the Ce-CTS adsorbent was the following ^{S1 [111]}. To a series of polyethylene bottles containing 40 cm³ of 0.01 M KNO₃ solution each, different volumes of either 0.1 M HCl or 0.1 M NaOH solution, appropriately, were added to obtain pH values from 4 to 10. The total volume of solution in each bottle was 50 cm³ by adequate addition of demineralized water (Millipore Elix 10 system (Merck Millipore)). After 2 h of equilibration, the pH values (pH_i) were identified and 1 g of the hydrogel beads to each solution was added. After 72 h of equilibration with discontinuous (in cycles 15 min. per h) shaking, the pH value of the supernatant liquid in each bottle was identified (pH_f). The difference between pH_i and pH_f (as Δ pH) was then plotted against each tested pH_i. The solution's pH at which Δ pH = 0 means "the pH_{pzc}" of the sample.

Kinetics 72,73

Pseudo-first-order kinetic model (S3):

$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t$$
(S3)

Pseudo-second-order kinetic model (S4):

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(S4)

where: *t* is the time of an adsorption process (representing interfacial contact time), k_1 and k_2 are the rate constants for the pseudo-primary and pseudo-secondary kinetic models, respectively, q_e is the adsorption capacity at equilibrium, and q_t is the adsorption capacity effect for a given interphase contact time (usually termed: practical equilibrium capacity).

Intraparticle diffusion model by Weber and Morris (S5) ^{78,79,80,81,82}:

$$q_t = K_{i\,diff} t^{0.5} + C \tag{S5}$$

where: q_t is the adsorption capacity of phosphorus for time t [mg/g], t is an adsorption process time (interfacial contact) [min], K_i diff is a rate constant for intraparticle diffusion [mg/(g · min^{0.5})], and *C* is a constant of the Weber and Morris model [mg/g].

Based on the value of the rate constant for intraparticle diffusion $K_{i \text{ diff}}$, the value of D – intraparticle diffusion coefficient – can be determined from the formula (S6):

$$K_{i\,diff} = \frac{6 \cdot q_e}{r \cdot (\frac{D}{\pi})^{0.5}} K_{i\,diff} t^{0.5}$$
(S6)

where ⁸³: r –is a radius of adsorbent particle [cm], D is an intraparticle diffusion coefficient [cm²/min], and q_e is the adsorption capacity at equilibrium [mg/g].

Table S2. Kinetic parameter values for phosphates(V) adsorption on the cerium-modified chitosan-based hydrogel at temperature 20 ± 1 °C, experimentally determined composite adsorbent capacity was 9.61 mg/g.

Pseudo-first-order kinetic model				
<i>q</i> ¹ (mg/g)	$k_1 (g/(\mathrm{mg} \cdot \mathrm{h}))$	R^2		
5.98	0.0012	0.9224		
Pseudo-second-order kinetic model				
$q_2 ({ m mg/g})$	$k_2 \left(\text{g/(mg \cdot h)} \right)$	R^2		
9.75	0.0012	0.9985		
Formal Weber-Morris model (similar to ^{77,85})				

$C_1 \text{ (mg/g)}$	$K_{\operatorname{i}\operatorname{diff}(1)}\left(g/(\operatorname{mg}\cdot\operatorname{min}^{0.5})\right)$	R^2		
0.43003	0.43973	0.915179		
Weber-Morris model, intraparticle diffusion				
$C_2 \text{ (mg/g)}$	$K_{\rm idiff(2)}(g/(\rm mg\cdot min^{0.5}))$	R^2		
5.74992	0.07703	0.966132		

Isotherms 91-94

Langmuir model

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \tag{S7}$$

where:

 $q_{\rm e}$ – equilibrium surface concentration of the adsorbate (mass ratio) on adsorbent, mg/g $q_{\rm m}$ – maximum surface concentration of the adsorbate (single-layer adsorption) (mass ratio) on adsorbent, mg/g

 $K_{\rm L}$ – Langmuir isotherm constant, dm³/mg

 $C_{\rm e}$ – equilibrium concentration of adsorbate in the solution, mg/dm³

$$R_L = \frac{1}{1 + K_L C_0} \tag{S8}$$

where:

 $R_{\rm L}$ – separation factor (equilibrium parameter) C_0 – the highest initial concentration of adsorbate in the solution, mg/dm³

Freundlich model

$$e = K_F C_e^{1/n} \tag{S9}$$

where:

$$q_e = K_F C_e^{-1/\hbar} \tag{S9}$$

 $K_{\rm F}$ – Freundlich isotherm constant, $(dm^3/mg)^{1/n}$

1/n – exponent of the Freundlich isotherm model (representing adsorption intensity or adsorbent surface heterogeneity)

Redlich-Peterson model

$$q_e = \frac{K_{RP}C_e}{1 + a_{RP}C_e^g} \tag{S10}$$

where:

 $K_{\rm RP}$ –Redlich-Peterson isotherm constant, $(dm^3/mg)(mg/g) = (dm^3/g)$ $a_{\rm RP}$ – Redlich-Peterson model parameter, $(dm^3/mg)^g$ g – Redlich-Peterson model exponent

Jovanović model

$$q_e = q_J \left[1 - exp(-K_J C_e) \right] \tag{S11}$$

where:

 $q_{\rm J}$ - maximum surface concentration of the adsorbate (single-layer adsorption) (mass ratio) on the adsorbent, mg/g

 $K_{\rm J}$ - Jovanović isotherm constant, dm³/mg

Hill model

$$q_e = \frac{q_H C_e^{n_H}}{K_H + C_e^{n_H}} \tag{S12}$$

where:

 $q_{\rm H}$ - maximum surface concentration of the adsorbate (mass ratio) on adsorbent, (mg/g)(dm³/mg)^{nH}

 $n_{\rm H}$ – exponent of the Hill model theoretically associated with binding interaction $K_{\rm H}$ –Hill model constant, (mg/dm³)^{nH}

Table S3. Adsorption isotherm models with their parameter values identified experimentally for phosphates(V) adsorption on the cerium-modified chitosan-based hydrogel adsorbent (20 $\pm 1^{\circ}$ C).

No	Model	Equation	Parameters
1	Langmuir		$q_{\rm m} = 38.553 \ {\rm mg/g}$
		$a = q_m K_L C_e$	$K_{\rm L} = 0.075 \ {\rm dm^3/mg}$
		$q_e = \frac{1}{1 + K_L C_e}$	$R^2 = 0.943$
2	Freundlich	$q_e = K_F C_e^{1/n}$ $K_F = 8.832 (dm^3/mg)^{1/n}$	
			1/n = 0.261
			$R^2 = 0.951$
3	Redlich-Peterson	$K_{RP}C_e$	$K_{\rm RP} = 20.957 ({\rm dm^3/mg})({\rm mg/g})$
		$q_e = \frac{1}{1 + a_{RP} C_e^g}$	$=(\mathrm{dm}^{3}/\mathrm{g})$
			$a_{\rm RP} = 1.711 \ ({\rm dm^{3}/mg})^{\rm g}$
			g = 0.799
			$R^2 = 0.981$
4	Jovanović	$q_e = q_I [1 - exp(-K_I C_e)]$	$q_{\rm J} = 35.594 \text{ mg/g}$
			$K_{\rm J} = 0.053 \ {\rm dm^3/mg}$
			$R^2 = 0.901$
5	Hill	$q_H C_e^{n_H}$	$q_{\rm H} = 52.666 \ ({\rm mg/g}) ({\rm dm^3/mg})^{\rm nH}$
		$q_e = \frac{1}{K_u + C_e^{n_H}}$	$n_{\rm H} = 0.511$
		H + Se	$K_{\rm H} = 6.783 \ ({\rm mg}/{\rm dm}^3)^{\rm nH}$
			$R^2 = 0.981$

Thermodynamics

The following equations were considered: $(S13) \& (S14)^{96}$:

$$\ln K_c = \frac{\Delta S^{\Theta}}{R} - \frac{\Delta H^{\Theta}}{RT}$$
(S13)

$$\Delta G^{\,\Theta} = \Delta H^{\,\Theta} - T \Delta S^{\,\Theta} \tag{S14}$$

In both equations, ΔG^{θ} is the Gibbs free energy of adsorption, ΔH^{θ} is the enthalpy of adsorption, ΔS^{θ} is the entropy of a thermodynamic system under study, K_c is the adsorption equilibrium constant, and *R* is the universal gas constant (8.314 J/(mol · K)).

Figure S3. Effect of process temperature on phosphates(V) adsorption on cerium(IV)modified chitosan-based hydrogel (left panel) and Arrhenius-type correlation between 1/T and the adsorption equilibrium constant lnK_c (right panel). Ce-CTS (20% wt. of cerium(IV)) hydrogel dose: 20 g/dm³; initial concentration of P-PO₄: 9.3 ± 0.1 mg/dm³; pH: 7; contact time: 24 h; tested temperature: 298, 308 and 318 K.

Table S4. Thermodynamic parameter values corresponding to different adsorption process temperature values (298 – 318 K)

	$\Delta S^{e} [kJ/(mol \cdot K)]$	$\Delta G^{\circ} [kJ/mol]$		
$\Delta H^{\Theta} [kJ/mol]$		Temperature [K]		
		298	308	318
-4.20	-4.83 · 10 ⁻³	-2.76	-2.71	-2.66