Cerium(IV) chitosan-based hydrogel composite for efficient adsorptive removal of phosphates(V) from aqueous solutions

Łukasz Wujcicki, Tomasz Mańdok, Wiktoria Budzińska-Lipka, Karolina Pawlusińska, Natalia Szozda, Gabriela Dudek, Krzysztof Piotrowski, Roman Turczyn, Maciej Krzywiecki, Alicja Kazek-Kęsik & Joanna Kluczka*

*email: joanna.kluczka@polsl.pl

Supplementary Information

SEM-EDS

Table S1. The average diameter of the pore size in chitosan-based hydrogel, modified with cerium(IV) - before and after phosphates(V) adsorption.

Figure S1. The wrinkled maze-like structures of the freeze-dried bead's surface of the chitosanbased hydrogel.

XRD

Fig. S2 The XRD spectra of the chitosan (**A** - blue), chitosan modified with cerium(IV) before (**B** - black) and after phosphates(V) adsorption (**C** - red)

Phosphate(V) adsorption

Adsorption capacity of the cerium-modified chitosan-based adsorbent in respect to phosphates(V), as well as the percentage of phosphates(V) removal, were calculated based on the $(S1)$ and $(S2)$:

$$
q_t = \frac{(c_0 - c_t) \cdot V}{m_s}
$$

\n
$$
R\% = \frac{(c_0 - c_t)}{c} \cdot 100\%
$$
 (S1)

In equations (S1) and (S2) parameter
$$
q_t
$$
 [mg/g] is the equilibrium mass of phosphorus, corresponding to the given time of the process *t*, chemically as phosphates(V), adsorbed on a unit mass of adsorbent, R% is the percentage of phosphorus removal from solution, C₀ and C_t [mg/dm³] are the initial and corresponding to the given time of the process *t* concentration of phosphorus in the chemical form of phosphates(V) in solution, respectively, V [dm³] is the volume of phosphates(V) aqueous solution, while m_s [g] is the mass of dry adsorbent used in the system.

Procedure of the point of zero charge (pH_{pzc}) determination for the Ce-CTS adsorbent was the following ^{S1 [111]}. To a series of polyethylene bottles containing 40 cm³ of 0.01 M KNO₃ solution each, different volumes of either 0.1 M HCl or 0.1 M NaOH solution, appropriately, were added to obtain pH values from 4 to 10. The total volume of solution in each bottle was 50 cm³ by adequate addition of demineralized water (Millipore Elix 10 system (Merck Millipore)). After 2 h of equilibration, the pH values (pH_i) were identified and 1 g of the hydrogel beads to each solution was added. After 72 h of equilibration with discontinuous (in cycles 15 min. per h) shaking, the pH value of the supernatant liquid in each bottle was identified (pH_f). The difference between pH_i and pH_f (as Δ pH) was then plotted against each tested pH_i. The solution's pH at which $\Delta pH = 0$ means "the pH_{pzc}" of the sample.

Kinetics 72,73

Pseudo-first-order kinetic model (S3):

$$
\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t\tag{S3}
$$

Pseudo-second-order kinetic model (S4):

$$
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t
$$
 (S4)

where: *t* is the time of an adsorption process (representing interfacial contact time), k_1 and k_2 are the rate constants for the pseudo-primary and pseudo-secondary kinetic models, respectively, q_e is the adsorption capacity at equilibrium, and q_t is the adsorption capacity effect for a given interphase contact time (usually termed: practical equilibrium capacity).

Intraparticle diffusion model by Weber and Morris $(S5)$ ^{78,79,80,81,82}:

$$
q_t = K_{i \text{ diff}} t^{0.5} + C \tag{S5}
$$

where: q_t is the adsorption capacity of phosphorus for time t [mg/g], t is an adsorption process time (interfacial contact) [min], K_i diff is a rate constant for intraparticle diffusion $\text{Im}g/(g \cdot$ min^{0.5})], and *C* is a constant of the Weber and Morris model [mg/g].

Based on the value of the rate constant for intraparticle diffusion K_i diff, the value of D – intraparticle diffusion coefficient – can be determined from the formula $(S6)$:

$$
K_{i\;diff} = \frac{6 \cdot q_e}{r \cdot (\frac{D}{\pi})^{0.5}} K_{i\;diff} t^{0.5}
$$
\n
$$
\tag{S6}
$$

where 83 : r –is a radius of adsorbent particle [cm], D is an intraparticle diffusion coefficient [cm^2/min], and q_e is the adsorption capacity at equilibrium [mg/g].

Table S2. Kinetic parameter values for phosphates(V) adsorption on the cerium-modified chitosan-based hydrogel at temperature 20±1°C, experimentally determined composite adsorbent capacity was 9.61 mg/g.

Isotherms 91-94

Langmuir model

$$
q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \tag{S7}
$$

where:

 q_e – equilibrium surface concentration of the adsorbate (mass ratio) on adsorbent, mg/g *q*^m – maximum surface concentration of the adsorbate (single-layer adsorption) (mass ratio) on adsorbent, mg/g

 K_{L} – Langmuir isotherm constant, dm³/mg

 C_e – equilibrium concentration of adsorbate in the solution, mg/dm³

$$
R_L = \frac{1}{1 + K_L C_0} \tag{S8}
$$

where:

R^L – separation factor (equilibrium parameter) C_0 – the highest initial concentration of adsorbate in the solution, mg/dm³

Freundlich model

 $q_e = K_F C_e^{-1/n}$ (S9)

where:

$$
K_F
$$
 – Freundlich isotherm constant, $(dm^3/mg)^{1/n}$

 $1/n$ – exponent of the Freundlich isotherm model (representing adsorption intensity or adsorbent surface heterogeneity)

Redlich-Peterson model

$$
q_e = \frac{K_{RP} c_e}{1 + a_{RP} c_e^g} \tag{S10}
$$

where:

 K_{RP} –Redlich-Peterson isotherm constant, $(dm^3/mg)(mg/g) = (dm^3/g)$ a_{RP} – Redlich-Peterson model parameter, $(dm^3/mg)^g$ *g* – Redlich-Peterson model exponent

Jovanović model

$$
q_e = q_J \left[1 - exp\left(-K_J C_e\right) \right] \tag{S11}
$$

where:

q^J - maximum surface concentration of the adsorbate (single-layer adsorption) (mass ratio) on the adsorbent, mg/g

 K_J - Jovanović isotherm constant, dm³/mg

Hill model

$$
q_e = \frac{q_H c_e^{n_H}}{\kappa_H + c_e^{n_H}}
$$
\n^(S12)

where:

q^H - maximum surface concentration of the adsorbate (mass ratio) on adsorbent, $(mg/g)(dm^3/mg)^{nH}$

 n_H – exponent of the Hill model theoretically associated with binding interaction K_{H} –Hill model constant, $(\text{mg}/\text{dm}^3)^{\text{nH}}$

Table S3. Adsorption isotherm models with their parameter values identified experimentally for phosphates(V) adsorption on the cerium-modified chitosan-based hydrogel adsorbent (20 $\pm 1^{\circ}$ C).

N ₀	Model	Equation	Parameters
1	Langmuir		$q_{\rm m} = 38.553$ mg/g
			$K_{\rm L} = 0.075$ dm ³ /mg
			$R^2 = 0.943$
$\overline{2}$	Freundlich	$\frac{q_e = \frac{q_m K_L C_e}{1 + K_L C_e}}{q_e = K_F C_e^{1/n}}$	$K_F = 8.832 \text{ (dm}^3/\text{mg})^{1/n}$
			$1/n = 0.261$
			$R^2 = 0.951$
3	Redlich-Peterson		$K_{RP} = 20.957$ (dm ³ /mg)(mg/g)
		$q_e = \frac{K_{RP} C_e}{1 + a_{PP} C_e^g}$	$=$ $\left(\frac{dm^3}{g} \right)$
			$a_{RP} = 1.711$ (dm ³ /mg) ^g
			$g = 0.799$
			$R^2 = 0.981$
$\overline{4}$	Jovanović	$q_e = q_I 1 - exp(-K_I C_e) $	$q_{\rm J} = 35.594 \text{ mg/g}$
			$K_J = 0.053$ dm ³ /mg
			$R^2 = 0.901$
5	Hill		$q_{\rm H} = 52.666$ (mg/g)(dm ³ /mg) ^{nH}
		$q_e = \frac{q_H C_e^{n_H}}{K_{\nu} + C^{n_H}}$	$n_{\rm H} = 0.511$
			$K_{\rm H} = 6.783 \ (mg/dm^3)^{nH}$
			$R^2 = 0.981$

Thermodynamics

The following equations were considered: (S13) & (S14)⁹⁶:

$$
\ln K_c = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}
$$
\n^(S13)

$$
\Delta G^{\Theta} = \Delta H^{\Theta} - T\Delta S^{\Theta} \tag{S14}
$$

In both equations, ΔG° is the Gibbs free energy of adsorption, ΔH° is the enthalpy of adsorption, ΔS° is the entropy of a thermodynamic system under study, K_c is the adsorption equilibrium constant, and *R* is the universal gas constant $(8.314 \text{ J/(mol} \cdot \text{K}))$.

Figure S3. Effect of process temperature on phosphates(V) adsorption on cerium(IV) modified chitosan-based hydrogel (left panel) and Arrhenius-type correlation between 1/T and the adsorption equilibrium constant $ln K_c$ (right panel). Ce-CTS (20% wt. of cerium(IV)) hydrogel dose: 20 g/dm³; initial concentration of P-PO4: 9.3 ± 0.1 mg/dm³; pH: 7; contact time: 24 h; tested temperature: 298, 308 and 318 K.

Table S4. Thermodynamic parameter values corresponding to different adsorption process temperature values (298 – 318 K)

