Supplementary Online Content 1

Title: Diagnostic Reliability in Teledermatology: A Systematic Review and Meta-Analysis

Authors

23456789 Adrienn N. Bourkas^{*1} (MSc), Natasha Barone^{*2} (MD, MSc), Matthew E.C. Bourkas³ (PhD), Matthew Mannarino⁴ (PhD), Robert D. J. Fraser^{5,6} (RN, MN), Amy Lorincz (MSc), Sheila C. Wang^{5,7} (MD, PhD), Jose L. Ramirez-

- GarciaLuna⁴ (MD, PhD)
- 10 * Authors contributed equally
- 11

12 Affiliations

- 13 ¹Faculty of Health Sciences, Queen's University School of Medicine, Kingston, Ontario, Canada
- 14 ²Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- 15 ³Temerty Faculty of Medicine, Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- 16 ⁴Department of Surgery, McGill University, Montreal, Quebec, Canada
- 17 ⁵Swift Medical Inc., Toronto, Ontario, Canada
- 18 ⁶Arthur Labatt Family School of Nursing, Western University, London, Ontario Canada
- 19 ⁷Department of Medicine, Division of Dermatology, McGill University Health Centre, Montreal, Quebec, Canada

Supplementary eMethods

Search Strategy

22 23 24 25 26 27 28 29 30 31 32 33 34 35 The search strategy was written for Ovid Medline and translated using each database's syntax, controlled vocabulary, and search fields. MeSH terms, Emtree terms, and free text words were used for teledermatology and skin conditions such as melanoma and related synonyms. To identify additional articles not captured through the aforementioned search, a manual search was conducted via reference search of the included studies.

All database records were downloaded to EndNote X9 (Clarivate) and uploaded to web-based software for deduplication, screening, and full-text evaluation (Covidence; Veritas Health Innovation). We contacted three study authors to gain access to their published work.(1, 2, 3) The search strategy is available below.

Ovid MEDLINE Search

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations and Daily 36 <1946 to 2022 May 02> 27

37				
38	1	e consult*.mp.	322	
39	2	econsult*.mp.	218	
40	3	electronic consult*	.mp. 366	
41	4	e health.mp. 4095	1	
42	5	ehealth.mp. 6823		
43	6	e visit*.mp. 88		
44	7	evisit*.mp. 26		
45	8	home video visit*.r	np. 4	
46	9	internet/ or internet	-based interventi	on/ 82046
47	10	internet.mp. 1286	75	
48	11	offsite care.mp.	4	
49	12	off site care.mp.	9	
50	13	ontario telemedicin	e network.mp. 1	9
51	14	Remote Consultation	on/ 5689	
52	15	remote consultatior	n*.mp. 6406	
53	16	remote visit*.mp.	95	
54	17	tele care.mp. 40		
55	18	telecare.mp. 945		
56	19	tele consult*.mp.	208	
57	20	teleconsult*.mp.	2208	
58	21	tele diagnos*.mp.	46	
59	22	telehealth.mp.	13222	
60	23	tele health.mp.	287	
61	24	telemedicine/ 3676	3	
62	25	telemedicine.mp.	47751	
63	26	tele medicine.mp.	197	
64	27	telemonitor*.mp.	2380	
65	28	tele monitor*.mp.	209	
66	29	Telepathology/	918	
67	30	telepatholog*.mp.	1223	
68	31	tele patholog*.mp.	25	
69	32	telepractice*.mp.	276	
70	33	tele practice*.mp.	16	
71	34	Therapy, Computer	-Assisted/ 6	969
72	35	video consult*.mp.	827	
73	36	videoconsult*.mp.	41	
74	37	virtual care.mp.	1177	
75	38	web based.mp.	42402	
76	39	Telepathology/	918	

2022]

77	40 or/1-39 216985
78	41 Dermatology/21077
79	42 dermatolog*.mp. 110593
80	43 dermatopatholog*.mp. 2990
81	44 exp Skin Diseases/di [Diagnosis] 196739
82	45 exp Skin Neoplasms/ 142454
83	46 skin.mp. 880457
84	47 exp Skin Abnormalities/ 34228
85	48 burns/ or burns, chemical/ or burns, electric/ or sunburn/ 59533
86	49 burn*.mp. 141877
87	50 wound healing/ or cicatrix/ 127484
88	51 wound*.mp. 446154
89	52 or/41-51 1580012
90	53 40 and 52 7160
91	54 teledermatolog*.mp. 1273
92	55 tele dermatolog*.mp. 35
93	56 54 or 55 1298
94	57 53 or 56 7448
95	58 limit 57 to dt=20100101-20220501 [January 1st, 2010 to May 1st, 202
96	
97	
98	Embase Search
99	Embase Classic+Embase <1947 to 2021 July 15>
100	1 computer assisted therapy/ 4772
101	2 e consult*.mp. 411
102	3 econsult*.mp. 283
103	4 electronic consult*.mp. 461
104	5 e health.mp. 4440
105	6 ehealth.mp. 5099
106	7 e visit*.mp. 83
107	8 evisit*.mp. 30
108	9 home video visit*.mp. 10
109	10 internet/ or web-based intervention/ 114861
110	11 internet.mp. 143810
111	12 offsite care.mp. 5
112	13 off site care.mp. 12
113	14 ontario telemedicine network.mp. 36
114	15 remote consultation*.mp. 808
115	16 remote visit*.mp. 79
116	17 tele care.mp. 55
117	18 telecare.mp. 983
118	19 teleconsultation/ 11686
119	20 tele consult*.mp. 243
120	21 teleconsult*.mp. 12352
121	22 tele diagnos*.mp. 53
122	23 telehealth.mp. 15276
123	24 tele health.mp. 389
124	25 telemedicine/ 31867
125	26 telemedicine.mp. 38951
126	27 tele medicine.mp. 333
127	28 telemonitor*.mp. 4838
128	29 tele monitor*.mp. 344
129	30 Telepathology/ 869
130	31 telepatholog*.mp. 1265
131	32 tele patholog*.mp. 41
132	33 telepractice*.mp. 162

tele practice*.mp. 9 video consult*.mp. 751 videoconsult*.mp. 54 virtual care.mp. 496 web based.mp. 49157 or/1-38 240118 dermatology/ or cosmetic dermatology/ or pediatric dermatology/ or psychodermatology/ 51419 dermatolog*.mp. 161210 dermatopatholog*.mp. 3737 burn/ or burn contracture/ or electric burn/ or face burn/ or hand burn/ or ionizing radiation burn/ or scald/ or sunburn/ 74890 burn*.mp. 189010 exp skin disease/di [Diagnosis] 209136 exp skin tumor/ 213775 skin*.mp. 1294867 or/40-47 1665263 39 and 48 7063 teledermatology/ 1295 tele dermatolog*.mp. 42 teledermatolog*.mp. 1798 50 or 51 or 52 1812 54 49 or 53 8004 55 limit 54 to (books or chapter or conference abstract or conference paper or "conference review") 1828 54 not 55 6176 limit 56 to yr="2010 -Current" 4505 **Cochrane Search** EBM Reviews - Cochrane Database of Systematic Reviews <2005 to July 14, 2021> EBM Reviews - ACP Journal Club <1991 to June 2021> EBM Reviews - Database of Abstracts of Reviews of Effects <1st Quarter 2016> EBM Reviews - Cochrane Clinical Answers < June 2021> EBM Reviews - Cochrane Central Register of Controlled Trials <June 2021> EBM Reviews - Cochrane Methodology Register <3rd Quarter 2012> EBM Reviews - Health Technology Assessment <4th Quarter 2016> EBM Reviews - NHS Economic Evaluation Database <1st Quarter 2016> e consult*.mp. 44 econsult*.mp. 22 electronic consult*.mp. 29 e health.mp. 617 ehealth.mp. 766 e visit*.mp. 14 evisit*.mp. 1 home video visit*.mp. 3 internet/ or internet-based intervention/ 4,275 10 internet.mp. 15,059 offsite care.mp. 2 12 off site care.mp. 2 ontario telemedicine network.mp. 7 14 Remote Consultation/ 460 remote consultation*.mp. 551 16 remote visit*.mp. 17 17 tele care.mp. 34 telecare.mp. 249 tele consult*.mp. 59 teleconsult*.mp. 822 tele diagnos*.mp. 4 telehealth.mp. 2,308

188 23 tele health.mp. 128

189	24	telemedicine/ 2,617
190	25	telemedicine.mp. 4,819
191	26	tele medicine.mp. 57
		•
192	27	telemonitor*.mp. 1,236
193	28	tele monitor*.mp. 115
194	29	Telepathology/ 8
195	30	telepatholog*.mp. 22
196	31	tele patholog*.mp. 2
197	32	telepractice*.mp. 37
198	33	tele practice*.mp. 0
199	34	
		Therapy, Computer-Assisted/ 1,391
200	35	video consult*.mp. 117
201		videoconsult*.mp. 8
202	37	virtual care.mp. 31
203	38	web based.mp. 9,110
204	39	Telepathology/ 8
205	40	or/1-39 29,268
206	41	Dermatology/ 124
200	42	dermatolog*.mp. 10,838
208	43	dermatopatholog*.mp. 80
209	44	exp Skin Diseases/di [Diagnosis] 630
210	45	exp Skin Neoplasms/ 1,738
211	46	skin.mp. 67,534
212	47	exp Skin Abnormalities/ 269
213	48	burns/ or burns, chemical/ or burns, electric/ or sunburn/ 1,779
214	49	burn*.mp. 12,780
215	50	wound healing/ or cicatrix/ 5,677
215		
	51	wound*.mp. 35,982
217	52	or/41-51 110,390
218	53	40 and 52 1,622
219	54	teledermatolog*.mp. 149
220	55	tele dermatolog*.mp. 20
221	56	54 or 55 151
222	57	53 or 56 1,684
223		limit 57 to yr="2010 -Current" 1,377
223	50	
225	CIN	NAHL Search
226	Sea	rched keyword teledermatology and set limit to yr="2010-Current" 357
227		
228	Me	dRxiv Search
229	Sea	rched keyword teledermatology and set limit to yr="2010-Current" 13
230		
231	Elio	zibility Criteria
232		usion and exclusion criteria are summarized in eTable 2.
232	mer	usion and exclusion enterna are summarized in erable 2 .
233	Dat	Selection and Estimation
234		a Selection and Extraction
235	Info	ormation extracted from full-text articles is summarized in eTable 3.
236	_	
237		a Analysis and Synthesis
238	In tl	his study, a letter was assigned to each unique study grouping as explained in eTable 4 . For both the percentage
239		greement and kappa values, forest plots, the I ² index, and the τ^2 statistic were used in combination to investigate
240		istical heterogeneity. To evaluate the statistical significance of differences between kappa values, we performed
241		a-regressions and derived corresponding p-values.
242	met	a representation and derived concerponding p vindeo.
272		

Cohen's kappa values for diagnostic concordance between teledermatology and F2F physicians were interpreted based
 on the following criteria.(4) Values between 0–.20 indicate no agreement, .21–.39 minimal agreement, .40–.59 weak
 agreement, .60–.79 moderate agreement, .80–.90 strong agreement, and above .90 almost perfect agreement.

Sub-group analysis included different skin conditions, specialization of the F2F physician, whether staff were trained
 on image acquisition, the technology used for image acquisition, the use of teledermoscopy, studies conducted pre- or
 post-pandemic, and the risk of bias. Confounding factors, such as technology type, year of publication, and training
 of study raters, were controlled using meta-regression.

251

Proportions meta-analysis looked at weighted averages, and 95% confidence intervals were reported. Given the unique properties of proportional data and the considerable heterogeneity observed, conventional publication bias tests, specifically designed for comparative data, were not considered applicable. As such, statistical pursuit of publication bias was not undertaken. Instead, a methodologically appropriate qualitative assessment of publication bias was implemented for this type of analysis. This approach was deemed to provide the most accurate and robust outcome.

257 Supplementary eResults258

Our analysis incorporated forty-four relevant studies. Key study and participant details are summarized in **eTable 1**, with a concise overview provided in the main text. Articles excluded based on our criteria are listed in **eTable 5**.

262 Diagnostic reliability of teledermatology when compared to F2F (specialist and non-specialists) evaluation

263 Of the 40 studies that reported diagnostic agreement rates there were 72 unique comparisons made between F2F and 264 teledermatology.(5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 265 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44) **eFigure 1A** shows that the mean percentage agreement of 68.9% (CI 266 64.4%-73.1\%) ranged from 14% to 98%, where 35/72 had percentage agreement above 70% and 7 studies had over 267 90% agreement. The studies were heterogeneous (I^2=98%, p <0).

268

269 Of the 21 studies that reported concordance values, there were 45 unique comparisons made.(5, 6, 11, 14, 17, 20, 21, 22, 23, 24, 25, 28, 29, 32, 33, 34, 45, 46, 47, 48, 49) **eFigure 1B** shows that the mean diagnostic concordance of 0.67 (CI 0.60 to 0.74) ranged from 0.213 (CI 0.20 to 0.23) to 0.96 (CI 0.92 to 0.98), with 21 studies (47%) having moderate agreement (k=0.6 and above), and 13 (29%) studies having strong agreement. The studies were heterogeneous (I^2=100%, p <0.001).

Diagnostic agreement between teledermatologist and teledermatologist, F2F and F2F, and teledermatology and histopathology

Of the ten studies that reported diagnostic agreement rates between telermatologists, there were 17 unique comparisons made between F2F and teledermatology consults. **eFigure 2A** shows the mean percentage agreement of 76.4% (CI 69% to 82.5%) ranged from 37% to 91.5%, with 10/17 having percentage agreement above 70% and two studies having over 90% agreement. The studies were heterogeneous ($1^2=97\%$, p <0.001).

From four studies that reported diagnostic agreement rates between F2F dermatologists there were 6 unique comparisons. eFigure 2B shows that the mean percentage agreement 82.4% (CI 76.7%-87.0%) ranged from 75.5% to 91%. The studies were heterogeneous (I^2=68%, p <0.001).

Five studies compared teledermatology to histopathology data, and there were six unique comparisons. **eFigure 2C** shows that the mean percentage agreement of 55.7% (CI 53% to 58.4%) ranged from 53.8% to 65.4%. The mean agreement rate between histopathology and teledermatology was 55.7% (CI 53.0 to 58.4). The studies were homogeneous (I^2=0%, p = 0.49).

291 Subgroup analyses292

293 Diagnostic reliability of teledermatology vs F2F specialist and non-specialist 294

295 Within the same modality, eFigure 3A shows that teledermatologists had a diagnostic agreement rate of 70.96% (CI 296 69.8% to 72.1%) with F2F dermatologists, while the agreement rate with F2F non-specialists was 44.1% (CI 39.9% 297 to 48.4%). Comparing telermatologists to non-specialists showed significantly lower agreement among non-specialists 298 (p < 0.001, heterogeneity: $I^2 = 98\%$). Among 35 studies reporting diagnostic agreement rates, 44 out of 64 299 comparisons between teledermatology and F2F dermatologists had a percentage agreement above 60%, with seven 300 studies reporting over 90% agreement. The mean kappa concordance value for diagnostic agreement between 301 teledermatology and F2F dermatologists shown in eFigure 3B was 0.69 (CI 0.60 to 0.75). Additionally, 302 telermatologists had a mean concordance value of 0.52 (CI 0.25 to 0.71) when compared to non-specialists. Non-303 specialists showed significantly lower diagnostic concordance compared to dermatologists for F2F vs. 304 teledermatology (p = 0.031, heterogeneity: I² = 100%). Moreover, studies comparing teledermatologists to F2F and 305 teledermatology to histopathology showed a range of agreement rates, with heterogeneity observed in the former (I^2 306 = 97%, p < 0.001) and homogeneity in the latter ($I^2 = 0\%$, p = 0.49).

307

308Diagnostic reliability of teledermatology vs F2F by the inclusion of teledermoscopy in both teledermatology309and F2F assessments

310 Overall, twelve studies with 22 unique comparisons used teledermoscopy for diagnosing suspicious lesions.(8, 11, 15, 29, 32, 34, 38, 39, 42, 44) **eFigure 4A** shows that with teledermoscopy, the mean diagnostic agreement rates was 312 69.1% (CI 66.8% to 71.4%), and this percentage ranged between from 31.6% to 92.3%. Without the use of

teledermsocopy, the mean agreement rate was 68.3% (CI 66.8% to 69.8%). The means were not significantly different between the two groups and the studies were heterogeneous (I $^2=97\%$, p<0.001). **eFigure 4B** shows concordance values of seven studies that adapted teledermoscopy had a mean of 0.71 (CI 0.58 to 0.80).(11, 29, 32, 34, 39, 47, 48) Without teledermsocopy, the mean was 0.65 (CI 0.54 to 0.74). This difference was not statistically significant, and the studies were heterogeneous (I $^2=100\%$, p<0.001).

318

319 Diagnostic reliability of teledermatology vs F2F by the inclusion of lesion category

320 Twenty-six studies with 39 unique comparisons reporting percentage agreement rates that were inclusive to all lesion 321 types as shown in eFigure 5A.(5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 36, 37, 40, 322 41, 43) The mean percentage agreement was 69.9% (CI 67.9% to 71.7%) and ranged from 30.9% to 98%, with the 323 majority (26/39) having percentage agreement above 60% and 4 studies having over 90%. Eleven studies only looked 324 at suspicious lesions, (11, 12, 14, 20, 23, 34, 35, 38, 39, 42, 44) and the mean percentage agreement was 68.1% (CI 325 66.3% to 69.8%). Three studies excluded skin cancers(13, 21, 27) and the mean percentage agreement was 62.2% (CI 326 56.2% to 67.8%). No statistical significance could be identified between the three lesion groups and the studies were 327 heterogeneous (I^2=98%, p<0.001). 328

Concordance values for studies inclusive to all lesions seen in **eFigure 5B** were reported in ten studies with a mean of 0.62 (CI 0.48 to 0.74).(5, 6, 17, 22, 24, 25, 28, 29, 32, 33) Six studies that looked at cancerous skin lesions only reported a mean of 0.70 (CI 0.59 to 0.78).(11, 14, 20, 23, 34, 39) Only one study that looked at all lesions except cancerous ones reported a concordance value.²² No statistical significance could be identified between the three lesion groups and the studies were heterogeneous (I^2=100%, p<0.001).

336 Diagnostic reliability of teledermatology vs F2F by pre- and post-pandemic timelines

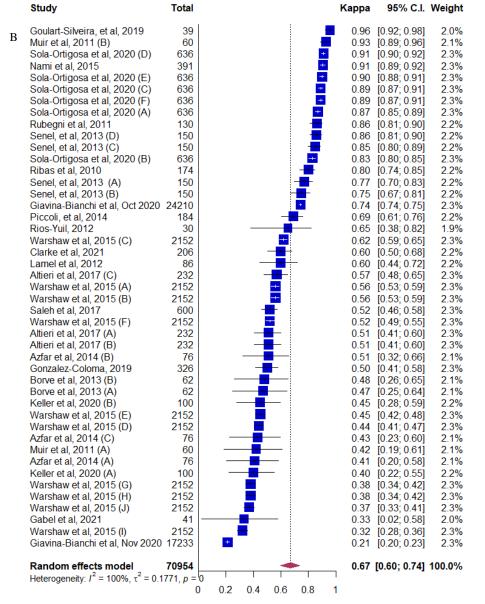
When comparing telermatologists to all F2F physicians, the average agreement rate was 65.5% (CI 64.0-66.9) for prepandemic studies, and 75.3% (CI 73.4% to 77.2%) for studies published after January 2020. When the percentage agreements were compared between the two groups, they were not statistically significant (p = 0.421) and also heterogeneous (I^2=98\%, p<0.001). eTable not included.

341 342

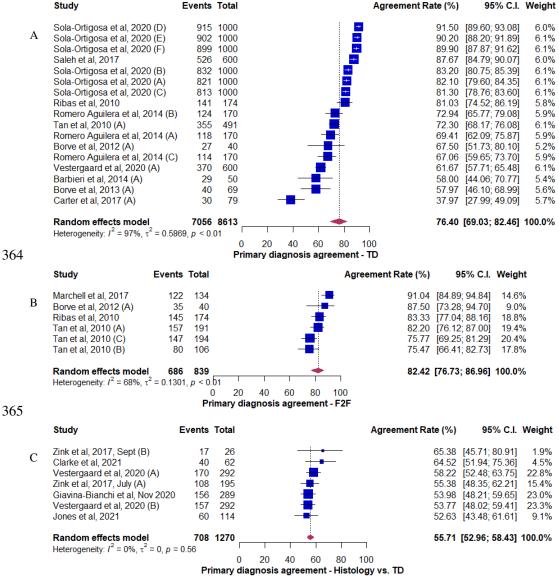
335

343 Risk of bias and quality assessment

The QUADAS-2 framework was utilized to evaluate bias and applicability across four essential domains, ensuring
 that our conclusions are both accurate and applicable to real-life clinical situations. eTable 6A summarizes the
 QUADAS-2 criteria tailored to this study.


347

The results of quality assessment for risk of bias and applicability in individual studies are displayed in. **eTable 6B**-**E.** Six of the studies had low risk of bias, nine had moderate risk, and 29 had high-risk of bias. There were no systematic differences between the results of studies that attempted to reduce risk of bias, compared with those with higher risk of bias. The mean diagnostic agreement rate between F2F and teledermatology was 66.4% (CI 62.4% to 70.1%) for low risk, and 69.1% (CI 67.6% to 70.6%) for high risk (p = 0.932). When the percentage agreements were compared between groups, they were heterogeneous (I^ 2=98%, p<0.001). eTable not included.


354 Supplementary eFigures and Legends

	Study	Events	Total		Agreement Rate (%)	95% C.I.	Weight
	Muir et al, 2011 (B)	49	50	:	98.00	[87.12; 99.72]	0.6%
Α	Zink et al, 2017, Sept (B)	24	26			[73.93; 98.07]	0.8%
	Sola-Ortigosa et al, 2020 (D)	915	1000			[89.60; 93.08]	1.5%
	Sola-Ortigosa et al, 2020 (E)	912	1000	—	91.20	[89.28; 92.80]	1.5%
	Nami et al, 2015	356	391			[87.79; 93.50]	1.4%
	Sola-Ortigosa et al, 2020 (F)	903	1000			[88.30; 91.99]	1.5%
	Barcaui et al, 2018	37	41			[76.73; 96.29]	1.1%
	Sola-Ortigosa et al, 2020 (C) Romero et al, 2010 (A)	884 325	1000 368			[86.26; 90.24] [84.61; 91.22]	1.5% 1.4%
	Romero Aguilera et al, 2014 (C)		170			[82.47; 92.28]	1.4%
	Rubegni et al, 2011	114	130			[80.85; 92.32]	1.4%
	Sola-Ortigosa et al, 2020 (A)	875	1000		87.50	[85.30; 89.41]	1.5%
	Romero et al, 2010 (B)	314	368			[81.33; 88.59]	1.4%
	Sola-Ortigosa et al, 2020 (B)	835	1000			[81.07; 85.67]	1.5%
	Rios-Yuil, 2012 Gatica, 2015	25 103	30 125			[65.68; 92.89] [74.71; 88.12]	1.1% 1.4%
	Ribas et al, 2010	142	174			[75.15; 86.69]	1.4%
	Saleh et al, 2017	488	600			[78.01; 84.25]	1.5%
	Warshaw et al, 2015 (C)	548	684		80.12	[76.96; 82.94]	1.5%
	Giavina-Bianchi et al, Oct 2020	576	739			[74.81; 80.79]	1.5%
	Borve et al, 2012 (A)	31	40			[62.12; 87.86]	1.2%
	Borve et al, 2012 (B) Tran et al, 2011	31 23	40 30			[62.12; 87.86] [58.50; 88.45]	1.2% 1.2%
	Marchell et al, 2017	77	101	÷		[66.99; 83.53]	1.4%
	Marchell et al, 2017	162	213			[69.87; 81.31]	1.4%
	Zanini, 2013	76	100	÷ <u></u> -		[66.68; 83.36]	1.4%
	Warshaw et al, 2015 (A)	570	753			[72.50; 78.63]	1.5%
	Gerhardt et al, 2021 Warshaw et al, 2015 (B)	609	809			[72.19; 78.13]	1.5%
	Tan et al, 2010 (B)	566 162	752 219			[72.06; 78.22] [67.76; 79.35]	1.5% 1.4%
	Tan et al, 2010 (A)	283	385			[68.87; 77.68]	1.5%
	Romero Aguilera et al, 2014 (A)		170			[65.77; 79.08]	1.4%
	Romero Aguilera et al, 2014 (B)		170		72.35		1.4%
	Marchell et al, 2017	81	112	- <u>-</u> -		[63.33; 79.81]	1.4%
	Muir et al, 2011 (A)	43 1381	60 2000			[59.06; 81.60] [66.99; 71.04]	1.3% 1.5%
	Vano-Galvan et al, 2011 Clarke et al, 2021	205	308			[61.10; 71.61]	1.5%
	Gabel et al, 2021	27	41	_		[50.28; 78.62]	1.3%
	Duong et al, 2014 (A)	44	68	— <u>—</u>		[52.72; 75.09]	1.4%
	Barbieri et al, 2014 (A)	32	50			[49.95; 76.00]	1.3%
	Vestergaard et al, 2020 (A)	372	600			[58.05; 65.80]	1.5%
	Lamel et al, 2012 Giavina-Bianchi et al, Nov 2020	66 490	107 803			[52.16; 70.39] [57.60; 64.34]	1.4% 1.5%
	Vestergaard et al, 2020 (B)	361	600			[56.19; 64.01]	1.5%
	Warshaw et al, 2015 (F)	357	595	—		[56.01; 63.86]	1.5%
	Zink et al, 2017, July (A)	115	195		58.97	[51.94; 65.66]	1.4%
	Altieri et al, 2017 (A)	93	160			[50.35; 65.52]	1.4%
	Azfar et al, 2014 (B) Borve et al, 2013 (B)	77 39	136 69			[48.18; 64.69] [44.68; 67.66]	1.4% 1.4%
	Barbieri et al, 2014 (B)	28	50			[42.13; 68.99]	1.4%
	Patro et al, 2015	115	206			[48.98; 62.46]	1.4%
	Batalla, 2016	36	65	— — —		[43.22; 66.94]	1.4%
	Borve et al, 2013 (A)	38	69	— <mark>—</mark> —		[43.27; 66.33]	1.4%
	Okita et al, 2016	54	100			[44.20; 63.50]	1.4%
	Warshaw et al, 2015 (E) Altieri et al, 2017 (B)	348 81	652 152			[49.53; 57.18] [45.34; 61.07]	1.5% 1.4%
	Warshaw et al, 2015 (D)	344	651			[49.00; 56.65]	1.4%
	Keller et al, 2020 (B)	28	53	— —		[39.51; 65.76]	1.3%
	Altieri et al, 2017 (C)	80	152			[44.69; 60.44]	1.4%
	Warshaw et al, 2015 (G)	300	583			[47.40; 55.50]	1.5%
	Warshaw et al, 2015 (H) Warshaw et al, 2015 (J)	291 511	579 1020			[46.19; 54.32] [47.03; 53.16]	1.5% 1.5%
	Azfar et al, 2014 (C)	66	136			[40.25; 56.89]	1.4%
	Chen et al, 2010	194	405			[43.07; 52.77]	1.5%
	Azfar et al, 2014 (A)	63	136	- - -	46.32	[38.12; 54.73]	1.4%
	Warshaw et al, 2015 (I)	473	1034	—		[42.73; 48.79]	1.5%
	Keller et al, 2020 (A) Cartor et al. 2017 (B)	24	53			[32.52; 58.70]	1.3%
	Carter et al, 2017 (B) Jones et al, 2021	30 183	79 528			[27.99; 49.09] [30.72; 38.82]	1.4% 1.5%
	Costello et al, 2020	103	37	_		[19.43; 48.86]	1.3%
	Duong et al, 2014 (B)	34	110	- - -		[22.99; 40.13]	1.4%
	Carter et al, 2017 (A)	11	79			[7.88; 23.42]	1.3%
	Random effects model	18539	26544		60.07	[64.36; 73.05]	100.0%
	Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.71$		20011		00.87	[04.00, 70.00]	100.076
	J ,,, .	11 - 2	0				
5			Primar	y diagnosis agreement - F2F v	s. ID		

355

358 eFigure 1. Forest plot representing F2F and teledermatology primary diagnostic agreement. (A) Forest plot 359 representing percentage agreement and 95% C.I. for overall concordance across 40 studies with a total of 72 unique 360 number of comparisons, N of events and total included participants. (B) Forest plot representing kappa concordance 361 and 95% C.I. for overall concordance across 21 studies with a total of 45 unique number of comparisons, N of total 362 included participants. Abbreviations: F2F (Face-to-Face), PCP (Primary Care Provider), TD (Teledermatology or 363 Teledermatologist).

eFigure 2. Forest plot representing teledermatologists, F2F physicians, and histopathology primary diagnostic 368 agreements. (A) Forest plot representing percentage agreement between teledermatologist and teledermatologist and 369 95% C.I. for overall concordance across ten studies with a total of 17 unique number of comparisons, N of events and 370 total included participants. (B) Forest plot representing kappa concordance and 95% C.I. for overall concordance 371 between two F2F physician diagnoses across four studies with a total of six unique number of comparisons, N of total 372 included participants. (C) Forest plot representing percentage agreement between teledermatologists and 373 histopathology with 95% C.I. for overall concordance across six studies, N of events and total included participants. 374 Abbreviations: F2F (Face-to-Face), PCP (Primary Care Provider), TD (Teledermatology or Teledermatologist). 375

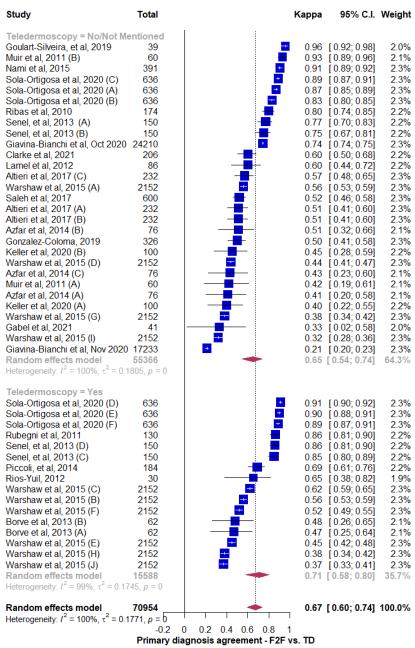
А

Study	Events	Total	Agreement Rate (%)	95% C.I.	Weight
F2F physician = Dermatologi	st		I		
Muir et al. 2011 (B)	49	50	98.00	[87.12: 99.72]	0.1%
Zink et al, 2017, Sept (B)	24	26	92.31		0.1%
Sola-Ortigosa et al, 2020 (D)	915	1000	91.50		1.9%
Sola-Ortigosa et al, 2020 (E) Nami et al, 2015	912	1000	91.20 91.05		1.9%
Sola-Ortigosa et al, 2020 (F)	356 903	391 1000	91.05		1.3%
Barcaui et al, 2018	37	41			0.3%
Sola-Ortigosa et al, 2020 (C)	884	1000	± 88.40		2.0%
Romero et al, 2010 (A)	325	368		[84.61; 91.22]	1.4%
Romero Aguilera et al, 2014 (C) Rubegni et al, 2011) 150 114	170 130		[82.47; 92.28] [80.85; 92.32]	0.9%
Sola-Ortigosa et al, 2020 (A)	875	1000		[85.30; 89.41]	2.0%
Romero et al, 2010 (B)	314	368	85.33	[81.33; 88.59]	1.5%
Sola-Ortigosa et al, 2020 (B)	835	1000		[81.07; 85.67]	2.2%
Rios-Yuil, 2012	25 103	30 125		[65.68; 92.89]	0.3%
Gatica, 2015 Ribas et al, 2010	103	174	- 02.10	[74.71; 88.12] [75.15; 86.69]	1.2%
Saleh et al, 2017	488	600	81.33		2.0%
Warshaw et al, 2015 (C)	548	684	80.12		2.0%
Giavina-Bianchi et al, Oct 2020	576	739	77.94		2.1%
Borve et al, 2012 (A)	31	40	77.50		0.5%
Borve et al, 2012 (B) Tran et al, 2011	31 23	40 30	77.50		0.5%
Marchell et al, 2017	77	101	10.01	[66.99; 83.53]	0.9%
Marchell et al, 2017	162	213		[69.87, 81.31]	1.4%
Zanini, 2013	76	100		[66.68; 83.36]	0.9%
Warshaw et al, 2015 (A)	570	753		[72.50; 78.63]	2.2%
Gerhardt et al, 2021 Warshaw et al, 2015 (B)	609 566	809 752		[72.19, 78.13] [72.06, 78.22]	2.2%
Tan et al, 2010 (B)	162	219	73.97		1.5%
Tan et al, 2010 (A)	283	385	73.51		1.8%
Romero Aguilera et al, 2014 (A)		170			1.3%
Romero Aguilera et al, 2014 (B)		170	72.35		1.3%
Marchell et al, 2017 Vano-Galvan et al, 2011	81 1381	112 2000	72.32		1.1%
Clarke et al, 2021	205	308		[61.10; 71.61]	1.8%
Gabel et al, 2021	27	41		[50.28; 78.62]	0.6%
Barbieri et al, 2014 (A)	32	50		[49.95; 76.00]	0.7%
Vestergaard et al, 2020 (A)	372	600		[58.05; 65.80]	2.2%
Lamel et al, 2012 Giavina-Bianchi et al, Nov 2020	66 490	107 803		[52.16; 70.39] [57.60; 64.34]	1.1%
Vestergaard et al, 2020 (B)	361	600		[56.19, 64.01]	2.2%
Warshaw et al, 2015 (F)	357	595	60.00		2.2%
Zink et al, 2017, July (A)	115	195			1.6%
Altieri et al, 2017 (A) Azfar et al, 2014 (B)	93 77	160 136	58.13		1.4%
Borve et al, 2013 (B)	39	69			0.9%
Barbieri et al, 2014 (B)	28	50			0.7%
Batalla, 2016	36	65		[43.22; 66.94]	0.9%
Borve et al, 2013 (A)	38	69	55.07		0.9%
Okita et al, 2016 Warshaw et al, 2015 (E)	54 348	100 652		[44.20; 63.50] [49.53; 57.18]	1.1%
Altieri et al, 2017 (B)	81	152	-	[45.34; 61.07]	1.4%
Warshaw et al, 2015 (D)	344	651	52.84		2.2%
Keller et al, 2020 (B)	28	53	52.83	[39.51; 65.76]	0.7%
Altieri et al, 2017 (C)	80	152 583	52.63		1.4%
Warshaw et al, 2015 (G) Warshaw et al, 2015 (H)	300 291	579	50.26	[47.40; 55.50] [46.19; 54.32]	2.2%
Warshaw et al, 2015 (J)	511	1020	50.10		2.4%
Azfar et al, 2014 (C)	66	136	48.53	[40.25; 56.89]	1.3%
Azfar et al, 2014 (A)	63	136			1.3%
Warshaw et al, 2015 (I)	473 30	1034 79		[42.73; 48.79]	2.4% 0.9%
Carter et al, 2017 (B) Combined prevalence	17879			[27.99; 49.09] [69.76; 72.14]	89.8%
Heterogeneity: $l^2 = 97\%$, $\tau^2 = 0.02$		24000		[00110], 12114]	001010
F2F physician = Non-speciali		353	Elsa arrea		
Muir et al, 2011 (A)	43	60		[59.06; 81.60]	0.7%
Duong et al, 2014 (A) Patro et al, 2015	44 115	68 206		[52.72; 75.09] [48.98; 62.46]	0.8%
Chen et al, 2010	194	405	47.90	[43.07; 52.77]	2.0%
Keller et al, 2020 (A)	24	53		[32.52; 58.70]	0.7%
Jones et al, 2021	183	528	34.66	[30.72; 38.82]	2.1%
Costello et al, 2020	12	37		[19.43; 48.86]	0.5%
Duong et al, 2014 (B) Carter et al, 2017 (A)	34 11	110 79		[22.99; 40.13] [7.88; 23.42]	1.1%
Combined prevalence	660	1546		[39.92; 48.37]	10.2%
Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.02$				· · · · · · · · · · · · · · · · · · ·	
Combined prevalence	18539	26511	68.54	[67.34; 69.71]	100.0%
Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.02$ Residual heterogeneity: $I^2 = NA\%$		(20 40 60 80 100		
	1.1.1		y diagnosis agreement - F2F vs. TD		
			86 838 9.55		

376

В

Study	Total		Kappa	95% C.I.	Weight
F2F physician = Dermatolog	gist				
Goulart-Silveira, et al, 2019	39		0.96	[0.92; 0.98]	2.0%
Muir et al, 2011 (B)	60		0.93	[0.89; 0.96]	2.1%
Sola-Ortigosa et al, 2020 (D)	636	+	0.91	[0.90; 0.92]	2.3%
Nami et al, 2015	391	<u> </u>		[0.89; 0.92]	2.3%
Sola-Ortigosa et al, 2020 (E)	636	-	0.90	[0.88; 0.91]	2.3%
Sola-Ortigosa et al, 2020 (C)	636	-	0.89	[0.87; 0.91]	2.3%
Sola-Ortigosa et al, 2020 (F)	636	<u>+</u>	0.89	[0.87; 0.91]	2.3%
Sola-Ortigosa et al, 2020 (A)	636	+	0.87	[0.85; 0.89]	2.3%
Rubegni et al, 2011	130		0.86	[0.81; 0.90]	2.2%
Senel, et al, 2013 (D)	150		0.86	[0.81; 0.90]	2.2%
Senel, et al, 2013 (C)	150		0.85	[0.80; 0.89]	2.2%
Sola-Ortigosa et al, 2020 (B)	636		0.83	[0.80; 0.85]	2.3%
Ribas et al, 2010	174	- <mark></mark>	0.80	[0.74; 0.85]	2.2%
Senel, et al, 2013 (A)	150	- <mark></mark>	0.77	[0.70; 0.83]	2.2%
Senel, et al, 2013 (B)	150		0.75	[0.67; 0.81]	2.2%
Giavina-Bianchi et al, Oct 202	0 24210	•	0.74	[0.74; 0.75]	2.3%
Rios-Yuil, 2012	30	— H	0.65	[0.38; 0.82]	1.9%
Warshaw et al, 2015 (C)	2152		0.62	[0.59; 0.65]	2.3%
Clarke et al, 2021	206		0.60	[0.50; 0.68]	2.2%
Lamel et al, 2012	86		0.60	[0.44; 0.72]	2.2%
Altieri et al, 2017 (C)	232		0.57	[0.48; 0.65]	2.3%
Warshaw et al, 2015 (A)	2152	<u></u>	0.56	[0.53; 0.59]	2.3%
Warshaw et al, 2015 (B)	2152	—	0.56	[0.53; 0.59]	2.3%
Saleh et al, 2017	600		0.52	[0.46; 0.58]	2.3%
Warshaw et al, 2015 (F)	2152		0.52	[0.49; 0.55]	2.3%
Altieri et al, 2017 (A)	232	│ — <mark>—</mark> —	0.51	[0.41; 0.60]	2.3%
Altieri et al, 2017 (B)	232	- <mark></mark> -	0.51	[0.41; 0.60]	2.3%
Azfar et al, 2014 (B)	76			[0.32; 0.66]	2.1%
Borve et al, 2013 (B)	62		0.48	[0.26; 0.65]	2.1%
Borve et al, 2013 (A)	62		0.47	[0.25; 0.64]	2.1%
Keller et al, 2020 (B)	100		0.45	[0.28; 0.59]	2.2%
Warshaw et al, 2015 (E)	2152	<u> </u>	0.45	[0.42; 0.48]	2.3%
Warshaw et al, 2015 (D)	2152		0.44	[0.41; 0.47]	2.3%
Azfar et al, 2014 (C)	76		0.43	[0.23; 0.60]	2.1%
Azfar et al, 2014 (A)	76			[0.20; 0.58]	2.1%
Warshaw et al, 2015 (G)	2152			[0.34; 0.42]	2.3%
Warshaw et al, 2015 (H)	2152			[0.34; 0.42]	2.3%
Warshaw et al, 2015 (J)	2152			[0.33; 0.41]	2.3%
Gabel et al, 2021	41			[0.02; 0.58]	2.0%
Warshaw et al, 2015 (I)	2152			[0.28; 0.36]	2.3%
Giavina-Bianchi et al, Nov 202				[0.20; 0.23]	2.3%
Random effects model Heterogeneity: $I^2 = 100\%$, $\tau^2 = 0$	70284	•	0.69	[0.60; 0.75]	91.2%
Heterogeneity: $T = 100\%$, $\tau = 0$	0.1863, p = 0				
F2F physician = Non-specia					
Piccoli, et al, 2014	184	_ 👎		[0.61; 0.76]	2.2%
Gonzalez-Coloma, 2019	326			[0.41; 0.58]	2.3%
Muir et al, 2011 (A)	60			[0.19; 0.61]	2.1%
Keller et al, 2020 (A)	100			[0.22; 0.55]	2.2%
Random effects model	670		0.52	[0.26; 0.71]	8.8%
Heterogeneity: $I^2 = 82\%$, $\tau^2 = 0.0$	u314, p < 0.01				
Random effects model	70954	<u> </u> , →	0.67	[0.60; 0.74]	100.0%
Heterogeneity: $I^2 = 100\%$, $\tau^2 = 0$					
		0 0.2 0.4 0.6 0.8 1			
	Primary dia	ignosis agreement - F2F \	/s. ID		


377 378 eFigure 3. Forest plot representing F2F and teledermatology primary diagnostic agreement by specialization 379 status of the F2F physician. Studies were sorted into two groups, a) F2F diagnosis completed by a board-certified 380 dermatologist; b) F2F diagnosis completed by a non-specialist (e.g., general practitioner). (A) Forest plot representing 381 percentage agreement and 95% C.I. for overall concordance across 40 studies with a total of 72 unique number of 382 comparisons, N of events and total included participants. (B) Forest plot representing kappa concordance and 95% 383 C.I. for overall concordance across 21 studies with a total of 45 unique number of comparisons, N of total included 384 385 386 participants. Abbreviations: F2F (Face-to-Face), PCP (Primary Care Provider), TD (Teledermatology or Teledermatologist).

Α

387

Study	Events	Total		Agreement Rate (%)	95% C.I.	Weigh
eledermoscopy = No/Not M Auir et al. 2011 (B)	lentioned 49	50		• 08.00	[87.12; 99.72]	0.1%
lami et al, 2015	356	391			[87.79; 93.50]	1.39
Sola-Ortigosa et al, 2020 (C)	884	1000			[86.26; 90.24]	2.0%
Romero et al, 2010 (A)	325	368			[84.61; 91.22]	1.49
Romero Aguilera et al, 2014 (C		170		88.24		1.09
Sola-Ortigosa et al, 2020 (A)	875	1000	—		[85.30; 89.41]	2.09
tomero et al, 2010 (B)	314	368			[81.33; 88.59]	1.6%
ola-Ortigosa et al, 2020 (B)	835	1000			[81.07; 85.67]	2.19
Gatica, 2015	103	125			[74.71; 88.12]	1.09
ibas et al, 2010	142	174			[75.15; 86.69]	1.29
aleh et al, 2017	488	600			[78.01; 84.25]	1.9%
iavina-Bianchi et al, Oct 2020	576	739		77.94	[74.81; 80.79]	2.19
orve et al, 2012 (A)	31	40		77.50	[62.12; 87.86]	0.5%
orve et al, 2012 (B)	31	40		77.50	[62.12; 87.86]	0.5%
ran et al, 2011	23	30		76.67		0.4%
larchell et al, 2017	77	101		76.24		1.0%
larchell et al, 2017	162	213			[69.87; 81.31]	1.5%
anini, 2013	76	100			[66.68; 83.36]	1.0%
/arshaw et al, 2015 (A)	570	753		75.70		2.19
erhardt et al, 2021	609	809			[72.19; 78.13]	2.19
an et al, 2010 (B)	162	219		73.97		1.5%
an et al, 2010 (A)	283	385		73.51		1.89
omero Aguilera et al, 2014 (A		170		72.94		1.49
omero Aguilera et al, 2014 (B		170			[65.16; 78.55]	1.49
larchell et al, 2017	81	112			[63.33; 79.81]	1.19
luir et al, 2011 (A)	43	60		71.67		0.8%
ano-Galvan et al, 2011	1381	2000		69.05 66.56		2.4%
larke et al, 2021 abel et al, 2021	205 27	308 41			[61.10; 71.61] [50.28; 78.62]	1.8% 0.6%
	44	68		64.71		0.07
uong et al, 2014 (A) arbieri et al, 2014 (A)	32	50			[49.95; 76.00]	0.97
amel et al, 2012	66	107			[52.16; 70.39]	1.29
iavina-Bianchi et al, Nov 2020		803	_		[57.60; 64.34]	2.29
ink et al, 2017, July (A)	115	195			[51.94; 65.66]	1.6%
Itieri et al, 2017 (A)	93	160			[50.35; 65.52]	1.5%
zfar et al, 2014 (B)	77	136			[48.18; 64.69]	1.49
arbieri et al, 2014 (B)	28	50			[42.13; 68.99]	0.89
atro et al, 2015	115	206			[48.98; 62.46]	1.69
atalla, 2016	36	65	—		[43.22; 66.94]	0.9%
okita et al, 2016	54	100			[44.20; 63.50]	1.29
ltieri et al, 2017 (B)	81	152		53.29		1.49
Varshaw et al, 2015 (D)	344	651		52.84	[49.00; 56.65]	2.19
eller et al, 2020 (B)	28	53	_	52.83	[39.51; 65.76]	0.8%
ltieri et al, 2017 (C)	80	152		52.63	[44.69; 60.44]	1.49
Varshaw et al, 2015 (G)	300	583	—	51.46	[47.40; 55.50]	2.19
zfar et al, 2014 (C)	66	136		48.53	[40.25; 56.89]	1.49
Chen et al, 2010	194	405	—		[43.07; 52.77]	2.0%
zfar et al, 2014 (A)	63	136	_ _ _		[38.12; 54.73]	1.4%
Varshaw et al, 2015 (I)	473	1034		45.74		2.39
(eller et al, 2020 (A)	24	53			[32.52; 58.70]	0.8%
Carter et al, 2017 (B)	30	79			[27.99; 49.09]	1.09
ouong et al, 2014 (B)	34	110			[22.99; 40.13]	1.19
arter et al, 2017 (A)	11	79			[7.88; 23.42]	0.6%
ombined prevalence	11983			68.29	[66.78; 69.77]	71.5%
eterogeneity: $I^2 = 97\%$, $\tau^2 = 0.0$	353, p < 0.0	1				
eledermoscopy = Yes						
ink et al, 2017, Sept (B)	24	26		02.24	[73.93; 98.07]	0.2%
ola-Ortigosa et al, 2020 (D)	24 915	1000	-		[89.60; 93.08]	1.89
ola-Ortigosa et al, 2020 (E)	915	1000	-		[89.28; 92.80]	1.07
ola-Ortigosa et al, 2020 (E)	903	1000	+		[88.30; 91.99]	1.9%
arcaui et al, 2018	37	41			[76.73; 96.29]	0.39
ubegni et al, 2011	114	130			[80.85; 92.32]	0.8%
ios-Yuil, 2012	25	30			[65.68; 92.89]	0.39
/arshaw et al, 2015 (C)	548	684			[76.96; 82.94]	2.09
/arshaw et al, 2015 (B)	566	752	—		[72.06; 78.22]	2.19
estergaard et al, 2020 (A)	372	600	—		[58.05; 65.80]	2.19
estergaard et al, 2020 (B)	361	600			[56.19; 64.01]	2.19
/arshaw et al, 2015 (F)	357	595		60.00	[56.01; 63.86]	2.19
orve et al, 2013 (B)	39	69		56.52	[44.68; 67.66]	0.9%
orve et al, 2013 (A)	38	69	— — —		[43.27; 66.33]	0.9%
/arshaw et al, 2015 (E)	348	652			[49.53; 57.18]	2.19
/arshaw et al, 2015 (H)	291	579	<u></u>	50.26	[46.19; 54.32]	2.19
/arshaw et al, 2015 (J)	511	1020	_ =		[47.03; 53.16]	2.3%
ones et al, 2021	183	528	—		[30.72; 38.82]	2.0%
ostello et al, 2020	12	37			[19.43; 48.86]	0.6%
combined prevalence	6556	9412	*	69.14	[66.76; 71.42]	28.5%
eterogeneity: $I^2 = 99\%$, $\tau^2 = 0.0$	353, p < 0.0	1				
and him ad many set of a set	40500	00544	1		167 06. 00 701	400.00
tombined prevalence eterogeneity: $I^2 = 98\%$, $\tau^2 = 0.0$	18539 :	26511	, , , , , , , , , , , , , , , , ,	68.54	[67.26; 69.78]	100.0%

В

eFigure 4. Forest plot representing F2F and teledermatology primary diagnostic agreement by utilization of
teledermoscopy. Studies were sorted into two groups, i) Did not use or did not report the use of teledermoscopy; ii)
Used teledermoscopy. (A) Forest plot representing percentage agreement and 95% C.I. for overall concordance across
studies with a total of 22 unique number of comparisons, N of events and total included participants. (B) Forest
plot representing kappa concordance and 95% C.I. for overall concordance across seven studies with a total of 16
unique number of comparisons, N of total included participants. Abbreviations: F2F (Face-to-Face), PCP (Primary
Care Provider), TD (Teledermatology or Teledermatologist).

А

Study	Events	Total		Agreement Rate (%)	95% C.I.	Weight
Type of lesion = All skin disea Giavina-Bianchi et al, Oct 2020	ases EXC 576	EPTsk 739	cer assessed	77 0/	[74.81; 80.79]	2.0%
Patro et al, 2015	115	206			[48.98; 62.46]	1.6%
Chen et al, 2010	194	405	+		[43.07; 52.77]	2.0% 5.6%
Combined prevalence Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.03$	885 58, p < 0.0	1350 01		02.20	[56.24; 67.82]	0.070
Type of lesion = All types of s			ed	- 00.00	107 40:00 701	0.40
Muir et al, 2011 (B) Nami et al, 2015	49 356	50 391	-		[87.12; 99.72] [87.79; 93.50]	0.1% 1.3%
Barcaui et al, 2018	37	41		90.24	[76.73; 96.29]	0.3%
Romero et al, 2010 (A) Romero Aguilera et al, 2014 (C)	325 150	368 170	-	88.32 88.24	[84.61; 91.22] [82.47; 92.28]	1.4% 1.0%
Rubegni et al, 2011	114	130	-		[80.85; 92.32]	0.8%
Romero et al, 2010 (B)	314	368			[81.33; 88.59]	1.6%
Rios-Yuil, 2012 Gatica, 2015	25 103	30 125	-		[65.68; 92.89] [74.71; 88.12]	0.3% 1.0%
Ribas et al, 2010	142	174	-	81.61	[75.15; 86.69]	1.2%
Saleh et al, 2017 Borve et al, 2012 (A)	488 31	600 40			[78.01; 84.25] [62.12; 87.86]	1.9% 0.5%
Borve et al, 2012 (B)	31	40	—		[62.12; 87.86]	0.5%
Tran et al, 2011	23	30			[58.50; 88.45]	0.4%
Marchell et al, 2017 Marchell et al, 2017	77 162	101 213			[66.99; 83.53] [69.87; 81.31]	1.0% 1.5%
Zanini, 2013	76	100	<u> </u>	76.00	[66.68; 83.36]	1.0%
Gerhardt et al, 2021 Romero Aguilera et al, 2014 (A)	609 124	809 170			[72.19; 78.13] [65.77; 79.08]	2.1% 1.4%
Romero Aguilera et al, 2014 (A)		170			[65.16; 78.55]	1.4%
Marchell et al, 2017	81	112			[63.33; 79.81]	1.1%
Muir et al, 2011 (A) Vano-Galvan et al, 2011	43 1381	60 2000		69.05	[59.06; 81.60] [66.99; 71.04]	0.8% 2.3%
Gabel et al, 2021	27	41	_ _	65.85	[50.28; 78.62]	0.6%
Duong et al, 2014 (A) Barbiori et al. 2014 (A)	44 32	68 50			[52.72; 75.09]	0.9%
Barbieri et al, 2014 (A) Zink et al, 2017, July (A)	115	195			[49.95; 76.00] [51.94; 65.66]	0.7% 1.6%
Altieri et al, 2017 (A)	93	160	-	58.13	[50.35; 65.52]	1.5%
Azfar et al, 2014 (B) Barbieri et al, 2014 (B)	77 28	136 50			[48.18; 64.69] [42.13; 68.99]	1.4% 0.8%
Batalla, 2016	36	65			[43.22; 66.94]	0.9%
Okita et al, 2016	54	100			[44.20; 63.50]	1.2%
Altieri et al, 2017 (B) Keller et al, 2020 (B)	81 28	152 53			[45.34; 61.07] [39.51; 65.76]	1.4% 0.8%
Altieri et al, 2017 (C)	80	152		52.63	[44.69; 60.44]	1.4%
Azfar et al, 2014 (C) Azfar et al, 2014 (A)	66 63	136 136			[40.25; 56.89] [38.12; 54.73]	1.4% 1.4%
Keller et al, 2020 (A)	24	53	_ _		[32.52; 58.70]	0.8%
Costello et al, 2020	12	37			[19.43; 48.86]	0.6%
Duong et al, 2014 (B) Combined prevalence	34 5758	110 7986			[22.99; 40.13] [67.94; 71.70]	1.1% 43.2%
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0.03$						
Type of lesion = Only skin car Zink et al, 2017, Sept (B)	ncers as: 24	sessed 26		- 92.31	[73.93; 98.07]	0.2%
Sola-Ortigosa et al, 2020 (D)	915	1000	+		[89.60; 93.08]	1.8%
Sola-Ortigosa et al, 2020 (E)	912	1000		91.20		1.9%
Sola-Ortigosa et al, 2020 (F) Sola-Ortigosa et al, 2020 (C)	903 884	1000 1000	-+		[88.30; 91.99] [86.26; 90.24]	1.9% 2.0%
Sola-Ortigosa et al, 2020 (A)	875	1000		87.50	[85.30; 89.41]	2.0%
Sola-Ortigosa et al, 2020 (B) Warshaw et al, 2015 (C)	835 548	1000 684			[81.07; 85.67] [76.96; 82.94]	2.1% 2.0%
Warshaw et al, 2015 (A)	570	753			[72.50; 78.63]	2.0%
Warshaw et al, 2015 (B)	566	752		75.27	[72.06; 78.22]	2.1%
Tan et al, 2010 (B) Tan et al, 2010 (A)	162 283	219 385			[67.76; 79.35] [68.87: 77.68]	1.5% 1.8%
Clarke et al, 2021	205	308	-	66.56	[61.10; 71.61]	1.8%
Vestergaard et al, 2020 (A)	372	600	- 		[58.05; 65.80]	2.1%
Lamel et al, 2012 Giavina-Bianchi et al, Nov 2020	66 490	107 803	-		[52.16; 70.39] [57.60; 64.34]	1.2% 2.2%
Vestergaard et al, 2020 (B)	361	600	=	60.17	[56.19; 64.01]	2.1%
Warshaw et al, 2015 (F) Borve et al, 2013 (B)	357 39	595 69			[56.01; 63.86] [44.68; 67.66]	2.1% 0.9%
Borve et al, 2013 (A)	38	69	_ _	55.07	[43.27; 66.33]	0.9%
Warshaw et al, 2015 (E) Warshaw et al, 2015 (D)	348 344	652 651			[49.53; 57.18]	2.1%
Warshaw et al, 2015 (D) Warshaw et al, 2015 (G)	344	651 583			[49.00; 56.65] [47.40; 55.50]	2.1% 2.1%
Warshaw et al, 2015 (H)	291	579	#	50.26	[46.19; 54.32]	2.1%
Warshaw et al, 2015 (J) Warshaw et al, 2015 (I)	511 473	1020 1034	-		[47.03; 53.16] [42.73; 48.79]	2.3% 2.3%
Carter et al, 2017 (B)	30	79	_ _	37.97	[27.99; 49.09]	1.0%
Jones et al, 2021	183	528	_ =	34.66	[30.72; 38.82]	2.0%
Carter et al, 2017 (A) Combined prevalence	11 11896	79 17175	+		[7.88; 23.42] [66.26; 69.82]	0.6% 51.2%
Heterogeneity: $I^2 = 99\%$, $\tau^2 = 0.03$		00514			107 00, 00 707	400.007
Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.03$ Combined prevalence Heterogeneity: $l^2 = 98\%$, $\tau^2 = 0.03$ Residual heterogeneity: $l^2 = NA\%$,	18539 58, p = 0	26511	r r r r	68.54	[67.26; 69.79]	100.0%

396

В

Study

Kappa

95% C.I. Weight

Type of lesion = All skin disea	ases EXCEP	skin cancer assessed			
Giavina-Bianchi et al, Oct 2020		+	0.74	[0.74; 0.75]	2
Random effects model	24210	· · · ·		[0.74; 0.75]	2
	24210	1	0.74	[0.74, 0.75]	2
Heterogeneity: not applicable					
Type of lesion = All types of s	kin condition	is assessed			
Muir et al, 2011 (B)	60	-	0.93	[0.89; 0.96]	2
Nami et al, 2015	391	+		[0.89; 0.92]	2
Rubegni et al, 2011	130			[0.81; 0.90]	2
Ribas et al, 2010	174			[0.74; 0.85]	2
Rios-Yuil, 2012	30			[0.38; 0.82]	1
	232			[0.48; 0.65]	2
Altieri et al, 2017 (C)					
Saleh et al, 2017	600			[0.46; 0.58]	2
Altieri et al, 2017 (A)	232			[0.41; 0.60]	2
Altieri et al, 2017 (B)	232			[0.41; 0.60]	2
Azfar et al, 2014 (B)	76			[0.32; 0.66]	2
Gonzalez-Coloma, 2019	326		0.50	[0.41; 0.58]	2
Keller et al, 2020 (B)	100		0.45	[0.28; 0.59]	2
Azfar et al, 2014 (C)	76		0.43	[0.23; 0.60]	2
Muir et al, 2011 (A)	60	· · · · · · · · · · · · · · · · · · ·	0.42	[0.19; 0.61]	2
Azfar et al, 2014 (A)	76		0.41	[0.20; 0.58]	2
Keller et al, 2020 (A)	100	— <mark></mark>	0.40	[0.22; 0.55]	2
Gabel et al, 2021	41		0.33	[0.02; 0.58]	2
Random effects model	2936			[0.48; 0.74]	36.
Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.15$	528, p < 0.01				
Type of lesion = Only skin ca	ncers assess	ed			
Goulart-Silveira, et al, 2019	39	-	0.96	[0.92; 0.98]	2
Sola-Ortigosa et al, 2020 (D)	636	+		[0.90; 0.92]	2
Sola-Ortigosa et al, 2020 (E)	636	+		[0.88; 0.91]	2
Sola-Ortigosa et al, 2020 (C)	636			[0.87; 0.91]	2
Sola-Ortigosa et al, 2020 (F)	636	+		[0.87; 0.91]	2
Sola-Ortigosa et al, 2020 (A)	636			[0.85; 0.89]	2
Senel, et al, 2013 (D)	150			[0.81; 0.90]	2
Senel, et al, 2013 (C)	150			[0.80; 0.89]	2
Sola-Ortigosa et al, 2020 (B)	636			[0.80; 0.85]	2
	150			[0.70; 0.83]	2
Senel, et al, 2013 (A)					
Senel, et al, 2013 (B)	150			[0.67; 0.81]	2
Piccoli, et al, 2014	184			[0.61; 0.76]	2
Warshaw et al, 2015 (C)	2152			[0.59; 0.65]	2
Clarke et al, 2021	206			[0.50; 0.68]	2
Lamel et al, 2012	86			[0.44; 0.72]	2
Warshaw et al, 2015 (A)	2152			[0.53; 0.59]	2
Warshaw et al, 2015 (B)	2152			[0.53; 0.59]	2
Warshaw et al, 2015 (F)	2152	-		[0.49; 0.55]	2
Borve et al, 2013 (B)	62		0.48	[0.26; 0.65]	2
Borve et al, 2013 (A)	62	— ₽		[0.25; 0.64]	2
Warshaw et al, 2015 (E)	2152	+		[0.42; 0.48]	2
Warshaw et al, 2015 (D)	2152			[0.41; 0.47]	2
Warshaw et al, 2015 (G)	2152	—		[0.34; 0.42]	2
Warshaw et al, 2015 (H)	2152	I I I I I I I I I I I I I I I I I I I		[0.34; 0.42]	2
Warshaw et al, 2015 (J)	2152	—		[0.33; 0.41]	2
Warshaw et al, 2015 (I)	2152			[0.33, 0.41]	2
Giavina-Bianchi et al, Nov 2020					2
	43808			[0.20; 0.23]	
Random effects model Heterogeneity: $I^2 = 99\%$, $\tau^2 = 0.19$			0.70	[0.59; 0.78]	60.
			0.07	10 60: 0 7 4	400
Random effects model Heterogeneity: $I^2 = 100\%$, $\tau^2 = 0.1$	70954 1771, p = 0		0.67	[0.60; 0.74]	100.
Heterogeneity: $I = 100\%$, $\tau^{-} = 0.1$	-0.2		1 1		
		agnosis agreement - F2F			

Total

397 398 eFigure 5. Forest plot representing F2F and teledermatology primary diagnostic agreement by skin lesion 399 category. Studies were sorted into three groups according to the type of lesions included, i) All skin conditions except 400 likely malignant lesions; ii) All skin conditions; iii) Likely malignant lesions only. (A) Forest plot representing 401 percentage agreement and 95% C.I. for overall concordance across 26 studies with a total of 39 unique number of 402 comparisons, N of events and total included participants. (B) Forest plot representing kappa concordance and 95% 403 C.I. for overall concordance across ten studies with a total of 27 unique number of comparisons, N of total included 404 participants. Abbreviations: F2F (Face-to-Face), PCP (Primary Care Provider), TD (Teledermatology or 405 Teledermatologist).

Supplementary eTables

Author, Year	Study design	Country	Funding reported	Intervention	*Outcome	Patients (n)	Female (%)	Mean Age (y)	Lesions (N)
				TD vs F2F Dermatologist					
Altieri, et al, 2017	Prospective Cohort	USA	Y	TD and F2F dermatologists via clinical images taken by digital photography	Diagnostic agreement rate, Concordance	232	N/A	NA	232
Azfar, et al, 2014	Prospective Cohort	USA, Botswana	Ν	TD and F2F dermatologists via smartphone images	Diagnostic agreement rate, Concordance	76	57	39	159
Barbieri, et al, 2014	Prospective Cohort	USA	Ν	TD and F2F dermatologists via smartphone images using the AccessDerm smartphone platform	Diagnostic agreement rate	50	64	55.2	50
Barcaui, et al, 2018	Prospective Cohort	Brazil	Ν	TD and F2F consult by the same dermatologist via digital photography and dermoscopy images stored in WhatsApp	Diagnostic agreement rate	31	71	56.5	41
Batalla, 2015	Retrospective Cohort	Spain	Ν	TD and F2F dermatologists by via clinical images	Diagnostic agreement rate	183	66	9	65
Borve, et al, 2012	Prospective Cohort	Sweden	Y	TD and F2F consults by the same dermatologist via smartphone images stored in Tele-Dermis	Diagnostic agreement rate	40	57.5	49	40
Gabel, et al, 2021	Prospective Cohort	USA	Y	TD and F2F dermatologists via clinical images taken by digital photography and tablets	Diagnostic agreement rate, Concordance	41	N/A	N/A	41
Gatica, et al, 2015	Prospective Cohort	Chile	Ν	TD and F2F dermatologists via clinical images taken by digital photography	Diagnostic agreement rate	125	57.6	37.7	125
Gerhardt, et al, 2021	Retrospective Cohort	USA	Y	TD and F2F dermatologists via clinical images	Diagnostic agreement rate	809	N/A	N/A	809
Keller, et al, 2020	Prospective Cohort	USA	Y	TD and F2F dermatologists or hospitalists on clinical images taken by smartphones and tablets	Diagnostic agreement rate, Concordance	100	43.2	N/A	100
Marchell, et al., 2017	Quasi RCT	USA	Y	TD and F2F dermatologists via digital photography, compressed and uncompressed video	Diagnostic agreement rate (SFTD, video)	216	N/A	N/A	216
Muir, et al, 2011	Prospective Cohort	Australia	Ν	TD and FF emergency derms and non-specialists via clinical images taken by digital photography	Diagnostic agreement rate, Concordance	50	65	47	50
Nami, et al, 2015	Prospective Cohort	Italy and Austria	Y	TD and F2F dermatologists via smartphone images stored in MugDerma	Diagnostic agreement rate, Concordance	391	52.2	54	391
Okita, et al, 2016	Prospective Cohort	Brazil	Ν	TD and F2F dermatologists via smartphone images	Diagnostic agreement rate	100	N/A	N/A	100
Ribas, et al, 2010	Prospective Cohort	Brazil	Y	TD and F2F dermatologists via digital photography	Diagnostic agreement rate, Concordance	174	53.4	34.7	174
Rios-Yuil, 2011	RCT	Panama	Ν	TD and F2F dermatologists via clinical images taken by digital photography for case conferences	Diagnostic agreement rate, Concordance	30	63.3	N/A	30
Romero Aguilera, et al, 2014	Prospective Cohort	Spain	Y	TD and F2F dermatologists via clinical images taken by digital photography stored in DERMARED.Some patients were seen by the same derm for F2F and TD.	Diagnostic agreement rate	457	56%	36	170
Romero, et al, 2010	RCT	Spain	Y	TD and F2F consults by the same dermatologist via digital photography and videoconferences via DERMARED software	Diagnostic agreement rate	328	56%	36	510
Rubegni, et al, 2011	Prospective Cohort	Italy	Ν	TD and F2F dermatologists via digital photography and dermoscopy images stored in Dermo-image.	Diagnostic agreement rate, Concordance	130	53.9	80.6	130
Saleh, et al, 2017	Prospective Cohort	Egypt	Y	TD and F2F dermatologists via clinical images taken by digital photography stored in Dropbox	Diagnostic agreement rate, Concordance	600	50.7	N/A	600
Tran, et al, 2011	Prospective Cohort	Egypt	Y	TD and F2F dermatologists via smartphone images stored in ClickDoc	Diagnostic agreement rate	30	N/A	N/A	30
Vano-Galvan, et al, 2010	Retrospective, Cross-sectional	Spain	Ν	TD and F2F dermatologists via clinical images taken by digital photography for case conferences	Diagnostic agreement rate, 100 patients each analyzed by 20 observers	100	N/A	N/A	100
Zanini, 2013	Prospective Cohort	Brazil	Ν	TD and F2F dermatologists via clinical images taken by digital photography	Diagnostic agreement rate	100	N/A	N/A	100
Zink, et al, 2017, July	Prospective Cohort	Germany	Y	TD and F2F dermatologists via smartphone images stored in the KLARA app	Diagnostic agreement rate	195	20.5	N/A	195

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)

Borve, et al, 2013	Prospective Cohort	Sweden	Y	TD and F2F consults by the same dermatologist via smartphone and dermoscopy images stored in iDoc 24 app	Diagnostic agreement rate, Concordance	62	38.7	64	69	
Carter, et al, 2017	Ambispective Cohort	USA	Y	TD and F2F dermatologists, as well as F2F PCP via clinical images stored using Epic EHR software	Diagnostic agreement rate	79	74	47	79	
Clarke, et al, 2021	Prospective Cohort	USA	Y	TD and F2F dermatologists via clinical images taken by digital photography stored in Research Electronic Data Capture	Diagnostic agreement rate, Concordance	206	49.5	56.9	308	
Giavina-Bianchi, et al, 2020 Nov	Retrospective Cohort	Brazil	Ν	TD and F2F dermatologists via smartphone images	Diagnostic agreement rate, Concordance	17,233	71.4	N/A	803	
Goulart-Silveira et al, 2019	Prospective Cohort	Brazil	Ν	TD and F2F dermatologists via smartphone images acquired and stored via Telederma app	Concordance	39	69	68	39	
Lamel, et al, 2012	Prospective Cohort	USA	Ν	TD and F2F dermatologists via smartphone images stored in ClickDerm	Diagnostic agreement rate, Concordance	86	58.1	45.2	107	
Senel, et al, 2013	Prospective Cohort	Turkey	Ν	TD and F2F dermatologists via digital photography and dermoscopy images	Concordance with and without dermoscopy	150	49	55	150	
Sola-Ortigosa, et al, 2020	Prospective Cohort	Spain	Ν	TD and F2F consults by the same dermatologist via dermoscopy and clinical images taken by digital photography and tablets	Diagnostic agreement rate, Concordance	636	43.2	72.8	1,000	
Tan, et al, 2010	Prospective Cohort	New Zealand	Y	TD and F2F consults by the same dermatologist via digital photography	Diagnostic agreement rate	200	63	N/A	491	
Vestergaard, et al, 2020	Prospective Cohort	Denmark	Ν	TD and F2F dermatologists via smartphone and dermoscopy images using FotoFinder Systems	Diagnostic agreement rate, Concordance	519	57	55	600]
Warshaw, et al, 2015	Prospective, Cross-sectional	USA	Ν	TD and F2F dermatologists via digital photography and dermoscopy images	Diagnostic agreement rate, Concordance	2,152	3.2	68	3,021	
Zink, et al, 2017, Sept	Prospective Cohort	Germany	Y	TD and F2F dermatologists via smartphone and dermoscopy images using Handyfotos	Diagnostic agreement rate	26	N/A	N/A	26	
Giavina-Bianchi, et al, 2020 Oct	Retrospective Cohort	Brazil	Ν	TD and F2F dermatologists via smartphone images	Diagnostic agreement rate, Concordance	24,210	70	N/A	739	
Author, Year	Study design	Country	Funding reported	Intervention	*Outcome	Patients (n)	Female (%)	Mean Age (y)	Lesions (N)	
				TD vs F2F Non-specialist						
Costello, et al, 2019	Prospective, Cross-sectional	USA	Y	TD and F2F PCP via smartphone and dermoscopy images using the Photo Exam app	Diagnostic agreement rate	37	65	47.9	37	
Duong, et al, 2014	Prospective, Observational	France	Y	TD and F2F emergency physicians via smartphone images and videoconferences	Diagnostic agreement rate (SFTD, video)	194	N/A	N/A	178	
Gonzalez-Coloma, et al, 2019	Prospective, Cross-sectional	Chile	Ν	TD and F2F PCP via clinical images	Diagnostic concordance	326	59	35.8	326	
Keller, et al, 2020	Prospective Cohort	USA	Y	TD and F2F dermatologists or hospitalists on clinical images taken by smartphones and tablets	Diagnostic agreement rate, Concordance	100	43.2	N/A	100	
Muir, et al, 2011	Prospective Cohort	Australia	Ν	TD and F2F emergency physicians via clinical images taken by digital photography	Diagnostic agreement rate, Concordance	60	65	47	60	
Carter, et al, 2017	Ambispective Cohort	USA	Y	TD and F2F dermatologists, as well as F2F PCP via clinical images stored using Epic EHR software	Diagnostic agreement rate	79	74	47	79	
Jones, et al, 2021	Retrospective Cohort	New Zealand	Y	TD and F2F PCP via digital photography and dermoscopy images	SSC matched for age, sex, and ethnicity. Diagnostic agreement rate	481	64	N/A	528	
			Y	TD and F2F PCP via digital photography and dermoscopy	Diagnostic concordance	184	73.4	54.7	184	
Piccoli, et al, 2015	Retrospective, Cross-sectional	Brazil	1	images						
Piccoli, et al, 2015 Chen, et al, 2010		USA	Y		Diagnostic agreement rate	405	50.6	5.9	405	

eTable 1. Study and patient characteristics for all included studies. The table is divided into two sections: one comparing teledermatology with Face-to-Face (F2F) dermatologists, and another comparing teledermatologists with F2F non-specialists. The studies are listed alphabetically and grouped by lesion type. *See supplementary **eTable 4** for agreement rates and concordance values. Abbreviations used in the table include B (Benign lesions only), ED (Emergency Department), EHR (Electronic Health Record), F2F (Face-to-Face), Histo

(Histopathology), ICD10 (International Classification of Diseases, 10th Edition), N (No), N/A (Not available), PCP (Primary Care Provider), PLD (Polarized Light Dermoscopy), RCT (Randomized Controlled Trial), SFTD (Store-and-Forward Teledermatology), SSC (Specialized Skin Clinic), TD (Teledermatology or Teledermatologist), and Y (Yes). Patient characteristics for all 44 included studies are also provided, grouped by lesion type, with a column describing special inclusion and exclusion criteria.

Inclusion criteria	Exclusion criteria
Primary articles assessing diagnostic agreement where store-and-forward technology or live video conference consults were compared with a control group who attend in-person visits.	Survey articles, feasibility studies, studies regarding other forms of telemedicine unrelated to dermatology, cost-effectiveness studies, editorials, and review articles.
Primarily comparing teledermatology to F2F, sometimes using histopathology as the reference standard.	Studies that clearly stated they used telermatologists as the gold- or reference standard.
	Studies that only compared dermatoscopic images in the absence of clinical images.
	Studies where patients captured their own photographs.
eTable 2. Inclusion and exclusion criteria for F2F: Face-to-Face.	or screening of literature search results.

408

409

407

410

411

Study characteristics

Author, year, title, study type, objective, country of publication. Patient characteristics: total number of participants included declaration of funding source, number of participants per study, mean age +/- SD, age range, gender, mean BMI and range, race/ethnicity, type of lesions evaluated, type of patients evaluated.

Methodology - teledermatology and F2F consults

Method of correspondence, platform used for the teledermatology consult, training on teledermatology platform, length of teledermatology and F2F consult, experience of the teledermatologist and F2F physician, location of the teledermatologist, number of teledermatologists and F2F physicians who made a diagnosis for each patient, total number of telermatologists and F2F physicians in study, order of visits, wait time between teledermatology and F2F consult, whether same specialist conducted teledermatology and F2F visit, specialization of the F2F physician, number of reviews; qualifications of the individual who acquired the clinical photographs and whether they received additional training on taking clinical photographs.

Metrics and results

Technology used for image acquisition and for viewing images with, distance between camera and lesion, number of images taken, use of teledermoscopy & dermoscopy, brand of dermatoscope, use of histopathology, referral content provided to teledermatologist, primary and differential diagnoses agreement and concordance rates, diagnostic accuracy values (if available) such as sensitivity, specificity, PPV and NPV.

412 eTable 3. Data extraction form with details of domains record.

413 F2F: Face-to-Face, PPV: Positive Predictive Value, NPV: Negative Predictive Value.

Author and Year	Unique Study Grouping	Participants (n)	Lesions (N)	Primary Diagnosis Agreement F2F vs F2F (%)	Diagnosis Agreement (N) / Total Diagnoses (N)	Primary Diagnosis Agreement TD vs TD (%)	Diagnosis Agreement (N) / Total Diagnoses (N)	Primary Diagnosis Agreement TD vs F2F (%)	Diagnosis Agreement (N) / Total Diagnoses (N)	Primary Diagnosis Agreement TD vs Histo (%)	Diagnosis Agreement (N) / Total Diagnoses (N)	Primary Diagnosis Kappa Value TD vs F2F	Primary Diagnosis Kappa Value TD vs Histo
Altieri et al, 2017 (A)	F2F Derm vs TD1	232	232					58	93/160			0.51	
Altieri et al, 2017	F2F Derm vs TD2												
(B)		232	232					53	81/152			0.51	
Altieri et al, 2017 (C)	F2F Derm vs TD3	232	232					53	80/152			0.57	
Azfar et al, 2014 (A)	F2F Derm vs TD1	76	159					47	63/136			0.41	
Azfar et al, 2014 (B)	F2F Derm vs TD2	76	159					57	77/136			0.51	
Azfar et al, 2014 (C)	F2F Derm vs TD3	76	159					49	66/136			0.43	
Barbieri et al, 2014 (A)		50	50			58	29/50	64	32/50				
Barbieri et al, 2014 (B)	F2F Derm vs TD2	50	50					56	28/50				
Barcaui et al, 2018	F2F Derm vs TD	31	41					90	37/41				
Batalla, 2016	F2F Derm vs TD	183	183					55	36/65				
Borve et al, 2012 (A)	F2F Derm vs TD1	40	40	88	35/40	68	27/40	78	31/40				
Borve et al, 2012 (B)	F2F Derm vs TD2	40	40					78	31/40				

Borve et al, 2013 (A)	F2F Derm vs TD1	62	69	58	40/69	55	38/69			0.47	0.51
Borve et al, 2013 (B)	F2F Derm vs TD2	62	69			57	39/69			0.48	
Carter et al, 2017 (A)	F2F nonspecialist vs TD	79	79	38	30/79	14	11/79				
Carter et al, 2017 (B)	F2F Derm vs TD	79	79	50	50117	38	30/79				
Chen et al, 2010	F2F nonspecialist vs TD	405	405			48	194/405				
Clarke et al, 2021	F2F Derm vs TD	206	308			67	205/308	65	40/62	0.6	
Costello et al, 2020	F2F nonspecialist vs TD	37	37			32	12/37				
Duong et al, 2014 (A)	F2F nonspecialist vs TD (Videoconference)	111	110			65	44/68				
Duong et al, 2014 (B)	F2F nonspecialist vs TD (SFTD)	111	110			31	34/110				
Gabel et al, 2021	F2F Derm vs TD	41	41			67	27/41			0.33	
Gatica, 2015	F2F Derm vs TD	125	125			82	103/125				
Gerhardt et al, 2021	F2F Derm vs TD	809	809			75	609809				
Giavina-Bianchi et al, Nov 2020	F2F Derm vs TD	17233	17233			61	490/803	54	156/2 89	0.21	0.09
Giavina-Bianchi et al, Oct 2020	F2F Derm vs TD							5-	0)		0.07
Gonzalez- Coloma, 2019	F2F nonspecialist vs TD	24210	27519			78	576/739			0.74	
Goulart-Silveira,	F2F Derm vs TD	326	326							0.5	0.56
et al, 2019 Jones et al, 2021	F2F nonspecialist vs TD (Suspicious Skin Cancer	39	39						60/11	0.96	0.56
	pathway)	NA	528			35	183/528	53	4		
Keller et al, 2020 (A)	F2F nonspecialist vs TD	100	100			45	24/53			0.4	
Keller et al, 2020 (B)	F2F Derm vs TD	100	100			53	28/53			0.45	
Lamel et al, 2012	F2F Derm vs TD	86	107			62	66/107			0.6	
											24

Marchell et al, 2017	F2F Derm vs TD (SFTD)	216	216	91	122/1 34			76	162/213		
Marchell et al, 2017	F2F Derm vs TD (Uncompressed video)	216	216	, -				76	77/101		
Marchell et al, 2017	F2F Derm vs TD (Compressed video)	216	216					72	81/112		
Muir et al, 2011 (A)	F2F nonspecialist vs TD	60	60					72	43/60		0.42
Muir et al, 2011 (B)	F2F Derm vs TD	60	60					98	49/50		0.93
Nami et al, 2015	F2F Derm vs TD	391	391					91	356/391		0.91
Okita et al, 2016	F2F Derm vs TD	100	100					54	54/100		
Patro et al, 2015	F2F nonspecialist vs TD	206	206					56	115/206		
Piccoli, et al, 2014	F2F nonspecialist vs TD	184	184								0.69
Ribas et al, 2010	F2F Derm vs TD	174	174	83	145/1 74	81	141/17 4	82	142/174		0.8
Rios-Yuil, 2012	F2F Derm vs TD	30	30					83	25/30	67	0.65
Romero Aguilera et al, 2014 (A)	F2F Derm vs TD1	457	192			69	118/17 0	73	124/170		
Romero Aguilera et al, 2014 (B)	F2F Derm vs TD2	457	192			73	124/17 0	72	123/170		
Romero Aguilera et al, 2014 (C)	F2F Derm vs TD3	457	192			67	114/17 0	88	150/170		
Romero et al, 2010 (A)	F2F Derm vs TD (SFTD)	457	192			0,1		88	325/368		
Romero et al, 2010 (B)	F2F Derm vs TD (SFTD and videoconferencing)	457	176					85	314/368		
Rubegni et al, 2011	F2F Derm vs TD	130	130					88	114/130		0.86
Saleh et al, 2017	F2F Derm vs TD	600	600			88	526/60 0	81	488/600		0.46- 0.52
Senel, et al, 2013	F2F Derm vs TD1 (no dermoscopy)	150	150				•	-			0.77
Senel, et al, 2013	F2F Derm vs TD2 (no dermoscopy)	150	150								0.75

Senel, et al, 2013	F2F Derm vs TD1 (dermoscopy)	150	150									0.85
Senel, et al, 2013	F2F Derm vs TD2	150	150									0.05
	(dermoscopy)	150	150									0.86
Sola-Ortigosa et al, 2020 (A)	F2F Derm vs TD1 (no dermoscopy)	636	1000			82	821/10 00	88	875/100 0			0.87
Sola-Ortigosa et al, 2020 (B)	F2F Derm vs TD2 (no dermoscopy)	636	1000			83	832/10 00	84	835/100 0			0.83
Sola-Ortigosa et al, 2020 (C)	F2F Derm vs TD3 (no dermoscopy)	636	1000			81	813/10 00	88	884/100 0			0.89
Sola-Ortigosa et al, 2020 (D)	F2F Derm vs TD1 (dermoscopy)	636	1000			92	915/10 00	92	915/100 0			0.91
Sola-Ortigosa et al, 2020 (E)	F2F Derm vs TD2 (dermoscopy)	636	1000			90	90210 00	91	912/100 0			0.9
Sola-Ortigosa et al, 2020 (F)	F2F Derm vs TD3 (dermoscopy)	636	1000			90	899/10 00	90	903/100 0			0.89
Tan et al, 2010 (A)	F2F Derm vs TD1, F2F Derm 1 vs F2F Derm 2	200	491	82	157/1 91	72	355/49 1	74	283/385			
Tan et al, 2010 (B)	F2F Derm vs TD2, F2F Derm 2 vs F2F Derm 3	200	491	76	80/10 6			74	162/219			
Tan et al, 2010 (C)	F2F Derm 1 vs F2F Derm 3	200	491	76	147/1 94							
Tran et al, 2011	F2F Derm vs TD	30	30					75	23/30			
Vano-Galvan et al, 2011		100	100					69	1381/20 00			
Vestergaard et al, 2020 (A)	A F2F Derm vs TD1	519	600			62	370/60 0	62	372/600	58	170/2 92	
Vestergaard et al, 2020 (B)		519	600					60	361/600	54	157/2 92	
Warshaw et al, 2015 (A)	F2F Derm vs TD (non biopsied pigmented lesions, Macro)	2152	3021					76	570/753			0.56
Warshaw et al, 2015 (B)	F2F Derm vs TD (non biopsied pigmented lesions, Macro+PLD)	2152	3021					75	566/752			0.56
Warshaw et al, 2015 (C)	F2F Derm vs TD (non biopsied pigmented lesions,	2132	3021					15	5001152			0.50
	Macro+PLD)	2152	3021					80	548/684			0.62

Warshaw et al, 2015 (D)	F2F Derm vs TD (biopsied pigmented lesions, Macro)	2152	3021	53	344/651			0.44
Warshaw et al, 2015 (E)	F2F Derm vs TD (biopsied pigmented lesions, Macro+PLD)	2152	3021	53	348/652			0.45
Warshaw et al, 2015 (F)	F2F Derm vs TD (biopsied pigmented lesions, Macro+PLD)	2152	3021	60	357/595			0.52
Warshaw et al, 2015 (G)	F2F Derm vs TD (NONbiopsied NONpigmented lesions, Macro)	2152	3021	52	300/583			0.38
Warshaw et al, 2015 (H)	F2F Derm vs TD (NONbiopsied NONpigmented lesions, Macro+PLD)	2152	3021	50	291/579			0.38
Warshaw et al, 2015 (I)	F2F Derm vs TD (biopsied NONpigmented lesions, Macro)	2152	3021	46	473/103 4			0.32
Warshaw et al, 2015 (J)	F2F Derm vs TD (biopsied NONpigmented lesions, Macro+PLD)	2152	3021	50	511/102 0			0.37
Zanini, 2013	F2F Derm vs TD	100	100	76	76/100			
Zink et al, 2017,	F2F Derm vs TD						108/1	
July (A)		195	195	59	115/195	56	95	
Zink et al, 2017, Sept (B)	F2F Derm vs TD	26	26	92	24/26	67	17/26	

eTable 4. Included unique study groupings and letter codes for individual agreement rates and kappa concordance values. The abbreviations used in the text are as follows: TD (Teledermatology or Teledermatologist), Derm (Dermatologist), F2F (Face-to-Face), SFTD (Store and Forward Technology), PLD (Polarized Light Dermoscopy), and Macro (Macroscopic clinical images).

Study ID	Journal	Reason For Exclusion
NCT03034694, 2016	<u>ClinicalTrials.gov</u>	Wrong study design
Andersson et al, 2017	Lakartidningen	Wrong study design
Romero et al, 2018	Actas dermo-sifiliograficas	Wrong study design
Orruno et al, 2016	Health Technology Assessment Database	Wrong study design
Batalla et al, 2016	Piel	Wrong study design
Kroemer et al, 2011	British Journal of Dermatology	Wrong study design
Ernstberger et al, 2014	Zentralblatt fur Chirurgie	Wrong study design
Totty et al, 2018	Journal of wound care	Wrong study design
Wurm et al, 2013	Journal of Telemedicine and Telecare	Wrong study design
Wang et al, 2017	Telemedicine journal and e-health : the official journal of the American Telemedicine Association	Wrong study design
Singh et al, 2011	Australasian Journal of Dermatology	Wrong study design
Grey et al, 2017	Dermatitis	Wrong study design
Crompton et al, 2010	Journal of Visual Communication in Medicine	Wrong study design
Ali et al, 2021	JMIR formative research	Wrong study design
Boyce et al, 2011	Dermatology	Wrong study design
Berg et al, 2017	Sarcoidosis Vasculitis and Diffuse Lung Diseases	Wrong study design
Shin et al, 2014	Journal of telemedicine and telecare	Wrong study design
Gacto-Sanchez et al, 2020	Burns : journal of the International Society for Burn Injuries	Wrong study design
Tian et al, 2017	Journal of Cosmetic Dermatology	Wrong study design
Thind et al, 2011	Clinical and Experimental Dermatology	Wrong study design
Silveira et al, 2014	BMC Dermatology	Wrong study design
O'Connor et al, 2017	JAMA Dermatology	Wrong study design
Janda et al, 2020	The Lancet. Digital health	Wrong study design
Day et al, 2020	Military medicine	Wrong study design
Karlsson et al, 2015	Acta Dermato-Venereologica	Wrong study design
Seghers et al, 2015	Australasian Journal of Dermatology	Wrong study design
Hazenberg et al, 2010	Journal of Medical Engineering and Technology	Wrong study design
Borve et al, 2015	Acta Dermato-Venereologica	Wrong study design
Boissin et al, 2015	Burns	Wrong study design
Da Silva et al, 2018	Dermatology online journal	Wrong study design
Devrim et al, 2019	BMC pediatrics	Wrong study design
Danielsson et al, 2019	Health Technology Assessment Database	Wrong study design
Berglund et al, 2020	Journal of the European Academy of Dermatology and Venereology : JEADV	Wrong study design
Forsblom et al, 2013	Clinical Infectious Diseases	Wrong study design
G Bianchi et al, 2020	Journal of medical Internet research	Wrong study design
Congalton et al, 2015	Journal of the European Academy of Dermatology and Venereology	Wrong study design
Ferrandiz et al, 2012	Archives of Dermatology	Wrong study design
Ismail et al, 2018	International Journal of Women's Dermatology	Wrong study design
Gamus et al, 2019	International journal of medical informatics	Wrong study design
Paudel et al, 2020	Case reports in dermatological medicine	Wrong study design
Georgesen et al, 2020		
Gagnon et al, 2015	Dermatology Times	Wrong study design
Philp et al, 2013	Pediatric Dermatology	Wrong study design
Mooney et al, 2011	Skin Research and Technology	Wrong study design
Do Khac et al, 2021	JMIR mHealth and uHealth	Wrong study design
Chambers et al, 2012	Journal of the American Academy of Dermatology	Wrong study design
	Telemedicine journal and e-health : the official journal of the American Telemedicine Association	Wrong study design
Ahmed et al, 2020	Annals of internal medicine	Wrong study design
Marwaha et al, 2019	Journal of the American Academy of Dermatology	Wrong study design
NCT02122432, 2014	<u>ClinicalTrials.gov</u>	Wrong study design
Lowe et al, 2021	Clinical and experimental dermatology	Wrong study design

		W 7 ()) '
Bowling et al, 2011	Wound Repair and Regeneration	Wrong study design
Marin-Gomez et al, 2020	Journal of primary care & community health	Wrong study design
Veronese et al, 2021	Diagnostics (Basel, Switzerland)	Wrong study design
Ismail et al, 2018	International journal of dermatology	Wrong study design
NCT02905851, 2016	<u>ClinicalTrials.gov</u>	Wrong study design
Trinidad et al, 2020	Journal of the American Academy of Dermatology	Wrong study design
Tensen et al, 2019	Studies in health technology and informatics	Wrong study design
Karavan et al, 2014	Journal of telemedicine and telecare	Wrong study design
Viola et al, 2011	Archives of Dermatology	Wrong study design
van Netten et al, 2017	Scientific reports	Wrong study design
Cai et al, 2016	Burns : journal of the International Society for Burn Injuries	Wrong study design
Hazenberg et al, 2010	Diabetes Technology and Therapeutics	Wrong study design
Jacoby et al, 2021	Journal of drugs in dermatology : JDD	Wrong study design
Pak et al, 2018	Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society	Wrong study design
Kummerow Broman et al, 2019	JAMA surgery	Wrong study design
Munoz-Lopez et al, 2021	Journal of the European Academy of Dermatology and Venereology : JEADV	Wrong study design
Markun et al, 2017	Medicine	Wrong study design
Piette et al, 2017	Journal of telemedicine and telecare	Wrong study design
Tan et al, 2010	British Journal of Dermatology	Wrong study design
Watson et al, 2010	Archives of Dermatology	Wrong study design
Wiseman et al, 2016	Journal of vascular surgery. Venous and lymphatic disorders	Wrong study design
Wolf et al, 2013	JAMA dermatology	Wrong study design
Laggis et al, 2020	The American Journal of dermatopathology	Wrong study design
Kazi et al, 2021	Telemedicine journal and e-health : the official journal of the American Telemedicine Association	Wrong study design
Kanthraj et al, 2013	Indian Journal of Dermatology, Venereology and Leprology	Wrong study design
Shah et al, 2016	Journal of the American Academy of Dermatology	Wrong study design
Kim et al, 2018	Skin research and technology	Wrong study design
Nguyen et al, 2017	Journal of Clinical and Aesthetic Dermatology	Wrong study design
Rizvi et al, 2020	PloS one	Wrong study design
Mehrtens et al, 2019	Clinical and experimental dermatology	Wrong study design
Knudsen et al, 2012	Lakartidningen	Research letter or letter to the editor
Korman et al, 2020	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Mercer et al, 2014	Journal of Cutaneous Medicine and Surgery	Research letter or letter to the editor
Grunig et al, 2015	JAMA Dermatology	Research letter or letter to the editor
Cartron et al, 2020	Dermatologic therapy	Research letter or letter to the editor
McAfee et al, 2020	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Wong et al, 2021	JAMA dermatology	Research letter or letter to the editor
Baranowski et al, 2020	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Micheletti et al, 2014	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Osei-Tutu et al, 2013	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Nair et al, 2015	International Journal of Dermatology	Research letter or letter to the editor
Miller et al, 2021	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Keleshian et al, 2017	Journal of the American Academy of Dermatology	Research letter or letter to the editor
HAYES; Inc et al, 2016	Health Technology Assessment Database	Research letter or letter to the editor
Jacob et al, 2017	Journal of telemedicine and telecare	Research letter or letter to the editor
Perkins et al, 2020	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Halpern et al, 2010	British Journal of Dermatology	Research letter or letter to the editor
Newman et al, 2020	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Hunt et al, 2020	Clinical and experimental dermatology	Research letter or letter to the editor
2018	Nursing	Research letter or letter to the editor
Taneja et al, 2021	Indian journal of dermatology, venereology and leprology	Research letter or letter to the editor
Echeverria-Garcia et al, 2019	Actas dermo-sifiliograficas	Research letter or letter to the editor
Henning et al, 2010	Archives of Dermatology	Research letter or letter to the editor
6,		29

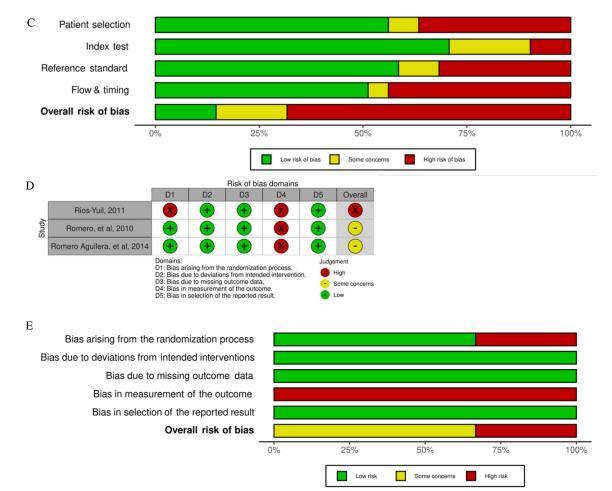
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)

Demo et al, 2019	Clinical and experimental dermatology	Research letter or letter to the editor
Byamba et al, 2015	British Journal of Dermatology	Research letter or letter to the editor
Gupta et al, 2020	Journal of the American Academy of Dermatology	Research letter or letter to the editor
De Giorgi et al, 2017	Journal of the European Academy of Dermatology an Venereology	d Research letter or letter to the editor
Duong et al, 2016	Annales de Dermatologie et de Venereologie	Research letter or letter to the editor
Mortimer et al, 2021	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Gravely et al, 2010	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Choi et al, 2021	International journal of dermatology	Research letter or letter to the editor
Motley et al, 2012	BMJ: British Medical Journal (Clinical Research Edition)	Research letter or letter to the editor
Leavitt et al, 2016	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Cheng et al, 2020	Dermatitis : contact, atopic, occupational, drug	Research letter or letter to the editor
Clark et al, 2021	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Fuesl et al, 2010	MMW-Fortschritte der Medizin	Research letter or letter to the editor
English III et al, 2013	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Cotes et al, 2021	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Abi Rafeh et al, 2021	Journal of cutaneous medicine and surgery	Research letter or letter to the editor
Okeke et al, 2020	The Journal of dermatological treatment	Research letter or letter to the editor
Splete et al, 2014	Emergency Medicine (00136654)	Research letter or letter to the editor
Khosravi et al, 2021	Clinical and experimental dermatology	Research letter or letter to the editor
Sivesind et al, 2021	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Stoecker et al, 2013	JAMA dermatology	Research letter or letter to the editor
Skayem et al, 2020	Journal of the European Academy of Dermatology an Venereology : JEADV	Research letter of letter to the editor
Su et al, 2020	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Massone et al, 2021	Anais brasileiros de dermatologia	Research letter or letter to the editor
Li et al, 2021	The Journal of infection	Research letter or letter to the editor
Afanasiev et al, 2021	Journal of the American Academy of Dermatology	Research letter or letter to the editor
Varma et al, 2011 Van Der Heijden et al, 2010	British Journal of Dermatology Journal of the European Academy of Dermatology an Venereology	Research letter or letter to the editor d Research letter or letter to the editor
Motley et al, 2012	BMJ (Online)	Research letter or letter to the editor
Villani et al, 2020	Dermatologic therapy	Research letter or letter to the editor
Portnoy et al, 2018	The journal of allergy and clinical immunology. In practice	Research letter or letter to the editor
Tschandl et al, 2018	British Journal of Dermatology	Research letter or letter to the editor
Poolworaluk et al, 2020	Future healthcare journal	Research letter or letter to the editor
Anonymous et al, 2020	Journal of drugs in dermatology : JDD	Research letter or letter to the editor
Tan et al, 2021	Annals of the Academy of Medicine, Singapore	Research letter or letter to the editor
Silva et al, 2021	Anais brasileiros de dermatologia	Research letter or letter to the editor
de Giorgi et al, 2016	International Journal of Dermatology	Wrong outcomes
Senel et al, 2014	Journal of telemedicine and telecare	Wrong outcomes
Goodier et al, 2021	Contact dermatitis	Wrong outcomes
Foolad et al, 2017	International Journal of Dermatology	Wrong outcomes
Wells et al, 2020	The Journal of clinical and aesthetic dermatology	Wrong outcomes
Arzberger et al, 2016	Acta Dermato-Venereologica	Wrong outcomes
Creighton-Smith et al, 2017	International Journal of Definatology	Wrong outcomes
Marwaha et al, 2019	Journal of the American Academy of Dermatology	Wrong outcomes
Pasquali et al, 2021	Actas dermo-sifiliograficas	Wrong outcomes
Vestergaard et al, 2020	Family practice	Wrong outcomes
Kravets et al, 2018	Acta dermatovenerologica Alpina, Pannonica, et Adriatica	Wrong outcomes
Speiser et al, 2014	American Journal of Dermatopathology	Wrong outcomes
N/A	Journal of the American Academy of Dermatology	Wrong outcomes
Whited et al, 2013	Journal of Telemedicine and Telecare	Wrong outcomes

		TT 7
Abhishek et al, 2021	medRxiv	Wrong outcomes
Villa et al, 2020	Internal and emergency medicine	Wrong outcomes
Lubeek et al, 2016	Tijdschrift voor gerontologie en geriatrie	review
Ndegwa et al, 2016 Moreno-Ramirez et al,	Health Technology Assessment Database	review
Moreno-Ramirez et al, 2017 Moreno-Ramirez et al,	Acta dermato-venereologica	review
2017	Acta Dermato-Venereologica	review
Van Der Heijden et al, 2010	Huisarts en Wetenschap	review
Walocko et al, 2017	Dermatologic Clinics	review
Roman et al, 2014	Journal of the Dermatology Nurses' Association	review
Hart et al, 2011	Telemedicine journal and e-health : the official journal of the American Telemedicine Association	review
Elsner et al, 2020	Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG	review
Kaliyadan et al, 2020	Indian journal of dermatology	review
Burch et al,		review
Evans et al, 2017	Pharmazeutische Zeitung	Editorial
Anonymous. et al, 2016	Journal of AHIMA / American Health Information Management Association	Editorial
Luk et al, 2018	Hong Kong Journal of Dermatology and Venereology	Editorial
Queen et al, 2018	International wound journal	Editorial
Anguita et al, 2014	Nurse Prescribing	Editorial
Haworth et al, 2020	Clinical and experimental dermatology	Editorial
Romero-Aguilera et al, 2019	Actas dermo-sifiliograficas	Editorial
Barrio Garde et al, 2016	Piel	Editorial
Morand et al, 2010	Annales de dermatologie et de venereologie	Editorial
N/A	Journal of the American Academy of Dermatology	Abstract
N/A	Journal of the American Academy of Dermatology	Abstract
Bianchi et al, 2020	Journal of the American Academy of Dermatology	Abstract
Creadore et al, 2020	Journal of the American Academy of Dermatology	Abstract
N/A	Journal of the American Academy of Dermatology	Abstract
Tognetti L et al, 2020		Abstract
SPLETE et al, 2014	Emergency Medicine (00136654)	Abstract
N/A Dahlan Gullanarautz at	Journal of the American Academy of Dermatology Journal of the European Academy of Dermatology and	Abstract
al, 2017	Venereology	Wrong intervention
Tandjung et al, 2015	Journal of Evaluation in Clinical Practice	Wrong intervention
Paradela-De-La-Morena et al, 2015	European Journal of Dermatology	Wrong intervention
Horsham et al, 2015	British Journal of Dermatology	Wrong intervention
Saenz et al, 2018	International Journal of Telemedicine and Applications	Wrong intervention
Kochmann et al, 2016	Telemedicine journal and e-health : the official journal of the American Telemedicine Association	Wrong comparator
Markun et al, 2017	Medicine (United States)	Wrong comparator
Feigenbaum et al, 2017	Pediatric Dermatology	Wrong comparator
Massone et al, 2014	Journal of the European Academy of Dermatology and Venereology	Wrong comparator
MacLellan et al, 2021	Journal of the American Academy of Dermatology	Wrong comparator
Koysombat et al, 2021	Journal of plastic, reconstructive & aesthetic surgery : JPRAS	Corrrespondence
Jakhar et al, 2020	Clinical and experimental dermatology	Corrrespondence
Alkmim et al, 2013	Journal of Telemedicine and Telecare	Corrrespondence
NCT02836665, 2016	<u>ClinicalTrials.gov</u>	Clinical trial - no associated manuscript
JPRN-UMIN000020873 et al, 2016		Clinical trial - no associated manuscript
Fogel et al, 2016	Journal of the American Academy of Dermatology	Commentary
Hoyer et al, 2020	Cutis	Commentary
Pasadyn et al, 2020	Journal of the American Academy of Dermatology	Duplicate

Moreno-Ramirez et al, 2017	American Journal of Clinical Dermatology	Erratum
Trovato et al, 2011	Eplasty	Wrong patient population
Bowns et al, 2016	Health Technology Assessment Database	Wrong publication date
Gemelas et al, 2019	Telemedicine journal and e-health : the official journal of the American Telemedicine Association	Wrong setting

eTable 5. List of studies excluded at the full-text screening stage.


А

Domain 1: S <u>A</u>	MPLE SELECTION	
Signalling Q1	 Was a consecutive or random sample of patients enrolled? In the study by Giavina-Bianchi et al., a consecutive sample of patients was enrolled, introducing less bias. Skewed patient demographics: e.g., over 70% female, select age groups, studies. that do not disclose age range and or sex/gender of the patients. 	Yes/No/Unclear
Signalling Q2	 In the study by Carter et al., over 70% of the patients were female, which may introduce bias and reduce applicability. Was a case-control design avoided? 	Yes/No/Unclear
Signaling Q2	- Gabel et al. avoided a case-control design, which reduces the risk of bias.	res/NO/Officieal
Signalling Q3	 Did the study avoid inappropriate exclusions? In the study by Giavina-Bianchi et al., complex, and severe cases were excluded, which may introduce bias and affect applicability. 	Yes/No/Unclear
Risk of bias	 Could the selection of patients have introduced bias? For example, Giavina-Bianchi removed the most complex/severe cases and then excluded any non-skin neoplasms, and then they further filtered to only include the 10 most common skin neoplasms. 	RISK: LOW/HIGH/ UNCLEAR
Concerns regarding applicability	 Is there concern that the included patients do not match the review question? 'High' if the study only looked at a specific lesion category such as skin cancers only, or pigmented lesions only, or if they had a skewed patient demographics (e.g., 70% female, or geriatric population only). Our study is focuses on generalizability of teledermatology in all skin conditions. 	RISK: LOW/HIGH/ UNCLEAR
Domain 2: IND	EX TEST (Teledermatology consult)	
Signalling Q1	 Were the derms/physicians making the index diagnoses unaware of the reference diagnosis? Same dermatologist doing F2F and teledermatology consuls? Is there blinding of dermatologists to each other's diagnoses? In the study by Tan et al., the same dermatologist performed both the F2F and teledermatology consultations, which may introduce bias if they were not blinded to each other's diagnoses. 	Yes/No/Unclear
Signalling Q2	 Did the study require physicians to provide a specific primary diagnosis, or were they only required to provide a general grouping, e.g., inflammatory vs. skin neoplasm. Was analysis only performed for categories instead of complete primary diagnoses (such as skin neoplasm vs basal cell carcinoma)? Did physicians use standardized referral/consult sheet with set diagnoses? Did they group similar / synonymous diagnoses (e.g dermatitis / eczema together? Was a non-specialist in charge of comparing diagnoses and deciding if there was agreement? In the study by Warshaw et al., physicians were required to provide a categorical or pooled diagnosis (e.g., skin neoplasm instead of basal cell carcinoma), which may introduce bias and reduce applicability. 	Yes/No/Unclear
Risk of bias	Could the conduct (technology used for taking images/viewing images) or interpretation (what constituted primary diagnosis/ complete agreement) of the index test have introduced bias?	RISK: LOW/HIGH/ UNCLEAR
Concerns	Is there concern that the index test, its conduct, or interpretation differ from the review question?	RISK: LOW/HIGH/ UNCLEAR
regarding applicability		
applicability	ERENCE TEST (F2F, in some cases histopathology)	

Risk of bias	Could the patient flow have introduced bias?	RISK: LOW/HIGH/UNCLEAR
Signalling Q4	 Were all patients included in the analysis? In studies like Gabel et al., all patients were included in the analysis, reducing the risk of bias. 	Yes/No/Unclear
Signalling Q3	 Did all patients receive the same reference standard? In studies like Sola-Ortigosa et al., all patients received a reference standard, either histopathology or F2F consultation. Did a paper use histopathology as the reference standard for cancer lesions but F2F for non-cancer lesions? Were all patients evaluated by physicians with similar level of experience? 	Yes/No/Unclear
Signalling Q2	Did all patients receive a reference standard?	
Signalling Q1	 Was there an appropriate interval between index test(s) and reference standard? Was the time interval greater than 2 weeks? In studies where the same dermatologist did F2F and teledermatology -> Say 'No' regardless of the time between teledermatology and F2F consult. In the study by Gerhardt et al., there was a 30-day interval between teledermatology and F2F, which may introduce bias. 	Yes/No/Unclear
	DW AND TIMING	
Concerns regarding applicability	Could the reference standard, its conduct, or its interpretation have introduced bias? - Applicability was impacted by physician specialization.	RISK: LOW/HIGH/ UNCLEAR
Risk of bias	 Could the reference standard, its conduct, or its interpretation have introduced bias? In studies where the reference standard was a consultation with a non-specialist, such as Costello et al., there is a risk of introducing bias. 	RISK: LOW/HIGH/ UNCLEAR
Signalling Q2	Is the reference standard likely to correctly classify the target condition?	Yes/No/Unclear
	What was the order of visits? What was the experience level and specialization of the F2F physician? Did the same dermatologist do both teledermatology and F2F consult?	

В

	Risk of bias domains				
	D1	D2	D3	D4	Overall
Altieri, et al, 2017	+	+	+	+	+
Azfar, et al, 2014	+	+	+	+	
Barbieri, et al, 2014	•	+	-	+	-
Barcaui, et al, 2018	+	+		8	
Batalla, et al, 2015	-	+	+	+	- 8 8
Borve, et al, 2012	+	+	8	8	
Borve, et al, 2013		-	+	+	
Carter, et al, 2017		-	+	8	8
Chen, et al, 2010	+	8	8	-	8
Clarke, et al, 2021	8	×	+	+	
Costello, et al, 2019		+	8	X	
Duong, et al, 2014	+	-	8	×	8
Gabel, et al, 2021		(+)	+	8	
Gatica, 2015	Ŧ	+	-	+	
Gerhardt, et al, 2021		-	X	×	
Giavina-Bianchi, et al, Oct 2020		+	-	Ň	
Giavina-Bianchi, et al, Nov 2020		+	ē	x	X
Gonzalez-Coloma, et al, 2019	Ŧ	× ×		+	
Goulart-Silveira, et al, 2019		+	+	X	
Jones, et al, 2021	•	-	+	+	-
Keller, et al, 2020	+	+	+	+	(+)
Lamel, et al, 2012	-	-	+	+	-
Marchell, et al, 2017	+	+	+	+	
Muir, et al, 2011		+	+	X	
Nami, et al, 2015	8	+	+	+	
Okita, et al, 2016	+	+	+	+	8
Patro, et al, 2015	+	+	8	+	8
Piccoli, et al, 2015		+		×	
Ribas, et al, 2010		+		×	8
Rubegni, et al, 2011	•	+	+	+	(+)
Saleh, et al, 2017	•	+	+	+	+
Senel, et al, 2013	8	Ŧ	+	X	
Sola-Ortigosa, et al, 2020	Ŧ	+	ő	X	
Tan, et al, 2010		x	(+)	x	
Tran, et al, 2011	+	+	ŏ	+	
Vano-Galvan, et al, 2010	Ŧ	+	+	+	
Vestergaard, et al, 2020	H	(+)	+	X	
Warshaw, et al, 2015		-	Ŧ	+	-
Zanini, 2013	-	A	(+)	-	<u> </u>
Zink, et al, 2017, July	•	-			
Zink, et al, 2017, Sept	A	H	+	—	(+)
	Domains: D1: Patient sel D2: Index test. D3: Reference D4: Flow & tim	standard.		Juc	Igement High Some concer Low

eTable 6. Risk of Bias (ROB) results.

(A) QUADAS-2 summary sheet. (B,C) QUADAS-2 RoB analysis of 41 observational studies. (D,E) ROB-2 analysis of three randomized controlled trials.

eReferences.

1. Hoyer P, Ahatov R, Ross L. Utilization of telehealth services during the COVID-19 pandemic. Cutis. 2020;106(2):70-1.

2. Gomez Arias PJ, Arias Blanco MC, Redondo Sanchez J, et al. [Usefulness and efficiency of teledermoscopy in skin cancer management in primary care]. Semergen. 2020;46(8):553-9.

3. Jacoby T, Woolard A, Chamoun S, et al. Asynchronous Teledermatology Assessment of Young Adult Acne Likely Concordant With In-Person Evaluation. Journal of drugs in dermatology : JDD. 2021;20(4):432-5.

4. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276-82.

5. Altieri L, Hu J, Nguyen A, et al. Interobserver reliability of teledermatology across all Fitzpatrick skin types. Journal of telemedicine and telecare. 2017;23(1):68-73.

6. Castelo-Soccio L, Kovarik CL, Azfar RS, et al. Reliability and validity of mobile teledermatology in human immunodeficiency virus-positive patients in botswana a pilot study. JAMA Dermatology. 2014;150(6):601-7.

7. Barbieri JS, Nelson CA, James WD, et al. The reliability of teledermatology to triage inpatient dermatology consultations. JAMA Dermatology. 2014;150(4):419-24.

8. Barcaui CB, Lima PMO. Application of teledermoscopy in the diagnosis of pigmented lesions. International Journal of Telemedicine and Applications. 2018;2018((Barcaui) Adjunct Professor of Dermatology, Faculty of Medical Sciences, State University of Rio de Janeiro, PhD in Medicine (Dermatology), University of Sao Paulo, Dermatology Department, Pedro Ernesto University Hospital, Rio de Janeiro State University):1624073.

9. Batalla A, Suh-Oh HJ, Abalde T, et al. Teledermatology in Paediatrics. Observations in daily clinical practice. Anales de pediatria (Barcelona, Spain : 2003). 2016;84(6):324-30.

10. Borve A, Holst A, Gente-Lidholm A, et al. Use of the mobile phone multimedia messaging service for teledermatology. Journal of Telemedicine and Telecare. 2012;18(5):292-6.

11. Borve A, Terstappen K, Sandberg C, et al. Mobile teledermoscopy-there's an app for that! Dermatology practical & conceptual. 2013;3(2):41-8.

12. Carter ZA, Li X, Goldman S, et al. Creation of an internal teledermatology store-and-forward system in an existing electronic health record: A pilot study in a safety-net public health and hospital system. JAMA Dermatology. 2017;153(7):644-50.

13. Chen TS, Goldyne ME, Mathes EFD, et al. Pediatric teledermatology: Observations based on 429 consults. Journal of the American Academy of Dermatology. 2010;62(1):61-6.

14. Clarke EL, Reichenberg JS, Ahmed AM, et al. The utility of teledermatology in the evaluation of skin lesions. Journal of telemedicine and telecare. 2021(9506702, cpj):1357633X20987423.

15. Costello CM, Cumsky HJL, Maly CJ, et al. Improving Access to Care Through the Establishment of a Local, Teledermatology Network. Telemedicine journal and e-health : the official journal of the American Telemedicine Association. 2020;26(7):935-40.

16. Duong TA, Cordoliani F, Julliard C, et al. Emergency department diagnosis and management of skin diseases with real-time teledermatologic expertise. JAMA Dermatology. 2014;150(7):743-7.

17. Gabel CK, Nguyen E, Karmouta R, et al. Use of teledermatology by dermatology hospitalists is effective in the diagnosis and management of inpatient disease. Journal of the American Academy of Dermatology. 2021;84(6):1547-53.

18. Gatica JL, Bertolo S, Morales E, et al. Store-and-forward teledermatogy in Chile: A contribution to primary health care. Piel. 2015;30(3):148-54.

19. Gerhardt CA, Foels R, Grewe S, et al. Assessing the Diagnostic Accuracy of Teledermatology Consultations at a Local Veterans Affairs Dermatology Clinic. Cureus. 2021;13(6):e15406.

20. Giavina-Bianchi M, Azevedo MFD, Sousa RM, et al. Part II: Accuracy of Teledermatology in Skin Neoplasms. Frontiers in medicine. 2020;7(101648047):598903.

21. Giavina-Bianchi M, Sousa R, Cordioli E. Part I: Accuracy of Teledermatology in Inflammatory Dermatoses. Frontiers in medicine. 2020;7(101648047):585792.

22. Keller JJ, Johnson JP, Latour E. Inpatient teledermatology: Diagnostic and therapeutic concordance among a hospitalist, dermatologist, and teledermatologist using store-and-forward teledermatology. Journal of the American Academy of Dermatology. 2020;82(5):1262-7.

23. Lamel SA, Haldeman KM, Ely H, et al. Application of mobile teledermatology for skin cancer screening. Journal of the American Academy of Dermatology. 2012;67(4):576-81.

24. Muir J, Xu C, Singh P, et al. Incorporating teledermatology into emergency medicine. EMA - Emergency Medicine Australasia. 2011;23(5):562-8.

 Nami N, Rubegni P, Fimiani M, et al. Concordance and Time Estimation of Store-and-Forward Mobile Teledermatology Compared to Classical Face-to-Face Consultation. Acta Dermato-Venereologica. 2015;95(1):35-9.
 Okita AL, Molina Tinoco LJ, Criado PR, et al. Use of Smartphones in Telemedicine: Comparative Study Between Standard and Teledermatological Evaluation of High-Complex Care Hospital Inpatients. Telemedicine journal and e-health : the official journal of the American Telemedicine Association. 2016;22(9):755-60.

27. Patro BK, Tripathy JP, De D, et al. Diagnostic agreement between a primary care physician and a teledermatologist for common dermatological conditions in North India. Indian dermatology online journal. 2015;6(1):21-6.

Ribas J, Schettini APM, Ribas CBDR, et al. Agreement between dermatological diagnoses made by live examination compared to analysis of digital images. Anais Brasileiros de Dermatologia. 2010;85(4):441-7.
 Rios-Yuil JM. [Correlation between face-to-face assessment and telemedicine for the diagnosis of skin disease in case conferences]. Actas dermo-sifiliograficas. 2012;103(2):138-43.

30. Romero Aguilera G, Cortina De La Calle P, Vera Iglesias E, et al. Interobserver reliability of store-and-forward teledermatology in a clinical practice setting. Actas Dermo-Sifiliograficas. 2014;105(6):605-13.

31. Romero G, Sanchez P, Garcia M, et al. Randomized controlled trial comparing store-and-forward teledermatology alone and in combination with web-camera videoconferencing. Clinical and Experimental Dermatology. 2010;35(3):311-7.

32. Rubegni P, Nami N, Poggiali S, et al. Geriatric teledermatology: Store-and-forward vs. face-to-face examination. Journal of the European Academy of Dermatology and Venereology. 2011;25(11):1334-9.

33. Saleh N, Abdel Hay R, Hegazy R, et al. Can teledermatology be a useful diagnostic tool in dermatology practice in remote areas? An Egyptian experience with 600 patients. Journal of telemedicine and telecare. 2017;23(2):233-8.

34. Sola-Ortigosa J, Munoz-Santos C, Masat-Tico T, et al. The Role of Teledermatology and Teledermoscopy in the Diagnosis of Actinic Keratosis and Field Cancerization. The Journal of investigative dermatology. 2020;140(10):1976-84.e4.

35. Tan E, Yung A, Oakley A, et al. Successful triage of patients referred to a skin lesion clinic using teledermoscopy (IMAGE IT trial). British Journal of Dermatology. 2010;162(4):803-11.

36. Tran K, Ayad M, Monir S, et al. Mobile teledermatology in the developing world: Implications of a feasibility study on 30 Egyptian patients with common skin diseases. Journal of the American Academy of Dermatology. 2011;64(2):302-9.

37. Vano-Galvan S, Aguayo-Leiva I, Rios-Buceta L, et al. Store-and-forward teledermatology: Assessment of validity in a series of 2000 observations. Actas Dermo-Sifiliograficas. 2011;102(4):277-83.

38. Vestergaard T, Prasad SC, Schuster A, et al. Diagnostic accuracy and interobserver concordance: teledermoscopy of 600 suspicious skin lesions in Southern Denmark. Journal of the European Academy of Dermatology and Venereology : JEADV. 2020;34(7):1601-8.

39. Gravely AA, Warshaw EM, Nelson DB. Reliability of store and forward teledermatology for skin neoplasms. Journal of the American Academy of Dermatology. 2015;72(3):426-35.

40. Zanini M. Analyze of diagnostic concordance between face-to-face and teledermatology diagnosis. Medicina Cutanea Ibero-Latino-Americana. 2013;41(2):60-2.

41. Zink A, Kolbinger A, Leibl M, et al. The value of teledermatology using a mobile app compared to conventional dermatology. European Journal of Dermatology. 2017;27(4):429-31.

42. Zink A, Kolbinger A, Leibl M, et al. Teledermoscopy by mobile phones: Reliable help in the diagnosis of skin lesions? Hautarzt. 2017;68(11):890-5.

43. Marchell R, Locatis C, Liu W-L, et al. Comparing High Definition Live Interactive and Store-and-Forward Consultations to In-Person Examinations. Telemedicine journal and e-health : the official journal of the American Telemedicine Association. 2017;23(3):213-8.

44. Jones L, Jameson M, Oakley A. Remote Skin Cancer Diagnosis: Adding Images to Electronic Referrals Is More Efficient Than Wait-Listing for a Nurse-Led Imaging Clinic. Cancers (Basel). 2021;13(22).

45. Gonzalez Coloma F, Sandoval Garces M, Gedda Quiroga V, et al. Teledermatology in Remote Parts of Chile: Experience in 4 Isolated Rural Areas. Actas dermo-sifiliograficas. 2019;110(8):653-8.

46. Goulart Silveira CE, Carcano C, Mauad EC, et al. Call phone usefulness to improve the skin cancer screening: preliminary results and critical analysis of mobile app development. Rural & Remote Health. 2019;19(1):1-7.

47. Piccoli MF, Amorim BDB, Wagner HM, et al. Teledermatology protocol for screening of Skin cancer. Anais Brasileiros de Dermatologia. 2015;90(2):202-10.

48. Senel E, Baba M, Durdu M. The contribution of teledermatoscopy to the diagnosis and management of non-melanocytic skin tumours. Journal of Telemedicine and Telecare. 2013;19(1):60-3.

49. Gravely AA, Nelson DB, Warshaw EM. Accuracy of teledermatology/teledermoscopy and clinic-based dermatology for specific categories of skin neoplasms. Journal of the American Academy of Dermatology. 2010;63(2):348-52.