## **Supporting information**

## Discovery of 5-phenylpyrazolopyrimidinone analogues as potent antitrypanosomal agents with *in vivo* efficacy

Yang Zheng<sup>a,1</sup>, Magali van den Kerkhof<sup>b,1</sup>, Tiffany van der Meer<sup>a</sup>, Sheraz Gul<sup>c,d</sup>, Maria Kuzikov<sup>c,d</sup>, Bernhard Ellinger<sup>c,d</sup>, Iwan J.P. de Esch<sup>a</sup>, Marco Siderius<sup>a</sup>, An Matheeussen<sup>b</sup>, Louis Maes<sup>b</sup>, Geert Jan Sterk<sup>a</sup>, Guy Caljon<sup>b,1\*</sup> and Rob Leurs<sup>a,1\*</sup>

<sup>a</sup> Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.

<sup>b</sup> Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

<sup>c</sup> Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany.

<sup>d</sup> Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 22525 Hamburg, Germany

<sup>1</sup> Authors contributed equally to this manuscript.

\* Corresponding authors: guy.caljon@uantwerpen.be (Guy Caljon); r.leurs@vu.nl (Rob Leurs).

## Table of contents

| Figure S1. Structures of approved HAT treatments.                                                       | Page S2       |
|---------------------------------------------------------------------------------------------------------|---------------|
| Table S1. Physicochemical properties of 1 (BIPPO).                                                      | Page S2       |
| Table S2. Phenotypic activity of close BIPPO analogues against T. b. brucei, T. cruzi                   |               |
| and L. infantum.                                                                                        | Page S3       |
| Figure S2. Antitrypanosomal potency of 23, 30 and 31.                                                   | Page S4       |
| Figure S3. Anti- <i>Tbr</i> PDEB1 activity of <b>30</b> .                                               | Page S4       |
| Table S2. Safety profile of analogue <b>30</b> (NPD-2975) from <i>Eurofins</i> .                        | Page S5       |
| Table S3. In vitro metabolic stability of <b>30</b> using mouse, rat and human S9 microsomal fractions. | Page S6       |
| Table S4. Chemical characterization of final compounds.                                                 | Page S7       |
| Table S5. Antitrypanosomal potency of final compounds.                                                  | Page S8-9     |
| Figure S4-S142. LCMS, <sup>1</sup> H NMR, <sup>13</sup> C NMR and 2D NMR spectroscopy data.             | Page S10-S100 |



Figure S1. Structures of approved HAT treatments.

Table S1. Physicochemical properties of 1 (BIPPO).

| Compound No.                  | 1 (BIPPO) |
|-------------------------------|-----------|
| PPB-Mouse                     | 88.6%     |
| PPB-Human                     | 88.3%     |
| Solubility (mg/L) @pH 2.2     | 51        |
| Solubility (mg/L) @pH 4.5     | 50        |
| Solubility (mg/L) @pH 6.8     | 47        |
| t <sub>0.5</sub> -Mouse (min) | 29        |
| Clint (microL/min/mg protein) | 48        |
| t <sub>0.5</sub> -Human (min) | >130      |
| Clint (microL/min/mg protein) | <5.3      |

| Cada                 | D1                                                            | T. b. brucei                   | T. cruzi                       | L. infantum                    | MRC-5                          |
|----------------------|---------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Code                 | K.                                                            | pIC <sub>50</sub> <sup>a</sup> | pIC <sub>50</sub> <sup>a</sup> | pIC <sub>50</sub> <sup>a</sup> | pIC <sub>50</sub> <sup>a</sup> |
| 1 (BIPPO)            | Bn                                                            | $4.5\pm0.2$                    | < 4.2                          | < 4.2                          | < 4.2                          |
| <b>9</b> (NPD-2960)  | 4-PyCH <sub>2</sub>                                           | < 4.2                          | < 4.2                          | < 4.2                          | < 4.2                          |
| <b>10</b> (NPD-0434) | C <sub>6</sub> H <sub>5</sub> OCH <sub>2</sub>                | < 4.2                          | < 4.2                          | < 4.2                          | < 4.2                          |
| 11 (NPD-3281)        | C <sub>6</sub> H <sub>5</sub> (CH <sub>2</sub> ) <sub>2</sub> | < 4.2                          | < 4.2                          | < 4.2                          | < 4.2                          |
| 12 (NPD-3380)        | Me                                                            | < 4.2                          | < 4.2                          | < 4.2                          | < 4.2                          |
| 13 (NPD-3645)        | "Bu                                                           | $5.0\pm0.0$                    | < 4.2                          | < 4.2                          | < 4.2                          |
| 14 (NPD-3379)        | <sup>i</sup> Pr                                               | $4.4\pm0.1$                    | < 4.2                          | < 4.2                          | < 4.2                          |
| 15 (NPD-3200)        | Ph                                                            | $6.6\pm0.1$                    | < 4.2                          | < 4.2                          | < 4.2                          |
| 16 (NPD-3488)        | 4-Py                                                          | $5.7\pm0.0$                    | < 4.2                          | < 4.2                          | < 4.2                          |
| 17 (NPD-2973)        | 4-thiazole                                                    | $4.9\pm0.0$                    | < 4.2                          | < 4.2                          | < 4.2                          |

Table S2. Phenotypic activity of close BIPPO analogues against T. b. brucei, T. cruzi and L. infantum.

<sup>*a*</sup> Mean values of at least two independent experiments.



Figure S2. Antitrypanosomal potency of 15, 25, 26, 30 32 and 37. Representative drug susceptibility curves (mean  $\pm$  standard deviation) of 15 (green), 25 (blue), 26 (brown), 30 (black), 32 (red) and 37 (purple) against *T. brucei* with each biological replicate comprised of at least three technical replicates.



Figure S3. Anti-*Tbr*PDEB1 activity of **30**. Representative dose-response curves (mean  $\pm$  standard error of the mean) of **30** (red) for inhibition of the enzymatic activity of *Tbr*PDEB1 catalytic domain with **NPD-0001** (black) as a reference compound.

|                |            | NPD-2975    |             |         |  |  |  |
|----------------|------------|-------------|-------------|---------|--|--|--|
| DiscoverX Gene | Assav Mode | 10 µM       |             |         |  |  |  |
| Symbol         | rosuy mouc | % Response  |             |         |  |  |  |
| GPCRs          |            | Replicate 1 | Replicate 2 | Average |  |  |  |
| ADORA2A        | Agonist    | 0.0         | 1.7         | 0.9     |  |  |  |
| ADORA2A        | Antagonist | 15.7        | 19.2        | 17.4    |  |  |  |
| ADRA1A         | Agonist    | 1.2         | 1.6         | 1.4     |  |  |  |
| ADRA1A         | Antagonist | 0.1         | 0.0         | 0.1     |  |  |  |
| ADRA2A         | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| ADRA2A         | Antagonist | 27.1        | 32.8        | 30.0    |  |  |  |
| ADRB1          | Agonist    | 0.3         | 1.1         | 0.7     |  |  |  |
| ADRB1          | Antagonist | 0.0         | 0.0         | 0.0     |  |  |  |
| ADRB2          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| ADRB2          | Antagonist | 0.0         | 0.0         | 0.0     |  |  |  |
| AVPR1A         | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| AVPR1A         | Antagonist | 0.0         | 0.0         | 0.0     |  |  |  |
| CCKAR          | Agonist    | 0.4         | 0.0         | 0.2     |  |  |  |
| CCKAR          | Antagonist | 21.3        | 33.4        | 27.4    |  |  |  |
| CHRM1          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| CHRM1          | Antagonist | 1.5         | 0.0         | 0.7     |  |  |  |
| CHRM2          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| CHRM2          | Antagonist | 32.4        | 24.9        | 28.7    |  |  |  |
| CHRM3          | Agonist    | 0.5         | 1.8         | 1.2     |  |  |  |
| CHRM3          | Antagonist | 15.1        | 6.7         | 10.9    |  |  |  |
| CNR1           | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| CNR1           | Antagonist | 8.9         | 12.4        | 10.7    |  |  |  |
| CNR2           | Agonist    | 2.0         | 10.0        | 6.0     |  |  |  |
| CNR2           | Antagonist | 4.1         | 3.8         | 4.0     |  |  |  |
| DRD1           | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| DRD1           | Antagonist | 3.5         | 2.9         | 3.2     |  |  |  |
| DRD2S          | Agonist    | 2.5         | 1.9         | 2.2     |  |  |  |
| DRD2S          | Antagonist | 1.5         | 3.0         | 2.3     |  |  |  |
| EDNRA          | Agonist    | 2.0         | 1.9         | 2.0     |  |  |  |
| EDNRA          | Antagonist | 38.5        | 20.0        | 29.3    |  |  |  |
| HRH1           | Agonist    | 0.7         | 2.7         | 1.7     |  |  |  |
| HRH1           | Antagonist | 0.0         | 6.6         | 3.3     |  |  |  |
| HRH2           | Agonist    | 1.2         | 0.0         | 0.6     |  |  |  |
| HRH2           | Antagonist | 0.0         | 0.0         | 0.0     |  |  |  |
| HTR1A          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| HTR1A          | Antagonist | 14.8        | 28.1        | 21.5    |  |  |  |
| HTR1B          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| HTR1B          | Antagonist | 9.3         | 9.6         | 9.5     |  |  |  |
| HTR2A          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| HTR2A          | Antagonist | 12.3        | 10.7        | 11.5    |  |  |  |
| HTR2B          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| HTR2B          | Antagonist | 5.2         | 21.0        | 13.1    |  |  |  |
| OPRD1          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| OPRD1          | Antagonist | 13.8        | 18.5        | 16.2    |  |  |  |
| OPRK1          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| OPRK1          | Antagonist | 14.8        | 14.3        | 14.6    |  |  |  |
| OPRM1          | Agonist    | 0.0         | 0.0         | 0.0     |  |  |  |
| OPRM1          | Antagonist | 26.4        | 33.8        | 30.1    |  |  |  |
|                |            |             |             |         |  |  |  |

|                 |             | NPD-2975    |             |         |  |  |  |
|-----------------|-------------|-------------|-------------|---------|--|--|--|
| DiscoverX Gene  | Assav Mode  | 10 µM       |             |         |  |  |  |
| Symbol          | - Body mout | % Response  |             |         |  |  |  |
| No. 1           |             |             |             |         |  |  |  |
| Nuclear Hormone | Receptors   | Replicate 1 | Replicate 2 | Average |  |  |  |
| AR              | Agonist     | 0.0         | 0.0         | 0.0     |  |  |  |
| AR              | Antagonist  | 11.7        | 0.0         | 5.8     |  |  |  |
| GR              | Agonist     | 0.0         | 0.0         | 0.0     |  |  |  |
| GR              | Antagonist  | 0.0         | 0.0         | 0.0     |  |  |  |
| Transporte      | rs          | Replicate 1 | Replicate 2 | Average |  |  |  |
| DAT             | Blocker     | 17.2        | 12.2        | 14.7    |  |  |  |
| NET             | Blocker     | 0.0         | 0.0         | 0.0     |  |  |  |
| SERT            | Blocker     | 0.0         | 0.0         | 0.0     |  |  |  |
| Ion Channe      | els         | Replicate 1 | Replicate 2 | Average |  |  |  |
| CAV1.2          | Blocker     | 0.0         | 0.0         | 0.0     |  |  |  |
| GABAA           | Opener      | 2.3         | 4.3         | 3.3     |  |  |  |
| GABAA           | Blocker     | 0.0         | 6.3         | 3.1     |  |  |  |
| hERG            | Blocker     | 0.0         | 60.9        | 30.5    |  |  |  |
| HTR3A           | Opener      | 0.0         | 0.0         | 0.0     |  |  |  |
| HTR3A           | Blocker     | 7.4         | 9.1         | 8.3     |  |  |  |
| KvLQT1/minK     | Opener      | 2.5         | 0.7         | 1.6     |  |  |  |
| KvLQT1/minK     | Blocker     | 3.4         | 1.3         | 2.3     |  |  |  |
| nAChR(a4/b2)    | Opener      | 1.9         | 0.0         | 0.9     |  |  |  |
| nAChR(a4/b2)    | Blocker     | 40.5        | 19.7        | 30.1    |  |  |  |
| NAV1.5          | Blocker     | 0.0         | 4.6         | 2.3     |  |  |  |
| NMDAR (1A/2B)   | Opener      | 7.0         | 0.0         | 3.5     |  |  |  |
| NMDAR (1A/2B)   | Blocker     | 5.2         | 0.0         | 2.6     |  |  |  |
| Non-Kinase En   | zymes       | Replicate 1 | Replicate 2 | Average |  |  |  |
| AChE            | Inhibitor   | 0.0         | 0.0         | 0.0     |  |  |  |
| COX1            | Inhibitor   | 8.5         | 17.0        | 12.7    |  |  |  |
| COX2            | Inhibitor   | 0.0         | 0.0         | 0.0     |  |  |  |
| MAOA            | Inhibitor   | 12.6        | 0.0         | 6.3     |  |  |  |
| PDE3A           | Inhibitor   | 0.0         | 0.0         | 0.0     |  |  |  |
| PDE4D2          | Inhibitor   | 79.2        | 71.7        | 75.5    |  |  |  |
| Kinases         |             | Replicate 1 | Replicate 2 | Average |  |  |  |
| INSR            | Inhibitor   | 0.0         | 0.5         | 0.3     |  |  |  |
| LCK             | Inhibitor   | 35.4        | 46.0        | 40.7    |  |  |  |
| ROCK1           | Inhibitor   | 7.7         | 7.5         | 7.6     |  |  |  |
| VEGFR2          | Inhibitor   | 0.0         | 0.0         | 0.0     |  |  |  |

Table S3. Safety profile of analogue **30** (NPD-2975) from *Eurofins*.

| Microsomes | Phase-I/II  | Time (min) |          | <b>30</b> <sup><i>a</i></sup> | Ľ   | <b>Diclofenac</b> <sup>a</sup> |            |  |  |
|------------|-------------|------------|----------|-------------------------------|-----|--------------------------------|------------|--|--|
|            |             | 0          |          | 100                           |     | 10                             | 00         |  |  |
|            |             | 15         | 73       | ± 2.8                         | 85  | ±                              | 0.0        |  |  |
|            | СҮР450 -    | 30         | 55       | ± 1.8                         | 62  | ±                              | 7.1        |  |  |
|            | NADPH       | 60         | 33       | ± 3.4                         | 49  | ±                              | 2.4        |  |  |
| N          |             |            | (1       | n=2)                          |     | (n=                            | =2)        |  |  |
| Mouse _    |             | 0          |          | 100                           |     | 10                             | 00         |  |  |
|            |             | 15         | 93       | ± 4.2                         | 56  | ±                              | 16         |  |  |
|            | UGT enzymes | 30         | 81       | ± 2.7                         | 46  | ±                              | 10         |  |  |
|            |             | 60         | 71       | ± 5.4                         | 39  | ±                              | 0.0        |  |  |
|            |             |            | (1       | n=2)                          |     | (n=2)                          |            |  |  |
|            |             | 0          |          |                               | 100 |                                |            |  |  |
|            | CN/D450     | 15         | 93       | ± 10.2                        | 73  | ±                              | 15.1       |  |  |
|            | СҮР450 -    | 30         | 92       | ± 2.4                         | 57  | ±                              | 24.0       |  |  |
|            | NADPH       | 60         | 78       | ± 0.2                         | 34  | ±                              | 36.5       |  |  |
| Pat        |             |            | (1       | n=2)                          |     | (n=                            | =3)        |  |  |
| Kat _      |             | 0          |          | 100                           |     | 100                            |            |  |  |
|            |             | 15         | 84       | ± 4.9                         | 42  | ±                              | 21.8       |  |  |
|            | UGT enzymes | 30         | 87       | ± 3.6                         | 27  | ±                              | 23.2       |  |  |
|            |             | 60         | 76       | ± 7.1                         | 22  | ±                              | 17.9       |  |  |
|            |             |            | (1       | n=2)                          |     | (n=                            | =3)        |  |  |
|            |             | 0          |          | 100                           |     | 10                             | 00         |  |  |
|            | CVP450 -    | 15         | 102      | ± 5.3                         | 43  | ±                              | 3.5        |  |  |
|            | NADPH       | 30         | 99       | ± 3.1                         | 14  | ±                              | 1.4        |  |  |
|            |             | 60         | 92       | ± 3.1                         | 3   | ±                              | 0.0        |  |  |
| Human -    |             |            | (1       | n=3)                          |     | (n=                            | =2)        |  |  |
|            |             | 0          |          | 100                           |     | 10                             | 00         |  |  |
|            | LOT         | 15         | 81       | ± 1.1                         | 21  | ±                              | 0.7        |  |  |
|            | UGT enzymes | 30<br>60   | 79<br>75 | $\pm 2.9$<br>$\pm 2.2$        | 14  | ±<br>+                         | 1.4<br>0.7 |  |  |
|            |             | 00         | (1       | – ∠.∠<br>n=4)                 | 11  | <br>(n=                        | =2)        |  |  |

Table S4. In vitro metabolic stability of 30 using mouse, rat and human S9 microsomal fractions.

<sup>a</sup> Results are based on at least two repeats and are expressed as mean percentage remaining  $30 \pm$  standard error of mean (SEM).



| Code        | $\mathbb{R}^1$                                 | Formula                                                         | Yields<br>from <b>8</b> | LCMS<br>retention time | LCMS<br>purity at | HR-MS                 | $[M+H]^{+}$           |
|-------------|------------------------------------------------|-----------------------------------------------------------------|-------------------------|------------------------|-------------------|-----------------------|-----------------------|
|             |                                                |                                                                 |                         | (min)                  | 254 nm            | Calculated            | Found                 |
| 1           | Bn                                             | $C_{15}H_{16}N_4O$                                              | 68%                     | 3.66                   | >99%              | 269.1397              | 269.1385              |
| 9           | 4-PyCH <sub>2</sub>                            | $C_{14}H_{15}N_5O$                                              | 59%                     | 2.26                   | 98%               | 270.1349              | 270.1341              |
| 10          | C <sub>6</sub> H <sub>5</sub> OCH <sub>2</sub> | $C_{15}H_{16}N_4O_2$                                            | 60%                     | 3.80                   | >99%              | 285.1346              | 285.1341              |
| 11          | $C_6H_5(CH_2)_2$                               | $C_{16}H_{18}N_4O$                                              | 71%                     | 3.87                   | >99%              | 283.1553              | 283.1545              |
| 12          | Me                                             | $C_9H_{12}N_4O$                                                 | 90%                     | 2.46                   | >99%              | 193.1084              | 193.1090              |
| 13          | <sup>n</sup> Bu                                | $C_{12}H_{18}N_4O$                                              | 42%                     | 3.58                   | >99%              | 235.1553              | 235.1562              |
| 14          | <sup>i</sup> Pr                                | $C_{11}H_{16}N_4O$                                              | 87%                     | 3.42                   | >99%              | 221.1397              | 221.1405              |
| 15          | Ph                                             | $C_{14}H_{14}N_4O$                                              | 32%                     | 3.78                   | >99%              | $277.1060^{a}$        | $277.1070^{a}$        |
| 16          | 4-Py                                           | $C_{13}H_{13}N_5O$                                              | 33%                     | 2.63                   | >99%              | 256.1193              | 256.1186              |
| 17          | 4-thiazole                                     | $C_{11}H_{11}N_5OS$                                             | 54%                     | 3.40                   | >99%              | 262.0757              | 262.0756              |
| 18          | 2-F-Ph                                         | $C_{14}H_{13}FN_4O$                                             | 33%                     | 3.66                   | >99%              | 273.1146              | 273.1144              |
| 19          | 2-Cl-Ph                                        | C <sub>14</sub> H <sub>13</sub> ClN <sub>4</sub> O              | 56%                     | 3.66                   | >99%              | 289.0851              | 289.0850              |
| 20          | 2-Br-Ph                                        | C14H13BrN4O                                                     | 88%                     | 3.69                   | >99%              | 333.0346              | 333.0333              |
| 21          | 2-Me-Ph                                        | $C_{15}H_{16}N_4O$                                              | 43%                     | 3.79                   | >99%              | 269.1397              | 269.1405              |
| 22          | 2-OMe-Ph                                       | $C_{15}H_{16}N_4O_2$                                            | 5%                      | 3.96                   | >99%              | 285.1346              | 285.1333              |
| 23          | 3-F-Ph                                         | C <sub>14</sub> H <sub>13</sub> FN <sub>4</sub> O               | 37%                     | 3.98                   | 98%               | 295.0966 <sup>a</sup> | 295.0954 <sup>a</sup> |
| 24          | 3-Cl-Ph                                        | C <sub>14</sub> H <sub>13</sub> ClN <sub>4</sub> O              | 4%                      | 4.25                   | 99%               | 311.0670 <sup>a</sup> | 311.0676 <sup>a</sup> |
| 25          | 3-Me-Ph                                        | C15H16N4O                                                       | 63%                     | 4.10                   | >99%              | 269.1397              | 269.1386              |
| 26          | 3-OMe-Ph                                       | $C_{15}H_{16}N_4O_2$                                            | 33%                     | 3.87                   | >99%              | 285.1346              | 285.1339              |
| 27          | 3-OH-Ph                                        | $C_{14}H_{14}N_4O_2$                                            | 41%                     | 3.23                   | >99%              | 271.1190              | 271.1185              |
| 28          | 3-N(CH <sub>3</sub> ) <sub>2</sub> -Ph         | C <sub>16</sub> H <sub>19</sub> N <sub>5</sub> O                | 45%                     | 3.71                   | >99%              | 298.1662              | 298.1662              |
| 29          | 3-SO <sub>2</sub> CH <sub>3</sub> -Ph          | $C_{15}H_{16}N_4O_3S$                                           | 24%                     | 3.29                   | 95%               | 333.1016              | 333.1012              |
| 30          | 4-F-Ph                                         | C <sub>14</sub> H <sub>13</sub> FN <sub>4</sub> O               | 62%                     | 3.89                   | >99%              | 273.1146              | 273.1144              |
| 31          | 4-Cl-Ph                                        | C <sub>14</sub> H <sub>13</sub> ClN <sub>4</sub> O              | 37%                     | 4.32                   | 98%               | 289.0851              | 289.0839              |
| 32          | 4-Br-Ph                                        | C <sub>14</sub> H <sub>13</sub> BrN <sub>4</sub> O              | 54%                     | 4.38                   | >99%              | 333.0346              | 333.0347              |
| 33          | 4-OMe-Ph                                       | $C_{15}H_{16}N_4O_2$                                            | 58%                     | 3.86                   | >99%              | 285.1346              | 285.1343              |
| 34          | 4-O <sup>i</sup> Pr-Ph                         | $C_{17}H_{20}N_4O_2$                                            | 36%                     | 4.40                   | >99%              | 313.1659              | 313.1651              |
| 35          | 4-CF <sub>3</sub> -Ph                          | C <sub>15</sub> H <sub>13</sub> F <sub>3</sub> N <sub>4</sub> O | 42%                     | 4.43                   | >99%              | 345.0934 <sup>a</sup> | 345.0920 <sup>a</sup> |
| 36          | 4-OCF <sub>3</sub> -Ph                         | $C_{15}H_{13}F_{3}N_{4}O_{2}$                                   | 15%                     | 4.54                   | >99%              | 339.1063              | 339.1069              |
| 37          | 4-CN-Ph                                        | $C_{15}H_{13}N_5O$                                              | 37%                     | 3.69                   | >99%              | 280.1193              | 280.1182              |
| 38          | 4-COOMe-Ph                                     | $C_{16}H_{16}N_4O_3$                                            | 34%                     | 3.83                   | 97%               | 313.1295              | 313.1284              |
| 39          | 4-COOH-Ph                                      | $C_{15}H_{14}N_4O_3$                                            | 26%                     | 3.16                   | 99%               | 299.1139              | 299.1101              |
| 40          | 4-CONH2-Ph                                     | $C_{15}H_{15}N_5O_2$                                            | 18%                     | 2.76                   | 97%               | 320.1118 <sup>a</sup> | 320.1105 <sup>a</sup> |
| 41          | 4-SO <sub>2</sub> Me-Ph                        | C15H16N4O3S                                                     | 30%                     | 3.27                   | 97%               | 333.1016              | 333.1011              |
| 42          | 4-SO <sub>2</sub> NH <sub>2</sub> -Ph          | C14H15N5O3S                                                     | 19%                     | 2.96                   | >99%              | 334.0969              | 334.0953              |
| 43          | 4-NHCOCH <sub>3</sub> -Ph                      | $C_{16}H_{17}N_5O_2$                                            | 47%                     | 3.06                   | >99%              | 312.1455              | 312.1443              |
| 44          | 4-(N-piperidine)-Ph                            | $C_{19}H_{23}N_5O$                                              | 23%                     | 4.34                   | >99%              | 338.1975              | 338.1964              |
| 45          | 4-( <i>N</i> -methylpipera-                    | $C_{19}H_{24}N_6O$                                              | 35%                     | 2.53                   | 98%               | 353.2084              | 353.2078              |
| 46          | 4-tetrazole-Ph                                 | $C_{15}H_{14}N_8O$                                              | 26%                     | 3.10                   | >99%              | 323.1363              | 323.1357              |
| a 53 6 · 33 |                                                |                                                                 |                         |                        |                   |                       |                       |

 $a: [M+Na]^+.$ 

| Screening concentration (µM)   |          |          |                |          |          | IC.     | IC         |       |       |        |        |        |
|--------------------------------|----------|----------|----------------|----------|----------|---------|------------|-------|-------|--------|--------|--------|
| Code                           | 64       | 16       | 4              | 1        | 0.25     | 0.06    | 0.016      | 0.004 | 0.001 | 0.0002 | 10.50  | 10.90  |
|                                | 0        |          | _              |          | Gro      | wth inl | hibition ( | (%)   |       |        |        | μM     |
| 9 (NPD-2960)                   | 9        | 15       | 7              | 11       | 7        |         |            |       |       |        | > 64.0 | > 64.0 |
| 9 (NPD-2960)                   | )<br>15  | 8        | /              | /        | 0        |         |            |       |       |        | > 64.0 | > 64.0 |
| 10 (NPD-0434)                  | 15       | 5        | I              | 0        | 0        |         |            |       |       |        | > 64.0 | > 64.0 |
| 10 (NPD-0434)                  | 20       | 5        | 0              | 0        | 0        |         |            |       |       |        | > 64.0 | > 64.0 |
| 11 (NPD-3281)                  | 30       | 12       | 14             | 11       | 15       |         |            |       |       |        | > 64.0 | > 64.0 |
| 11 (NPD-3281)                  | 50       | 39       | 9              | 3        | 11       |         |            |       |       |        | 64.0   | > 64.0 |
| 12 (NPD-3380)                  | 0        | 0        | 0              | 0        | 0        |         |            |       |       |        | > 64.0 | > 64.0 |
| 12 (NPD-3380)                  | 9        |          | 2              | ſ        | 2        | 2       | 0          |       |       |        | > 64.0 | > 64.0 |
| <b>13</b> (NPD-3645)           | /5<br>72 | 6/       | 22             | 6        | 3        | 2       | 8          |       |       |        | 9.5    | > 64.0 |
| <b>13</b> (NPD-3645)           | 12       | 05       | 27             | 0        | 0        | 0       | 0          |       |       |        | 9.3    | > 64.0 |
| 14 (NPD-3379)                  | 66       | 23       | 0              | 0        | 0        |         |            |       |       |        | 38.2   | > 64.0 |
| 14 (NPD-33/9)                  | 60       | 1/       | 8              | 10       | 50       |         |            |       |       |        | 46.4   | > 64.0 |
| 15 (NPD-3200)                  | 80<br>70 | 84       | 84<br>70       | 84       | 50<br>20 |         |            |       |       |        | 0.3    | N.D.   |
| 15 (NPD-3200)                  | / 8      | 80       | /9             | /0       | 39<br>70 | 10      | 4          | 0     | 0     | C      | 0.4    | N.D.   |
| 15 (NPD-3200)                  | 89       | 8/       | 93             | 93       | 12       | 19      | 4          | 0     | 0     | 2      | 0.14   | 0.82   |
| 15 (NPD-3200)                  | 91       | 94       | 97             | 90       | 85       | 11      | 2          | 1     | 4     | 4      | 0.13   | 0.4/   |
| 16 (NPD-3488)                  | 85       | 85       | 69<br>75       | 27       | 8        | 0       | 10         |       |       |        | 2.1    | > 64.0 |
| 10 (NPD-3488)<br>17 (NDD 2072) | 82<br>80 | 80<br>54 | /3             | 21       | 21       | 9       | 12         |       |       |        | 1.8    | > 64.0 |
| 17 (NPD-2973)<br>17 (NDD 2072) | 80       | 54<br>59 | 10             | 3        | 3        |         |            |       |       |        | 14.1   | > 64.0 |
| 17 (NPD-29/3)<br>19 (NDD 2100) | 82<br>95 | 28<br>95 | )<br>04        | 50       | 0        |         |            |       |       |        | 13.0   | > 64.0 |
| 18 (NPD-3199)<br>18 (NDD-2100) | 85       | 85       | 84<br>70       | 28<br>49 | 11<br>5  |         |            |       |       |        | 0.8    | > 64.0 |
| 10 (NPD - 3199)                | 77       | 80       | 79             | 48       | 5        | 21      | 0          |       |       |        | 1.1    | > 64.0 |
| 19 (NPD-3538)                  | 12       | /1       | 12             | 48       | 0        | 21      | 0          |       |       |        | 1.1    | > 64.0 |
| 19 (NPD-3538)                  | 71       | 78       | 78             | 70       | 28       | 10      | 3          |       |       |        | 0.5    | > 64.0 |
| 20 (NPD-3539)                  | /1       | 70       | 13             | 20       | 18       | 19      | 1          |       |       |        | 0.8    | > 64.0 |
| 20 (NPD-3339)                  | 13       | //       | /0             | 00       | 20       | 5       | 15         |       |       |        | 0.0    | > 04.0 |
| 21 (NPD-3389)<br>21 (NDD 2580) | 03<br>70 | 90<br>77 | 01<br>70       | 01<br>70 | 33<br>73 | 20      | /          |       |       |        | 0.2    | 10.0   |
| 21 (NPD - 3509)                | /0<br>01 | 76       | 21             | 2        | 12       | 20      | 5          |       |       |        | 6.8    | > 64.0 |
| 22 (NID-3590)                  | 77       | 66       | 20             | 0        | 0        | 0       | 0          |       |       |        | 0.0    | > 64.0 |
| 22 (NID-3390)<br>23 (NDD 3202) | 87       | 86       | 29<br>85       | 86       | 75       | 0       | 0          |       |       |        | < 0.3  | > 64.0 |
| $23 (NPD_{-3202})$             | 07<br>81 | 81       | 80             | 80       | 63       |         |            |       |       |        | < 0.3  | > 64.0 |
| <b>23</b> (NPD-3202)           | 80       | 79       | 79             | 79       | 03<br>74 | 30      | 0          |       |       |        | 0.1    | > 64.0 |
| <b>23</b> (NPD-3202)           | 86       | 85       | 85             | 84       | 80       | 35      | 0          |       |       |        | 0.1    | > 64.0 |
| 23 (NPD-3591)                  | 80       | 81       | 78             | 79       | 50       | 14      | 7          |       |       |        | 0.1    | > 64.0 |
| 24 (NPD-3591)                  | 81       | 79       | 78             | 76       | 70       | 29      | 6          |       |       |        | 0.5    | > 64.0 |
| 25 (NPD-3382)                  | 85       | 84       | 84             | 79       | 37       | 2)      | 0          |       |       |        | 0.1    | N D    |
| 25 (NPD-3382)                  | 82       | 82       | 82             | 79       | 43       |         |            |       |       |        | 0.1    | ND     |
| 25 (NPD-3382)                  | 90       | 91       | 91             | 89       | 62       | 24      | 7          | 0     | 0     | 0      | 0.16   | 2.0    |
| 25 (NPD-3382)                  | 92       | 93       | 94             | 94       | 70       | 12      | 3          | 5     | 7     | 11     | 0.16   | 0.79   |
| <b>26</b> (NPD-3375)           | 92       | 85       | 82             | 66       | 28       | 12      | 5          | 5     | ,     | 11     | 0.10   | N D    |
| <b>26</b> (NPD-3375)           | 91       | 91       | 81             | 62       | 39       |         |            |       |       |        | 0.5    | N D    |
| 26 (NPD-3375)                  | 95       | 89       | 88             | 70       | 24       | 4       | 3          | 4     | 0     | 0      | 0.55   | 20.16  |
| <b>26</b> (NPD-3375)           | 97       | 91       | 91             | 75       | 30       | 5       | 4          | 5     | 8     | 13     | 0.55   | 3 67   |
| <b>27</b> (NPD-2974)           | 80       | 72       | 34             | 6        | 3        | -       | •          | 5     | 0     | 10     | 7.2    | > 64.0 |
| <b>27</b> (NPD-2974)           | 81       | 77       | 37             | 6        | 0        |         |            |       |       |        | 6.3    | > 64.0 |
| <b>28</b> (NPD-3381)           | 87       | 72       | 20             | Ő        | õ        |         |            |       |       |        | 8.9    | > 64.0 |
| <b>28</b> (NPD-3381)           | 84       | 70       | $\frac{1}{26}$ | Ő        | ő        |         |            |       |       |        | 8.5    | > 64.0 |
| <b>29</b> (NPD-3598)           | 79       | 24       | 4              | Ő        | 7        | 0       | 2          |       |       |        | 30.8   | > 64.0 |
| <b>30</b> (NPD-2975)           | 81       | 76       | 76             | 76       | ,<br>76  | 0       | -          |       |       |        | < 0.3  | N.D.   |
| <b>30</b> (NPD-2975)           | 83       | 81       | 84             | 82       | 79       |         |            |       |       |        | < 0.3  | N.D.   |
| <b>30</b> (NPD-2975)           | 85       | 84       | 84             | 84       | 82       | 45      | 33         |       |       |        | 0.1    | N.D.   |

Table S6. Anti-*T.brucei* potency of final compounds.

| <b>30</b> (NPD-2975) | 84 | 85 | 84 | 85 | 82 | 39 | 11 |   |    |    | 0.1    | N.D.   |
|----------------------|----|----|----|----|----|----|----|---|----|----|--------|--------|
| <b>30</b> (NPD-2975) | 90 | 90 | 91 | 93 | 96 | 69 | 10 | 3 | 2  | 0  | 0.04   | 0.18   |
| <b>30</b> (NPD-2975) | 91 | 93 | 93 | 94 | 96 | 65 | 7  | 8 | 11 | 11 | 0.04   | 0.19   |
| 31 (NPD-3204)        | 90 | 89 | 87 | 85 | 83 |    |    |   |    |    | < 0.3  | 64.0   |
| 31 (NPD-3204)        | 85 | 85 | 81 | 81 | 71 |    |    |   |    |    | < 0.3  | > 64.0 |
| 31 (NPD-3204)        | 82 | 83 | 81 | 81 | 74 | 39 | 3  |   |    |    | 0.1    | > 64.0 |
| 31 (NPD-3204)        | 89 | 89 | 87 | 84 | 81 | 36 | 0  |   |    |    | 0.1    | > 64.0 |
| 32 (NPD-2971)        | 81 | 78 | 76 | 67 | 28 |    |    |   |    |    | 0.5    | N.D.   |
| 32 (NPD-2971)        | 85 | 83 | 84 | 78 | 30 |    |    |   |    |    | 0.4    | N.D.   |
| 32 (NPD-2971)        | 92 | 92 | 93 | 91 | 73 | 18 | 6  | 3 | 0  | 3  | 0.14   | 0.93   |
| 32 (NPD-2971)        | 93 | 94 | 94 | 91 | 64 | 9  | 4  | 9 | 10 | 11 | 0.18   | 0.95   |
| 33 (NPD-2972)        | 83 | 79 | 74 | 52 | 10 |    |    |   |    |    | 0.9    | > 64.0 |
| 33 (NPD-2972)        | 85 | 83 | 82 | 59 | 18 |    |    |   |    |    | 0.7    | > 64.0 |
| <b>34</b> (NPD-3377) | 47 | 42 | 34 | 2  | 0  |    |    |   |    |    | > 64.0 | > 64.0 |
| <b>34</b> (NPD-3377) | 61 | 52 | 34 | 10 | 11 |    |    |   |    |    | 13.7   | > 64.0 |
| 35 (NPD-3201)        | 93 | 87 | 84 | 46 | 10 |    |    |   |    |    | 1.2    | 32.0   |
| 35 (NPD-3201)        | 91 | 83 | 79 | 42 | 0  |    |    |   |    |    | 1.3    | 53.8   |
| <b>36</b> (NPD-3597) | 95 | 83 | 70 | 42 | 6  | 2  | 2  |   |    |    | 1.5    | 35.9   |
| <b>36</b> (NPD-3597) | 81 | 78 | 73 | 52 | 32 | 6  | 8  |   |    |    | 0.9    | > 64.0 |
| <b>37</b> (NPD-3203) | 89 | 88 | 86 | 84 | 46 |    |    |   |    |    | 0.3    | N.D.   |
| <b>37</b> (NPD-3203) | 83 | 81 | 75 | 72 | 33 |    |    |   |    |    | 0.5    | N.D.   |
| <b>37</b> (NPD-3203) | 95 | 94 | 94 | 96 | 72 | 35 | 7  | 3 | 0  | 0  | 0.11   | 0.71   |
| <b>37</b> (NPD-3203) | 92 | 93 | 94 | 92 | 49 | 7  | 3  | 4 | 7  | 9  | 0.26   | 0.94   |
| <b>38</b> (NPD-3305) | 48 | 9  | 6  | 5  | 2  |    |    |   |    |    | > 64.0 | > 64.0 |
| <b>38</b> (NPD-3305) | 43 | 10 | 2  | 5  | 0  |    |    |   |    |    | > 64.0 | > 64.0 |
| <b>39</b> (NPD-3489) | 4  | 3  | 0  | 0  | 0  |    |    |   |    |    | > 64.0 | > 64.0 |
| <b>40</b> (NPD-3371) | 5  | 2  | 0  | 0  | 0  |    |    |   |    |    | > 64.0 | > 64.0 |
| <b>40</b> (NPD-3371) | 4  | 7  | 0  | 5  | 5  |    |    |   |    |    | > 64.0 | > 64.0 |
| <b>41</b> (NPD-3376) | 52 | 22 | 1  | 0  | 0  |    |    |   |    |    | 58.4   | > 64.0 |
| <b>41</b> (NPD-3376) | 62 | 16 | 15 | 5  | 14 |    |    |   |    |    | 44.6   | > 64.0 |
| <b>42</b> (NPD-3372) | 70 | 26 | 5  | 0  | 0  |    |    |   |    |    | 34.1   | > 64.0 |
| <b>42</b> (NPD-3372) | 64 | 20 | 6  | 6  | 0  |    |    |   |    |    | 41.2   | > 64.0 |
| <b>43</b> (NPD-3280) | 12 | 11 | 11 | 12 | 15 |    |    |   |    |    | > 64.0 | > 64.0 |
| <b>43</b> (NPD-3280) | 13 | 26 | 13 | 14 | 4  |    |    |   |    |    | > 64.0 | > 64.0 |
| 44 (NPD-3283)        | 38 | 35 | 29 | 20 | 20 |    |    |   |    |    | > 64.0 | > 64.0 |
| 44 (NPD-3283)        | 83 | 48 | 28 | 32 | 8  |    |    |   |    |    | 17.3   | > 64.0 |
| 45 (NPD-3282)        | 50 | 26 | 13 | 10 | 15 |    |    |   |    |    | 64.0   | > 64.0 |
| 45 (NPD-3282)        | 97 | 87 | 11 | 12 | 7  |    |    |   |    |    | 8.1    | 24.3   |
| 46 (NPD-3490)        | 23 | 16 | 1  | 3  | 3  |    |    |   |    |    | > 64.0 | > 64.0 |

N.D.: not determined.







MS Spectrum Table

Figure S4. LCMS spectrum of intermediate 4.



Figure S6. <sup>13</sup>C NMR spectrum of intermediate **4**.







Figure S7. LCMS spectrum of intermediate 5.



Figure S9. <sup>13</sup>C NMR spectrum of compound 5.







Figure S10. LCMS spectrum of compound intermediate 6.



Figure S12. <sup>13</sup>C NMR spectrum of compound intermediate 6.







9988

Figure S13. LCMS spectrum of compound intermediate 7.

22731

67

221.10

1.14 8.98



Figure S15. <sup>13</sup>C NMR spectrum of compound intermediate 7.



Figure S16. LCMS spectrum of compound 8.







Figure S18. <sup>13</sup>C NMR spectrum of intermediate 8.





| 2 | 7.474 | 24230 | 0.204 |
|---|-------|-------|-------|
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |



Figure S19. LCMS spectrum of compound 1 (NPD-0019).



Figure S21. <sup>13</sup>C NMR spectrum of compound **1** (NPD-0019).



Figure S22. LCMS spectrum of compound 9 (NPD-2960).





Figure S24. <sup>13</sup>C NMR spectrum of compound 9 (NPD-2960).



Figure S25. LCMS spectrum of compound 10 (NPD-0434).



Figure S27. <sup>13</sup>C NMR spectrum of compound **10** (NPD-0434).







Figure S28. LCMS spectrum of compound 11 (NPD-3281).



Figure S30. <sup>13</sup>C NMR spectrum of compound **11** (NPD-3281).





MS Spectrum Table

|                                       | Mis specifium Table                                                    |            |            |        |          |                     |   |        |            |            |        |           |              |
|---------------------------------------|------------------------------------------------------------------------|------------|------------|--------|----------|---------------------|---|--------|------------|------------|--------|-----------|--------------|
| #:1 Ref                               | t.Time:                                                                |            |            |        |          | 1.07940.000.500.500 |   |        |            |            |        |           |              |
| BG Mode:Calc 2.410<->2.790(242<->280) |                                                                        |            |            |        |          |                     |   |        |            |            |        |           |              |
| Mass Pe                               | Mass Peaks: 9 Base Peak: 193.05(675266) Polarity:Pos Segment1 - Event1 |            |            |        |          |                     |   |        |            |            |        |           |              |
| #                                     | m/z                                                                    | Abs.Inten. | Rel.Inten. | Charge | Polarity | Monoisotopic        | # | m/z    | Abs.Inten. | Rel.Inten. | Charge | Pol arity | Monoisotopic |
| 1                                     | 193.05                                                                 | 675266     | 100.00     |        |          |                     | 6 | 256.05 | 24769      | 3.67       |        |           |              |
| 2                                     | 194.05                                                                 | 65587      | 9.71       |        |          |                     | 7 | 385.05 | 9084       | 1.35       |        |           |              |
| 3                                     | 215.00                                                                 | 32079      | 4.75       |        |          |                     | 8 | 407.15 | 55292      | 8.19       |        |           |              |
| 4                                     | 231.00                                                                 | 8680       | 1.29       |        |          |                     | 9 | 408.15 | 15853      | 2.35       |        |           |              |
| 5                                     | 234.05                                                                 | 16383      | 2.43       |        |          |                     |   |        |            |            |        |           |              |

Figure S31. LCMS spectrum of compound 12 (NPD-3380).



Figure S33. <sup>13</sup>C NMR spectrum of compound **12** (NPD-3380).



Figure S34. LCMS spectrum of compound 13 (NPD-3645).



Figure S36. <sup>13</sup>C NMR spectrum of compound **13** (NPD-3645).







Figure S37. LCMS spectrum of compound 14 (NPD-3379).



Figure S39. <sup>13</sup>C NMR spectrum of compound 14 (NPD-3379).







#:1 Ret Time: BG Mode Calc 3.700<->4.090(371<->410) Mass Peaks:13 Base Peak:255.10(772560) Polarity:Pos Segment1 - Event1 m/z 255.10 256.10 257.10 277.10 278.10 m/z 297.15 318.10 319.10 528.50 531.30 532.30 Abs. Inten. 772560 125886 Rel.Inten. Charge Polarity 100.00 Abs.Inten. 16084 80834 # Monoisotopic # Rel.Inten. Charge Polarity Monoisotopic 2.08 10.46 2.05 1.02 8.30 3.11 1 8 9 16.00 16.29 1.33 8.59 1.26 1.55 9.97 2 10 11 12 13 15800 7861 64127 3 10257 66368 9738 11959 4 5 6 7 293.00 24020 296.10 76995

Figure S40. LCMS spectrum of compound 15 (NPD-3200).



Figure S42. <sup>13</sup>C NMR spectrum of compound 15 (NPD-3200).







Figure S43. LCMS spectrum of compound 16 (NPD-3488).


Figure S45. <sup>13</sup>C NMR spectrum of compound 16 (NPD-3488).







Figure S46. LCMS spectrum of compound 17 (NPD-2973).



Figure S48. <sup>13</sup>C NMR spectrum of compound 17 (NPD-2973).



Figure S49. LCMS spectrum of compound 18 (NPD-3199).



Figure S51. <sup>13</sup>C NMR spectrum of compound **18** (NPD-3199).







| #1 Re   | t.Time:        |              |            |                      |            | MS Spe                                       | ctrum Table |        |            |            |        |                        |                           |
|---------|----------------|--------------|------------|----------------------|------------|----------------------------------------------|-------------|--------|------------|------------|--------|------------------------|---------------------------|
| BG Mo   | de: Calc 3.57) | 0<->4.070(35 | 8<->408)   |                      |            |                                              |             |        |            |            |        |                        |                           |
| Mass Pe | aks:16 Bas     | e Peak:289.0 | 5(1524922) | Polarity             | Pos Segn   | nenti - Eventi                               |             |        |            |            |        |                        |                           |
| #       | m/z            | Abs.Inten.   | Rel.Inten. | Charge               | Polarity   | Monoisotopic                                 | #           | m/z    | Abs.Inten. | Rel.Inten. | Charge | Polarity               | Monoisotopic              |
| 1       | 289.05         | 1524922      | 100.00     | 24.19 Million = 1.94 | 0000000000 | 11.1020331.010.003010.01 <del>.0</del> .0190 | 9           | 331.05 | 16309      | 1.07       |        | (2004, SP (12), SR • ) | 1999-990-990-990-990-990- |
| 2       | 290.05         | 260433       | 17.08      |                      |            |                                              | 10          | 332.10 | 25098      | 1.65       |        |                        |                           |
| 3       | 291.00         | 481508       | 31.58      |                      |            |                                              | 11          | 352.05 | 119175     | 7.82       |        |                        |                           |
| 4       | 292.00         | 75350        | 4.94       |                      |            |                                              | 12          | 353.05 | 21959      | 1.44       |        |                        |                           |
| 5       | 311.00         | 90213        | 5.92       |                      |            |                                              | 13          | 354.10 | 42185      | 2.77       |        |                        |                           |
| б       | 312.05         | 15563        | 1.02       |                      |            |                                              | 14          | 599.15 | 58059      | 3.81       |        |                        |                           |
| 7       | 313.05         | 36115        | 2.37       |                      |            |                                              | 15          | 600.15 | 22825      | 1.50       |        |                        |                           |
| 8       | 330.05         | 75293        | 4.94       |                      |            |                                              | 16          | 601.15 | 46128      | 3.02       |        |                        |                           |

Figure S52. LCMS spectrum of compound 19 (NPD-3538).



Figure S54. <sup>13</sup>C NMR spectrum of compound **19** (NPD-3538).







18710

357.00

Figure S55. LCMS spectrum of compound 20 (NPD-3539).

15.03

42171

3

4

336.00



Figure S57. <sup>13</sup>C NMR spectrum of compound **20** (NPD-3539).







MS Spectrum Table

| BG M | ode: Calc 3.72 | 0<->4.200(31 | 73<->421)  |          |          |                |    |        |             |            |        |          |              |
|------|----------------|--------------|------------|----------|----------|----------------|----|--------|-------------|------------|--------|----------|--------------|
| Mass | Peaks:10 Bas   | e Peak:269.0 | 5(2106094) | Polarity | Pos Segm | nent1 - Event1 |    |        |             |            |        |          |              |
| #    | m/z            | Abs. Inten.  | Rel.Inten. | Charge   | Polarity | Monoisotopic   | #  | m/z    | Abs. Inten. | Rel.Inten. | Charge | Polarity | Monoisotopic |
| 1    | 269.05         | 2106094      | 100.00     |          |          |                | 6  | 310.05 | 36373       | 1.73       |        |          |              |
| 2    | 270.05         | 377771       | 17.94      |          |          |                | 7  | 332.10 | 151953      | 7.21       |        |          |              |
| 3    | 271.05         | 35728        | 1.70       |          |          |                | 8  | 333.10 | 30653       | 1.46       |        |          |              |
| 4    | 291.05         | 138338       | 6.57       |          |          |                | 9  | 559.25 | 70066       | 3.33       |        |          |              |
| 5    | 307.05         | 23669        | 1.12       |          |          |                | 10 | 560.20 | 23844       | 1.13       |        |          |              |

Figure. S58 LCMS spectrum of compound 21 (NPD-3589).

#1 Ret.Time:



Figure S60. <sup>13</sup>C NMR spectrum of compound **21** (NPD-3589).







| ΜS | Spectrum | Table |
|----|----------|-------|
|----|----------|-------|

|               |                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    | THE PARTY OF THE PARTY. |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t.Time:       |                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ie: Calc 3.92 | 0<->4.320(39                                                                                            | 93<->433)                                                                                                                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| aks:11 Bas    | e Peak:285.1                                                                                            | 0(1408931)                                                                                                                                                                          | Polarity                                                                                                                                                                                                                                           | Pos Segn                                                                                                                                                                                                                                                           | nent1 - Event1                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| m/z           | Abs.Inten.                                                                                              | Rel.Inten.                                                                                                                                                                          | Charge                                                                                                                                                                                                                                             | Polarity                                                                                                                                                                                                                                                           | Monoisotopic                                                                                                                                                                                                                                                                                                                                                              | #                                                                                                                                                                                                                                                                                                            | m/z                                                                                                                                                                                                                                                                                                                       | Abs.Inten.                                                                                                                                                                                                                                                                                                                                                      | Rel.Inten.                                                                                                                                                                                                                                                                                                                                                                                                        | Charge                                                                                                                                                                                                                                                                                                                                                                                                                                        | Polarity                                                                                                                                                                                                                                                                                                                                                                                                                        | Monoisotopic                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 285.10        | 1408931                                                                                                 | 100.00                                                                                                                                                                              |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                            | 326.15                                                                                                                                                                                                                                                                                                                    | 18220                                                                                                                                                                                                                                                                                                                                                           | 1.29                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 286.10        | 292161                                                                                                  | 20.74                                                                                                                                                                               |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                            | 348.05                                                                                                                                                                                                                                                                                                                    | 86367                                                                                                                                                                                                                                                                                                                                                           | 6.13                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 287.05        | 27635                                                                                                   | 1.96                                                                                                                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                            | 349.05                                                                                                                                                                                                                                                                                                                    | 17684                                                                                                                                                                                                                                                                                                                                                           | 1.26                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 307.05        | 139653                                                                                                  | 9.91                                                                                                                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                           | 591.20                                                                                                                                                                                                                                                                                                                    | 105593                                                                                                                                                                                                                                                                                                                                                          | 7.49                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 308.10        | 18033                                                                                                   | 1.28                                                                                                                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                           | 592.20                                                                                                                                                                                                                                                                                                                    | 36837                                                                                                                                                                                                                                                                                                                                                           | 2.61                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 323.05        | 14162                                                                                                   | 1.01                                                                                                                                                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Time:<br>le: Calc 3.92<br>aks:11 Bas<br>m/z<br>285.10<br>286.10<br>287.05<br>307.05<br>308.10<br>323.05 | .Time:<br>le Calo 3.920 <->4.320(3)<br>aks:11 Base Peak:285.1<br>m/z Abs.Inten.<br>285.10 1408931<br>286.10 292161<br>287.05 27635<br>307.05 139653<br>308.10 18033<br>323.05 14162 | .Time:<br>le: Calc 390 <->4 320(393 <->433)<br>aks:11 Base Peak: 285.10(1408931)<br>m/z Abs.Inten Rel.Inten.<br>285.10 1408931 100.00<br>286.10 292161 20.74<br>287.05 27635 1.96<br>307.05 139653 9.91<br>308.10 139633 9.91<br>308.10 14033 1.28 | .Time:<br>le: Calc 390 <->4.320(393 <->433)<br>aks:11 Base Peak: 285.10(1408931) Polanty<br>m/z Abs.Inten. Rel.Inten. Charge<br>285.10 1408931 100.00<br>286.10 292161 20.74<br>287.05 27635 1.96<br>307.05 139653 9.91<br>308.10 139633 9.91<br>302.15 14162 1.01 | Time:                                                                                                                                                                                                                                                                                                                                                                     | Time:<br>le Calc 390 <->4.320(393 <->433)<br>aks:11 Base Peak: 285.10(1408931) Polarity:Pos Segment1 - Event1<br>m/z Abs.Inten. Rel.Inten. Charge Polarity Monoisotopic<br>285.10 1408931 100.00<br>286.10 292161 20.74<br>287.05 27635 1.96<br>307.05 139653 9.91<br>308.10 18033 1.28<br>323.05 14162 1.01 | Time:  Time:    le: Calc 3, 920 <->4,320(393 <->433)    aks:11  Base Peak: 285,10(1408931)    polarity:Pos Segment1 - Event1    m/z  Abs.Inten    Rel.Inten.  Charge Polarity    285,10  1408931    286,10  292161    20,74  8    287,05  27635    1,96  9    307,05  139653    1,03  1,28    11  323,05    323,05  14162 | Time:<br>le Calc 3294 <>4.320(393 <>433)<br>aks:11 Base Peak:285.10(1408931) Polarity:Pos Segment1 - Event1<br>m/z Abs.Inten. Rel.Inten. Charge Polarity Monoisotopic # m/z<br>285.10 1408931 100.00 7 326.15<br>286.10 292161 20.74 8 348.05<br>287.05 27635 1.96 9 349.05<br>307.05 139653 9.91 10 591.20<br>308.10 18033 1.28 11 592.20<br>323.05 14162 1.01 | Time:<br>le Calc 3, 920 <> 4, 320 (393 <> 433)<br>aks:11 Base Peak: 285, 10(1408931) Polarity.Pos Segment1 - Event1<br>m/z Abs.Inten. Rel.Inten. Charge Polarity Monoisotopic # m/z Abs.Inten.<br>285,10 1408931 100,00 7 326,15 18220<br>286,10 292161 20.74 8 348,05 86367<br>287,05 27635 1.96 9 349,05 17684<br>307,05 139653 9.91 10 591,20 105593<br>308,10 18033 1.28 11 592,20 36837<br>323,05 14162 1.01 | Time:<br>le Calc 320 <>4.320(393 <>>433)<br>aks:11 Base Peak:285.10(1408931) Polarity:Pos Segment1 - Event1<br>m/z Abs.Inten. Rel.Inten. Charge Polarity Monoisotopic # m/z Abs.Inten. Rel.Inten.<br>285.10 1408931 100.00 7 326.15 18220 1.29<br>286.10 292161 20.74 8 348.05 86367 6.13<br>287.05 27635 1.96 9 349.05 17684 1.26<br>307.05 139653 9.91 10 591.20 105593 7.49<br>308.10 18033 1.28 11 592.20 36837 2.61<br>323.05 14162 1.01 | Time:<br>le Calc 3292<->4.320(393<->433)<br>aks:11 Base Peak:285.10(1408931) Polarity:Pos Segment1 - Event1<br>m/z Abs.Inten. Rel.Inten. Charge Polarity Monoisotopic # m/z Abs.Inten. Rel.Inten. Charge<br>285.10 1408931 100.00 7 326.15 18220 1.29<br>286.10 292161 20.74 8 348.05 86367 6.13<br>287.05 27635 1.96 9 349.05 17684 1.26<br>307.05 139653 9.91 10 591.20 105593 7.49<br>308.10 18033 1.28 11 592.20 36837 2.61 | Time:<br>le Calc 3.920 <>4.320(393 <>>433)<br>aks:11 Base Peak:285.10(1408931) Polarity:Pos Segment1 - Event1<br>m/z Abs.Inten. Rel.Inten. Charge Polarity Monoisotopic # m/z Abs.Inten. Rel.Inten. Charge Polarity<br>285.10 1408931 100.00 7 326.15 18220 1.29<br>286.10 292161 20.74 8 348.05 86367 6.13<br>287.05 27635 1.96 9 349.05 17684 1.26<br>307.05 139653 9.91 10 591.20 105593 7.49<br>308.10 18033 1.28 11 592.20 36837 2.61 |

Figure S61. LCMS spectrum of compound 22 (NPD-3590).



Figure S63. <sup>13</sup>C NMR spectrum of compound 22 (NPD-3590).



Figure S64. LCMS spectrum of compound 23 (NPD-3202).



Figure S66. <sup>13</sup>C NMR spectrum of compound 23 (NPD-3202).







MS Spectrum Graph



|         |              |               |            |             |           | MS Spe                     | ctrum Table |        |             |            |        |           |              |
|---------|--------------|---------------|------------|-------------|-----------|----------------------------|-------------|--------|-------------|------------|--------|-----------|--------------|
| #:1 Re  | t.Time:      |               |            |             |           | 67979-000 <del>-</del> 201 |             |        |             |            |        |           |              |
| BG Mo   | de:Calc 4.19 | 0<->4.490(42  | 0<->450)   |             |           |                            |             |        |             |            |        |           |              |
| Mass Pe | eaks:18 Bas  | e Peak:289.0: | 5(269467)  | Polarity: I | Pos Segme | ent1 - Event1              |             |        |             |            |        |           |              |
| #       | m/z          | Abs. Inten.   | Rel.Inten. | Charge      | Polarity  | Monoisotopic               | #           | m/z    | Abs. Inten. | Rel.Inten. | Charge | Pol arity | Monoisotopic |
| 1       | 289.05       | 269467        | 100.00     | -           | -         | _                          | 10          | 331.10 | 10065       | 3.74       | -      |           | _            |
| 2       | 290.00       | 49867         | 18.51      |             |           |                            | 11          | 332.10 | 18171       | 6.74       |        |           |              |
| 3       | 291.10       | 79825         | 29.62      |             |           |                            | 12          | 333.10 | 4125        | 1.53       |        |           |              |
| 4       | 292.10       | 14178         | 5.26       |             |           |                            | 13          | 352.10 | 37789       | 14.02      |        |           |              |
| 5       | 311.05       | 17517         | 6.50       |             |           |                            | 14          | 353.25 | 5742        | 2.13       |        |           |              |
| 6       | 313.05       | 5487          | 2.04       |             |           |                            | 15          | 354.05 | 12482       | 4.63       |        |           |              |
| 7       | 327.10       | 5969          | 2.22       |             |           |                            | 16          | 605.15 | 5778        | 2.14       |        |           |              |
| 8       | 329.25       | 2972          | 1.10       |             |           |                            | 17          | 606.00 | 7511        | 2.79       |        |           |              |
| 9       | 330.10       | 55307         | 20.52      |             |           |                            | 18          | 606.95 | 3608        | 1.34       |        |           |              |

Figure S67. LCMS spectrum of compound 24 (NPD-3591).



Figure S69. <sup>13</sup>C NMR spectrum of compound **24** (NPD-3591).







Figure S70. LCMS spectrum of compound 25 (NPD-3382).



Figure S72. <sup>13</sup>C NMR spectrum of compound **25** (NPD-3382).







Figure S73. LCMS spectrum of compound 26 (NPD-3375).



Figure S75. <sup>13</sup>C NMR spectrum of compound **26** (NPD-3375).



| #:1 Ret | Time:        |               |            |             |           |              |    |        |             |            |        |           |              |
|---------|--------------|---------------|------------|-------------|-----------|--------------|----|--------|-------------|------------|--------|-----------|--------------|
| BG Mod  | le:Calc 3.20 | 0<->3.440(32  | 1<->345)   |             |           |              |    |        |             |            |        |           |              |
| Mass Pe | aks:10 Bas   | se Peak:271.0 | 5(170873)  | Polarity: H | Pos Segme | ntl - Eventl |    |        |             |            |        |           |              |
| #       | m/z          | Abs. Inten.   | Rel.Inten. | Charge      | Polarity  | Monoisotopic | #  | m/z    | Abs. Inten. | Rel.Inten. | Charge | Pol arity | Monoisotopic |
| 1       | 271.05       | 170873        | 100.00     |             |           |              | 6  | 309.05 | 5301        | 3.10       |        |           |              |
| 2       | 272.00       | 28445         | 16.65      |             |           |              | 7  | 334.00 | 9979        | 5.84       |        |           |              |
| 3       | 273.10       | 2799          | 1.64       |             |           |              | 8  | 335.00 | 2379        | 1.39       |        |           |              |
| 4       | 293.05       | 15035         | 8.80       |             |           |              | 9  | 563.20 | 18408       | 10.77      |        |           |              |
| 5       | 294.10       | 3082          | 1.80       |             |           |              | 10 | 564.25 | 7953        | 4.65       |        |           |              |

Figure S76. LCMS spectrum of compound 27 (NPD-2974).



Figure S78. <sup>13</sup>C NMR spectrum of compound 27 (NPD-2974).



Figure S79. LCMS spectrum of compound 28 (NPD-3381).



Figure S81. <sup>13</sup>C NMR spectrum of compound **28** (NPD-3381).



Figure S82. LCMS spectrum of compound 29 (NPD-3598).



Figure S84. <sup>13</sup>C NMR spectrum of compound **29** (NPD-3598).







Figure S85. LCMS spectrum of compound 30 (NPD-2975).



Figure S87. <sup>13</sup>C NMR spectrum of compound **30** (NPD-2975).



Figure S89. HMBC spectrum of compound **30** (NPD-2975).



Figure S91. <sup>13</sup>C NMR spectrum of **30**·xHCl.



Figure S93. HMBC spectrum of **30**·xHCl.



Figure S94. 1,n-ADEQUATE spectrum of 30·xHCl.

| Acquired by<br>Date Acquired | : Admin<br>- 3/7/2019 12-38-00 PM                       |
|------------------------------|---------------------------------------------------------|
| Sample Name                  | : VUF16258                                              |
| Sample ID                    |                                                         |
| Tray#                        | :1                                                      |
| Vial#                        | : 16                                                    |
| Injection Volume             | : 3                                                     |
| Data File                    | : C:\LabSolutions\Data\2019\2019-wk27\VUF16258.lcd      |
| Background File              | : blanco 03072019.1cd                                   |
| Method File                  | : Method SCAN ACID standard.lcm                         |
| Report Format                | : DefaultLCMS.lcr                                       |
| Tuning File                  | : C:\LabSolutions\Tuning\Tuning-ESI-pos-neg01072015alct |
| Processed by                 | Admin                                                   |
| Modified Date                | : 3/7/2019 1:00:26 PM                                   |



| PDACh1 2 | 54nm 4nm |           |          |        |
|----------|----------|-----------|----------|--------|
| Peak#    | Name     | Ret. Time | Area     | Area % |
| 1        |          | 3.612     | 49161    | 0.290  |
| 2        |          | 3.851     | 136099   | 0.803  |
| 3        |          | 4.172     | 80388    | 0.474  |
| 4        |          | 4.320     | 16651820 | 98.220 |
| 5        |          | 4.879     | 36047    | 0.213  |



## MS Spectrum Table

|         |               |              |            |          |            | MID DPC                                       | caronin r dore |        |            |            |        |                   |                              |
|---------|---------------|--------------|------------|----------|------------|-----------------------------------------------|----------------|--------|------------|------------|--------|-------------------|------------------------------|
| #1 Ref  | t.Time:       |              |            |          |            | 1.54                                          |                |        |            |            |        |                   |                              |
| BG Moo  | de: Calc 4.27 | 0<->5.010(42 | 28<->502)  |          |            |                                               |                |        |            |            |        |                   |                              |
| Mass Pe | eaks:20 Bas   | e Peak:289.0 | 5(1855458) | Polarity | Pos Segn   | nent1 - Event1                                |                |        |            |            |        |                   |                              |
| #       | m/z           | Abs.Inten.   | Rel.Inten. | Charge   | Polarity   | Monoisotopic                                  | #              | m/z    | Abs.Inten. | Rel.Inten. | Charge | Polarity          | Monoisotopic                 |
| 1       | 289.05        | 1855458      | 100.00     |          | 0000000000 | 11.1020431.2010.000440.01 <del>.2</del> .2010 | 11             | 332.05 | 49527      | 2.67       |        | (2017-08-00-06C=) | 1999-2010 - 1999-2010 - 1992 |
| 2       | 290.00        | 382010       | 20.59      |          |            |                                               | 12             | 334.10 | 21179      | 1.14       |        |                   |                              |
| 3       | 291.00        | 631041       | 34.01      |          |            |                                               | 13             | 352.00 | 198202     | 10.68      |        |                   |                              |
| 4       | 292.00        | 97642        | 5.26       |          |            |                                               | 14             | 353.00 | 37343      | 2.01       |        |                   |                              |
| 5       | 311.00        | 106208       | 5.72       |          |            |                                               | 15             | 354.05 | 64047      | 3.45       |        |                   |                              |
| 6       | 312.05        | 20916        | 1.13       |          |            |                                               | 16             | 483.20 | 65350      | 3.52       |        |                   |                              |
| 7       | 313.00        | 38894        | 2.10       |          |            |                                               | 17             | 485.15 | 23119      | 1.25       |        |                   |                              |
| 8       | 327.00        | 24731        | 1.33       |          |            |                                               | 18             | 505.15 | 44990      | 2.42       |        |                   |                              |
| 9       | 330.00        | 141151       | 7.61       |          |            |                                               | 19             | 599.15 | 61199      | 3.30       |        |                   |                              |
| 10      | 331.00        | 29256        | 1.58       |          |            |                                               | 20             | 601.15 | 33455      | 1.80       |        |                   |                              |
|         |               |              |            |          |            |                                               |                |        |            |            |        |                   |                              |

Figure S95. LCMS spectrum of compound **31** (NPD-3204).

PeakTabl



Figure S97. <sup>13</sup>C NMR spectrum of compound **31** (NPD-3204).





Figure S98. LCMS spectrum of compound 32 (NPD-2971).


Figure S100. <sup>13</sup>C NMR spectrum of compound **32** (NPD-2971).





Figure S101. LCMS spectrum of compound 33 (NPD-2972).



Figure S103. <sup>13</sup>C NMR spectrum of compound **33** (NPD-2972).

| Admin                                                   |
|---------------------------------------------------------|
| : 25/4/2018 1:58:14 PM                                  |
| : YAZH01-201                                            |
|                                                         |
| : 1                                                     |
| : 21                                                    |
| : 3                                                     |
| : C:\LabSolutions\Data\2018\2018-wk17\YAZH01-201.lcd    |
| : blanco 25042018.lcd                                   |
| : Method SCAN ACID standard.lcm                         |
| : DefaultLCMS.lcr                                       |
| : C:\LabSolutions\Tuning\Tuning-ESI-pos-neg01072015alct |
| Admin                                                   |
| : 25/4/2018 2:09:39 PM                                  |
|                                                         |





Figure S104. LCMS spectrum of compound 34 (NPD-3377).



Figure S106. <sup>13</sup>C NMR spectrum of compound 34 (NPD-3377).





Figure S107. LCMS spectrum of compound 35 (NPD-3201).



Figure S109. <sup>13</sup>C NMR spectrum of compound **35** (NPD-3201).





| Peak# | Name | Ret. Time | Area    | Area%  |
|-------|------|-----------|---------|--------|
| 1     |      | 4.077     | 30020   | 0.658  |
| 2     |      | 4.540     | 4534064 | 99.342 |



Figure S110. LCMS spectrum of compound 36 (NPD-3597).



Figure S112. <sup>13</sup>C NMR spectrum of compound **36** (NPD-3597).







Figure S113. LCMS spectrum of compound 37 (NPD-3203).



Figure S114. <sup>1</sup>H NMR spectrum of compound **37** (NPD-3203).



Figure S115. <sup>13</sup>C NMR spectrum of compound **37** (NPD-3203).



Figure S116. LCMS spectrum of compound 38 (NPD-3305).



Figure S118. <sup>13</sup>C NMR spectrum of compound **38** (NPD-3305).







Figure S119. LCMS spectrum of compound 39 (NPD-3489).



Figure S121. <sup>13</sup>C NMR spectrum of compound **39** (NPD-3489).







Figure S122. LCMS spectrum of compound 40 (NPD-3371).



Figure S124. <sup>13</sup>C NMR spectrum of compound **40** (NPD-3371).









Figure S125. LCMS spectrum of compound 41 (NPD-3376).

(x100,000) 1.70 175,940 1.00

0.00

TIC@1



Figure S127. <sup>13</sup>C NMR spectrum of compound 41 (NPD-3376).







Figure S128. LCMS spectrum of compound 42 (NPD-3372).



Figure S130. <sup>13</sup>C NMR spectrum of compound **42** (NPD-3372).







Figure S131. LCMS spectrum of compound 43 (NPD-3280).



Figure S133. <sup>13</sup>C NMR spectrum of compound 43 (NPD-3280).



MS Spectrum Table

m/z

| #:1 Re                                                                 | t.Time: |             |            |        |          |              |   |        |             |            |        |           |              |
|------------------------------------------------------------------------|---------|-------------|------------|--------|----------|--------------|---|--------|-------------|------------|--------|-----------|--------------|
| BG Mode: Calc 4.250<->4.780(426<->479)                                 |         |             |            |        |          |              |   |        |             |            |        |           |              |
| Mass Peaks:8 Base Peak: 338.10(2315029) Polarity:Pos Segment1 - Event1 |         |             |            |        |          |              |   |        |             |            |        |           |              |
| #                                                                      | m/z     | Abs. Inten. | Rel.Inten. | Charge | Polarity | Monoisotopic | # | m/z    | Abs. Inten. | Rel.Inten. | Charge | Pol arity | Monoisotopic |
| 1                                                                      | 338.10  | 2315029     | 100.00     |        |          |              | 5 | 379.15 | 26705       | 1.15       |        |           |              |
| 2                                                                      | 339.15  | 558399      | 24.12      |        |          |              | 6 | 401.15 | 51029       | 2.20       |        |           |              |
| 3                                                                      | 340.15  | 69830       | 3.02       |        |          |              | 7 | 697.40 | 39606       | 1.71       |        |           |              |
| 4                                                                      | 360.05  | 44771       | 1.93       |        |          |              | 8 | 702.95 | 24657       | 1.07       |        |           |              |

Figure S134. LCMS spectrum of compound 44 (NPD-3283).



Figure S136. <sup>13</sup>C NMR spectrum of compound 44 (NPD-3283).



Figure S137. LCMS spectrum of compound 45 (NPD-3282).



Figure S139. <sup>13</sup>C NMR spectrum of compound 45 (NPD-3282).







Figure S140. LCMS spectrum of compound 46 (NPD-3490).



Figure S142. <sup>13</sup>C NMR spectrum of compound 46 (NPD-3490).